Linear codes

CoCoNut, 2016
Emmanuela Orsini
Previously . . .
- Block codes
 - Parameters: length, information rate, minimum distance
 - Examples: Parity code, Hamming code

- (MLD) $\max_{c \in C} \Pr(r|c) \approx \min_{c \in C} d(r, c)$ (MMD)

- Binary Symmetric Channel (BSC)
Binary Symmetric Channel

Suppose c is the transmitted codeword and r is the received word:

$$c = r + e$$
Binary Symmetric Channel

Suppose c is the transmitted codeword and r is the received word:

$$c = r + e$$

Given two codewords c_1, c_2, then

$$\Pr(r|c_1) \leq \Pr(r|c_2) \iff d(r, c_1) \geq d(r, c_2)$$

$$\iff \text{wt}(r + c_1) \geq \text{wt}(r + c_2)$$

$$\iff \text{wt}(e_1) \geq \text{wt}(e_2)$$

The most likely codeword sent is the one corresponding to the error of smallest weight.
Do we need more structure?

Binary Hamming code $(7, 16)$: $\text{Enc} : \{0, 1\}^4 \rightarrow \{0, 1\}^7$

<table>
<thead>
<tr>
<th>Information bits</th>
<th>Codeword</th>
<th>Information bits</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>00000000</td>
<td>1000</td>
<td>1000110</td>
</tr>
<tr>
<td>0001</td>
<td>0001111</td>
<td>1001</td>
<td>1001001</td>
</tr>
<tr>
<td>0100</td>
<td>0010101</td>
<td>1010</td>
<td>1010101</td>
</tr>
<tr>
<td>0011</td>
<td>0011100</td>
<td>1011</td>
<td>1011010</td>
</tr>
<tr>
<td>0010</td>
<td>0010011</td>
<td>1100</td>
<td>1100011</td>
</tr>
<tr>
<td>0101</td>
<td>0101010</td>
<td>1101</td>
<td>1101100</td>
</tr>
<tr>
<td>0110</td>
<td>0110110</td>
<td>1110</td>
<td>1110000</td>
</tr>
<tr>
<td>0111</td>
<td>0111001</td>
<td>1111</td>
<td>1111111</td>
</tr>
</tbody>
</table>

We need $n \cdot 2^k$ bits to store a binary code $\text{Enc} : \{0, 1\}^k \rightarrow \{0, 1\}^n$

Can we do better than this?
Do we need more structure?

Binary Hamming code \((7, 16)\): \(\text{Enc} : \{0, 1\}^4 \rightarrow \{0, 1\}^7\)

<table>
<thead>
<tr>
<th>Information bits</th>
<th>Codeword</th>
<th>Information bits</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>00000000</td>
<td>1000</td>
<td>1000110</td>
</tr>
<tr>
<td>0001</td>
<td>0001111</td>
<td>1001</td>
<td>1001001</td>
</tr>
<tr>
<td>0100</td>
<td>0010101</td>
<td>1010</td>
<td>1010101</td>
</tr>
<tr>
<td>0011</td>
<td>0011100</td>
<td>1011</td>
<td>1011010</td>
</tr>
<tr>
<td>0010</td>
<td>0010011</td>
<td>1100</td>
<td>1100011</td>
</tr>
<tr>
<td>0101</td>
<td>0101010</td>
<td>1101</td>
<td>1101100</td>
</tr>
<tr>
<td>0110</td>
<td>0110110</td>
<td>1110</td>
<td>1110000</td>
</tr>
<tr>
<td>0111</td>
<td>0111001</td>
<td>1111</td>
<td>1111111</td>
</tr>
</tbody>
</table>

We need \(n \cdot 2^k\) bits to store a binary code \(\text{Enc} : \{0, 1\}^k \rightarrow \{0, 1\}^n\)

Can we do better than this?

👍😊 We need extra structure that would facilitate a succinct representation of the code
Can we do better?

Mathematically we can describe the $\binom{7}{16}_2$ Hamming code by a matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix},$$

so that, if we represent a message by the vector $\mathbf{m} = (m_1 \ m_2 \ m_3 \ m_4)$, we can encode by computing

$$\mathbf{c} = \mathbf{m} \cdot G$$

Suppose we wish to transmit $\mathbf{m} = (1 \ 0 \ 1 \ 0)$, we then compute

$$(1010) \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} = (1010101)$$
Can we do better?

\[
(1010) \cdot \begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{pmatrix} = (1010101)
\]

<table>
<thead>
<tr>
<th>Information bits</th>
<th>Codeword</th>
<th>Information bits</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0000000</td>
<td>1000</td>
<td>1000110</td>
</tr>
<tr>
<td>0001</td>
<td>0001111</td>
<td>1001</td>
<td>1001001</td>
</tr>
<tr>
<td>0100</td>
<td>0010101</td>
<td>1010</td>
<td>1010101</td>
</tr>
<tr>
<td>0011</td>
<td>0011100</td>
<td>1011</td>
<td>1011010</td>
</tr>
<tr>
<td>0010</td>
<td>0010011</td>
<td>1100</td>
<td>1100011</td>
</tr>
<tr>
<td>0101</td>
<td>0101010</td>
<td>1101</td>
<td>1101100</td>
</tr>
<tr>
<td>0110</td>
<td>0110110</td>
<td>1110</td>
<td>1110000</td>
</tr>
<tr>
<td>0111</td>
<td>0111001</td>
<td>1111</td>
<td>1111111</td>
</tr>
</tbody>
</table>
Linear codes - Definition

The previous example is an example of linear code.

Definition (Linear code)

Let q be a prime power. Then $C \subseteq \{0, 1, \ldots, q - 1\}^n = \mathbb{F}_q^n$ is a linear code if it is a linear subspace of \mathbb{F}_q^n. If C has dimension k and distance d then it will be referred to as an $[n, k, d]_q$ or just an $[n, k]_q$ code.

- \mathbb{F}_q^n denote the vector space of all n-tuples over the finite field \mathbb{F}_q.

Emmanuela Orsini (University of Bristol)
Lecture II
CoCoNuT, 2016
Representing linear code

An \([n, k, d]_q\) code \(C\) is a subspace of \(\mathbb{F}_q^n\).
We have two alternate characterization of \(C\).

1. \(C\) is generated by its \(k \times n\) generator matrix \(G\), i.e. a matrix whose \(k\) rows span \(C\).
 - The encoding map \(\text{Enc} : \mathbb{F}_q^k \to \mathbb{F}_q^n\) is an injective linear map defined as
 \[m \mapsto mG(=c)\]
Representing linear code

An $[n, k, d]_q$ code C is a subspace of \mathbb{F}_q^n.

We have two alternate characterization of C.

1. C is generated by its $k \times n$ generator matrix G, i.e. a matrix whose k rows span C.

 - The encoding map $\text{Enc} : \mathbb{F}_q^k \to \mathbb{F}_q^n$ is an injective linear map defined as
 \[
 \mathbf{m} \mapsto \mathbf{m}G(= \mathbf{c})
 \]

2. C is characterized by an $(n - k) \times n$ parity-check matrix H:

 \[
 C = \{ \mathbf{c} \in \mathbb{F}_q^n \mid H\mathbf{c}^T = 0 \}
 \]

Fact

The generator matrix and the parity-check matrix are orthogonal, i.e.

\[
G \cdot H^T = 0
\]
Representing linear code - An example

The $[7, 4, 3]_2$ Hamming code has the following generator matrix

$$G = \begin{pmatrix}
 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{pmatrix},$$

and the following parity-check matrix

$$H = \begin{pmatrix}
 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{pmatrix}.$$

Both the generator matrix and the parity-check matrix can be represented using $O(n^2)$ elements from \mathbb{F}_q.
Linear codes

Generator matrix in standard form (1)

Let C be an $[n, k]_q$ linear code. C has a unique generator matrix of the form

$$[I_k \mid \hat{G}]$$

A generator matrix in this form is said to be in standard form (or reduced echelon form).

Example (Binary Hamming code $n = 7$)

Let $G = (I_4 \mid \hat{G}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$

Systematic encoding: Encoding with a generator matrix in standard form.

$$(m_1 \ldots m_k) \cdot (I_k \mid \hat{G}) = (m_1, \ldots, m_k, *, \ldots, *)$$
Polygno riet ma an \([n, k]_d \) linear code, if \(G = [I_k \mid \hat{G}] \) is a generator matrix in standard form, then \(H = [-\hat{G}^T \mid I_{n-k}] \) is a parity-check matrix for \(C \).

Proof.

Note that \(\hat{G} \in \mathbb{F}_q^{k \times (n-k)} \) and that

\[
G \cdot H^T = \begin{pmatrix} I_k \mid \hat{G} \end{pmatrix} \cdot \begin{pmatrix} -\hat{G} \\ I_{n-k} \end{pmatrix} = -\hat{G} + \hat{G} = 0
\]

Moreover \(H \) has \(n - k \) linearly independent rows. This concludes the proof.
Dual code

Since the $n - k$ rows of a parity-check matrix H are independent, H is a generator matrix too.

Definition

The *dual code* of C is the $[n, n - k]_q$ linear code C^\perp composed by all the vectors orthogonal to all words of C:

$$C^\perp = \{ \tilde{c} \mid \tilde{c} \cdot c = 0, \forall c \in C \}.$$

<table>
<thead>
<tr>
<th>C</th>
<th>C^\perp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[n, k]_q$ linear code</td>
<td>$[n, n - k]_q$ linear code</td>
</tr>
<tr>
<td>$G \in \mathbb{F}_q^{k \times n}$ generator matrix</td>
<td>$G \in \mathbb{F}_q^{k \times n}$ parity-check matrix</td>
</tr>
<tr>
<td>$H \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix</td>
<td>$H \in \mathbb{F}_q^{(n-k) \times n}$ generator matrix</td>
</tr>
</tbody>
</table>
Distance of a linear code

What can we say about the distance of a linear code \([n, k, d]_q\)?
Distance of a linear code

What can we say about the distance of a linear code $[n, k, d]_q$?

$$d = \min_{\mathbf{c} \in C, \mathbf{c} \neq \mathbf{0}} \text{wt}(\mathbf{c}) = \text{wt}(C)$$

Proof.

a. $d \leq \text{wt}(C)$: this is trivial as $\mathbf{0} \in C$, so if $\mathbf{c} \in C$ is the codeword with minimum weight, we can compute $d(0, \mathbf{c}) = \text{wt}(\mathbf{c})$.

b. $d \geq \text{wt}(C)$: for any $\mathbf{c}_1 \neq \mathbf{c}_2 \in C$, we note that $\mathbf{c}_1 - \mathbf{c}_2 \in C$. Now note that the weight of $\mathbf{c}_1 - \mathbf{c}_2$ is $d(\mathbf{c}_1, \mathbf{c}_2)$ (why?), since the non-zero symbols in $\mathbf{c}_1 - \mathbf{c}_2$ occur exactly in the positions where the two codewords differ.
We show the relation between the weight of a codeword and H

Theorem

If $\mathbf{c} \in C$, the columns of H corresponding to the nonzero coordinates of \mathbf{c} are linearly dependent. Conversely, if a linear dependence relation with nonzero coefficients exists among w columns of H, then there is a codeword in C of weight w whose nonzero coordinates correspond to these columns.

Proof’s idea: If for example $\text{supp}(\mathbf{c}) = \{c_0, c_1, c_2\}$ then

\[0 = H\mathbf{c}^T = \begin{bmatrix} h_0 & h_2 & \ldots & h_{n-1} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \longrightarrow \quad h_0c_0 + h_1c_1 + h_2c_2 = 0 \]

If h_0, h_1, h_3 are linearly dependent, then exist $a_0, a_1, a_2 \in \mathbb{F}_q$ (not all zero) such that $a_0h_0 + a_1h_1 + a_2h_2 = 0$.
We show the relation between the weight of a codeword and H

Theorem

If $c \in C$, the columns of H corresponding to the nonzero coordinates of c are linearly dependent. Conversely, if a linear dependence relation with nonzero coefficients exists among w columns of H, then there is a codeword in C of weight w whose nonzero coordinates correspond to these columns.

For any $[n, k]_q$ code C with parity check matrix H, the distance $d(C)$ is such that

- $d(C) \geq d \iff$ every subset of $d - 1$ columns of H are linearly independent
- $d(C) \leq d \iff$ there exists a subset of d columns of H that are linearly dependent
The main problem of coding theory

Consider an \((n, M, d)\) code over an alphabet \(\mathcal{A}\).

- The larger is the value \(M\), the more efficient is the code

\[A_q(n, d) = \max \{ M \mid \text{there exists an}(n, M, d)\text{-code over } \mathcal{A} \} \]
The main problem of coding theory

Consider an \((n, M, d)\) code over an alphabet \(\mathcal{A}\).

- The larger is the value \(M\), the more efficient is the code

\[A_q(n, d) = \max\{M \mid \text{there exists an}(n, M, d)\text{-code over}\mathcal{A}\} \]

For practical purposes a “good” \((n, M, d)\) code will have:

- small \(n\)
- large \(M\) (to permit a wide variety of messages);
- large \(d\) (for detecting and correcting large number of errors).

These are conflicting aims.

Thus we come to the *Main Problem of Coding Theory*:

Given a \(q\)-ary alphabet, a length \(n\) and a minimum distance \(d\), find a code such that \(A_q(n, d)\) is maximal.
Singleton bound

Theorem (Singleton Bound)

If C is an $(n, M, d)_q$ code, then $A_q(n, d) \leq q^{n-d+1}$

$$q^k \leq q^{n-d+1} \implies k \leq n - d + 1$$

Codes that meet this bound, i.e. satisfy $d = n - k + 1$, are called **Maximum Distance Separable (MDS)** codes.
Fix $n, k \in \mathbb{N}$, such $k \leq n$ and q a prime power with $q \geq n$. Consider the finite field \mathbb{F}_q and construct the code as follows:
Fix \(n, k \in \mathbb{N} \), such \(k \leq n \) and \(q \) a prime power with \(q \geq n \). Consider the finite field \(\mathbb{F}_q \) and construct the code as follows:

1. Choose \(n \) distinct points \(\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q \)

2. Let \(m = (m_0, \ldots, m_{k-1}) \) a message in \(\mathbb{F}_q^k \), we can rewrite \(m \) as

 \[
 m(x) = m_0 + m_1 x + \cdots + m_{k-1} x^{k-1} \in \mathbb{F}_q[x]
 \]

3. Encode \(m(x) \) evaluating it in \(\alpha_i, i = 1, \ldots, n \):

 \[
 c(x) = (m(\alpha_1), \ldots, m(\alpha_n)).
 \]
Definition (Reed-Solomon codes)

Take n distinct points $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$, with n such that $q \geq n$, and let k be an integer such that $1 \leq k \leq n$. We define the Reed-Solomon code as

$$RS_q(n, k) = \{(f(\alpha_1), \ldots, f(\alpha_n)) \in \mathbb{F}_q^n \mid f \in \mathbb{F}_q[x] s.t. \deg(f) \leq k - 1 \cup \{0\}\}$$

Remark: Usually the set of points $S = \{\alpha_1, \ldots, \alpha_n\}$ is \mathbb{F}_q^*.
Definition (Reed-Solomon codes)

Take n distinct points $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$, with n such that $q \geq n$, and let k be an integer such that $1 \leq k \leq n$. We define the Reed-Solomon code as

$$RS_q(n, k) = \{(f(\alpha_1), \ldots, f(\alpha_n)) \in \mathbb{F}_q^n \mid f \in \mathbb{F}_q[x] \text{s.t. } \deg(f) \leq k - 1 \cup \{0\}\}$$

Remark: Usually the set of points $S = \{\alpha_1, \ldots, \alpha_n\}$ is \mathbb{F}_q^*.

- Let \mathcal{P}_{k-1} be the vector space of all polynomials of degree $k - 1$ over \mathbb{F}_q

$$\{1, x, \ldots, x^{k-1}\}$$

is a basis for it.
We can define a code $C = RS(n, k)$ as the image of

$$
\text{Enc} : \mathcal{P}_{k-1} \longrightarrow \mathbb{F}_q^n
$$

$$
f \longmapsto (f(\alpha_1), \ldots, f(\alpha_n))
$$

In this way the Vandermonde matrix

$$
G = \begin{pmatrix}
1 & 1 & \ldots & 1 \\
\alpha_1 & \alpha_2 & \ldots & \alpha_n \\
\alpha_1^2 & \alpha_2^2 & \ldots & \alpha_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{k-1} & \alpha_2^{k-1} & \ldots & \alpha_n^{k-1}
\end{pmatrix}
$$

(obtained evaluating $\{1, x, \ldots, x^{k-1}\}$ in $\alpha_1, \ldots, \alpha_n$) is a generator matrix for C.
Example

Consider the RS codes over \mathbb{F}_9 with $k = 3$. Let $\{1, x, x^2\}$ a basis for \mathcal{P}_2. Then let S be the set of points $\mathbb{F}_9^* = \{1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, \alpha^7\}$, we obtain the generator matrix

$$G = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 & \alpha^7 \\
1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^2 & \alpha^4 & \alpha^6
\end{pmatrix}.$$

The corresponding Reed-Solomon code is a linear code with block length $n = q - 1 = 8$, and dimension $k = \dim \mathcal{P}_{k-1} = 3$.
Example

Consider the RS codes over \mathbb{F}_9 with $k = 3$. Let $\{1, x, x^2\}$ a basis for \mathcal{P}_2. Then let S be the set of points $\mathbb{F}_9^* = \{1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, \alpha^7\}$, we obtain the generator matrix

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 & \alpha^7 \\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^2 & \alpha^4 & \alpha^6 \end{pmatrix}.$$

The corresponding Reed-Solomon code is a linear code with block length $n = q - 1 = 8$, and dimension $k = \dim \mathcal{P}_{k-1} = 3$.

What about the distance?
Example

Consider the RS codes over \mathbb{F}_9 with $k = 3$. Let $\{1, x, x^2\}$ a basis for \mathcal{P}_2. Then let S be the set of points $\mathbb{F}_9^* = \{1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, \alpha^7\}$, we obtain the generator matrix

$$G = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 & \alpha^7 \\
1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^2 & \alpha^4 & \alpha^6
\end{pmatrix}.$$

The corresponding Reed-Solomon code is a linear code with block length $n = q - 1 = 8$, and dimension $k = \dim \mathcal{P}_{k-1} = 3$.

What about the distance?

The $RS_q(n, k)$ is MDS, i.e. it is an $[n, k, d = n - k + 1]_q$ code.
Example

Consider the RS codes over \mathbb{F}_9 with $k = 3$. Let $\{1, x, x^2\}$ a basis for \mathcal{P}_2. Then let S be the set of points $\mathbb{F}_9^* = \{1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, \alpha^7\}$, we obtain the generator matrix

$$G = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 & \alpha^7 \\
1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^2 & \alpha^4 & \alpha^6
\end{pmatrix}.$$

The corresponding Reed-Solomon code is a linear code with block length $n = q - 1 = 8$, and dimension $k = \dim \mathcal{P}_{k-1} = 3$.

What about the distance?

The $RS_q(n, k)$ is MDS, i.e. it is an $[n, k, d = n - k + 1]_q$ code

The code above is an $[8, 3, 6]$ Reed-Solomon code over \mathbb{F}_9.