Lattice Signature Schemes

Vadim Lyubashevsky
INRIA / ENS Paris
DIGITAL SIGNATURE SCHEMES
Digital Signatures

\[(sk, pk) \leftarrow \text{KeyGen}\]
\[\text{Sign}(sk, m_i) = s_i\]
\[\text{Verify}(pk, m_i, s_i) = \text{YES} / \text{NO}\]

Correctness: \[\text{Verify}(pk, m_i, \text{Sign}(sk, m_i)) = \text{YES}\]

Security: Unforgeability
1. Adversary gets pk
2. Adversary asks for signatures of \[m_1, m_2, \ldots\]
3. Adversary outputs \((m, s)\) where \(m \neq m_i\) and wins if \[\text{Verify}(pk, m, s) = \text{YES}\]
Signature Schemes

• Hash-and-Sign
 – Requires a trap-door function

• Fiat-Shamir transformation
 – Conversion from an identification scheme
 – No trap-door function needed
FIAT-SHAMIR SIGNATURE SCHEMES
Signature Scheme (Main Idea)

Secret Key: S
Public Key: $A, T = AS \mod q$

Sign(μ)
- Pick a random y
- Compute $c = H(Ay \mod q, \mu)$
- $z = Sc + y$
- Output(z, c)

Verify(z, c)
- Check that z is “small” and
- $c = H(Az - Tc \mod q, \mu)$
Main Security Intuition

Secret Key: S
Public Key: A, $T = AS \mod q$

Sign(μ)
- Pick a random y
- Compute $c = H(Ay \mod q, \mu)$
- $z = Sc + y$
- Output(z, c)

Verify(z, c)
- Check that z is “small” and $c = H(Az - Tc \mod q, \mu)$

Signature is independent of the secret key
Signature Scheme

Secret Key: \(S \)
Public Key: \(A, T = AS \mod q \)

Sign(\(\mu \))

- Pick a random \(y \) make \(y \) uniformly random mod \(q \)?
- Compute \(c = H(Ay \mod q, \mu) \)
- \(z = Sc + y \)
- **Output(\(z, c \))** then \(z \) is too big and forging is easy 😞
Signature Scheme

Secret Key: S
Public Key: A, $T = AS \mod q$

\textbf{Sign}(\mu)

Pick a random y
Compute $c = H(Ay \mod q, \mu)$
$z = Sc + y$
Output(z, c) then z will not be independent of S 😞
Rejection Sampling

Secret Key: S
Public Key: A, $T = AS \mod q$

Sign(μ)
Pick a random y make y small
Compute $c = H(Ay \mod q, \mu)$
$z = Sc + y$
Output(z, c) *if* z meets certain criteria, *else* repeat
Rejection Sampling

Have access to samples from \(g(x) \)

Want \(f(x) \)
Rejection Sampling

Have access to samples from $g(x)$

Want $f(x)$

Sample from $g(x)$, accept x with probability $\frac{f(x)}{Mg(x)} \leq 1$

$$\Pr[x] = g(x) \cdot \left(\frac{f(x)}{Mg(x)} \right) = \frac{f(x)}{M}$$

Something is output with probability $\frac{1}{M}$
Rejection Sampling

Impossible to tell whether $g(x)$ or $h(x)$ was the original distribution

Have access to samples from $g(x)$

Want $f(x)$

Sample from $g(x)$, accept x with probability $f(x)/Mg(x) \leq 1$

or ... Sample from $h(x)$, accept x with probability $f(x)/Mh(x) \leq 1$

$Pr[x] = g(x) \cdot (f(x)/Mg(x)) = f(x)/M = h(x) \cdot (f(x)/Mh(x))$

Something is output with probability $1/M$
Rejection Sampling

Pick a random y
Compute $c = H(Ay \mod q, \mu)$
$z = Sc + y$
Output (z, c) w.p. ...
Normal Distribution

1-dimensional Normal distribution:

\[\rho_\sigma(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-x^2/2\sigma^2} \]

It is:

Centered at 0
Standard deviation: \(\sigma \)
Examples
Shifted Normal Distribution

1-dimensional shifted Normal distribution:

\[\rho_{\sigma,\nu}(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\nu)^2}{2\sigma^2}} \]

It is:

Centered at \(\nu \)

Standard deviation: \(\sigma \)
n-Dimensional Normal Distribution

n-dimensional shifted Normal distribution:

\[\rho_{\sigma, v}(x) = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{-\frac{||x-v||^2}{2\sigma^2}} \]

It is:

- Centered at \(v \)
- Standard deviation: \(\sigma \)
2-Dimensional Example
n-Dimensional Normal Distribution

n-dimensional shifted Normal distribution:

\[\rho_{\sigma, v}(x) = \frac{1}{(\sqrt{2\pi\sigma})^n} e^{-\frac{|x-v|^2}{2\sigma^2}} \]

It is:

Centered at \(v \)

Standard deviation: \(\sigma \)

Discrete Normal: for \(x \) in \(\mathbb{Z}^n \),

\[D_{\sigma, v}(x) = \frac{\rho_{\sigma, v}(x)}{\rho_{\sigma, v}(\mathbb{Z}^n)} \]
Rejection Sampling

Pick a random y
Compute $c = H(Ay \mod q, \mu)$
$z = Sc + y$
Output (z, c) w.p. $D_{\sigma,0}(z) / (MD_{\sigma,sc}(z))$

for $\sigma = 12v$,
$D_{\sigma,0}(z) / (MD_{\sigma,sc}(z)) \approx e/M$

$v = \max ||Sc||$
Security Reduction

Adversary Simulator

A

Pick random S

$(z_i, c_i) = \text{Sign}(\mu_i)$

$A(z-z') + T(c' - c) = 0$

$A(z-z' + Sc' - Sc) = 0$

If this is not 0, then \textbf{SIS} is solved.

Important for adversary to not know S.

μ_i

(z_i, c_i)

μ, (z, c)

μ, (z', c')
INTERLUDE: THE SIS PROBLEM
The SIS Problem

Given a random A in $\mathbb{Z}_q^{n \times m}$, find a “small” s such that $As = 0 \mod q$
The LWE Problem

\[\mathbf{A} \mathbf{s} + \mathbf{e} = \mathbf{b} \mod q \]

- Find \(\mathbf{s} \)
- \(\| \mathbf{e} \| \) is small
Decision LWE

Valid LWE Distribution: \(A + s + e = b \)

Uniformly Random: \(A = b \)
Solve SIS to Solve LWE

\[v \equiv 0 \mod q \]
Solve SIS to Solve LWE
Solve SIS to Solve LWE
Compute $\mathbf{v} \cdot \mathbf{b} \mod q$. If $\mathbf{b} = \mathbf{A}s + \mathbf{e}$, then $\mathbf{v} \cdot \mathbf{b} = \mathbf{v} \cdot \mathbf{e}$ is small. If \mathbf{b} is uniform, then $\mathbf{v} \cdot \mathbf{b} \mod q$ is uniform.
BACK TO SIGNATURES...
Improving the Rejection Sampling

Pick a random y
Compute $c=H(Ay \mod q, \mu)$
$z = Sc + y$
Output (z, c) w.p. $D_{\sigma,0}(z) / (MD_{\sigma,Sc}(z))$
Bimodal Gaussians [DDLL ‘13]

Pick a random \(y \)
Compute \(c = H(Ay \mod q, \mu) \)
Pick a random \(b \) in \(-1,1\)
\(z = bSc + y \)
Output \((z, c)\) w.p. \(D_{\sigma,0}(z) / M(\frac{1}{2}D_{\sigma,Sc}(z) + \frac{1}{2}D_{\sigma,-Sc}(z)) \approx \frac{e}{M} \)

Verify \((z, c)\)
Check that \(z \) is “small” and
\(c = H(Az - Tc \mod q, \mu) \)

\(Az - Tc = A(bSc + y) - Tc = bTc - Tc + Ay \)

Want: \(Tc = -Tc \)
Optimizations

• Base problem on the hardness of the NTRU problem
• Compress the signature \rightarrow not all of z needs to be output if H only acts on the high order bits
• A few other small tricks
Performance of the Bimodal Lattice Signature Scheme

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Security</th>
<th>Signature Size</th>
<th>SK Size</th>
<th>PK Size</th>
<th>Sign (ms)</th>
<th>Sign/s</th>
<th>Verify (ms)</th>
<th>Verify/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLISS-0</td>
<td>≤ 60 bits</td>
<td>3.3 kb</td>
<td>1.5 kb</td>
<td>3.3 kb</td>
<td>0.241</td>
<td>4k</td>
<td>0.017</td>
<td>59k</td>
</tr>
<tr>
<td>BLISS-I</td>
<td>128 bits</td>
<td>5.6 kb</td>
<td>2 kb</td>
<td>7 kb</td>
<td>0.124</td>
<td>8k</td>
<td>0.030</td>
<td>33k</td>
</tr>
<tr>
<td>BLISS-II</td>
<td>128 bits</td>
<td>5 kb</td>
<td>2 kb</td>
<td>7 kb</td>
<td>0.480</td>
<td>2k</td>
<td>0.030</td>
<td>33k</td>
</tr>
<tr>
<td>BLISS-III</td>
<td>160 bits</td>
<td>6 kb</td>
<td>3 kb</td>
<td>7 kb</td>
<td>0.203</td>
<td>5k</td>
<td>0.031</td>
<td>32k</td>
</tr>
<tr>
<td>BLISS-IV</td>
<td>192 bits</td>
<td>6.5 kb</td>
<td>3 kb</td>
<td>7 kb</td>
<td>0.375</td>
<td>2.5k</td>
<td>0.032</td>
<td>31k</td>
</tr>
<tr>
<td>RSA 1024</td>
<td>72-80 bits</td>
<td>1 kb</td>
<td>1 kb</td>
<td>1 kb</td>
<td>0.167</td>
<td>6k</td>
<td>0.004</td>
<td>91k</td>
</tr>
<tr>
<td>RSA 2048</td>
<td>103-112 bits</td>
<td>2 kb</td>
<td>2 kb</td>
<td>2 kb</td>
<td>1.180</td>
<td>0.8k</td>
<td>0.038</td>
<td>27k</td>
</tr>
<tr>
<td>RSA 4096</td>
<td>≥ 128 bits</td>
<td>4 kb</td>
<td>4 kb</td>
<td>4 kb</td>
<td>8.660</td>
<td>0.1k</td>
<td>0.138</td>
<td>7.5k</td>
</tr>
<tr>
<td>ECDSA (^1) 160</td>
<td>80 bits</td>
<td>0.32 kb</td>
<td>0.16 kb</td>
<td>0.16 kb</td>
<td>0.058</td>
<td>17k</td>
<td>0.205</td>
<td>5k</td>
</tr>
<tr>
<td>ECDSA 256</td>
<td>128 bits</td>
<td>0.5 kb</td>
<td>0.25 kb</td>
<td>0.25 kb</td>
<td>0.106</td>
<td>9.5k</td>
<td>0.384</td>
<td>2.5k</td>
</tr>
<tr>
<td>ECDSA 384</td>
<td>192 bits</td>
<td>0.75 kb</td>
<td>0.37 kb</td>
<td>0.37 kb</td>
<td>0.195</td>
<td>5k</td>
<td>0.853</td>
<td>1k</td>
</tr>
</tbody>
</table>
HASH-AND-SIGN SIGNATURE SCHEMES
Constructing the Trapdoor

\[A' \quad A' \quad R \quad + \quad G \]

- Random matrix
- Random matrix with small coefficients
- Special matrix that is easy to invert
Easily-Invertible Matrix

Want: Matrix \mathbf{G} such that:

For any \mathbf{b} in \mathbb{Z}_q^n, you can find a 0/1 vector \mathbf{s} such that $\mathbf{Gs} = \mathbf{b} \mod q$

$$
\mathbf{G} = \begin{bmatrix}
1 & 2 & 4 & 8 & \ldots & \log_2 q \\
1 & 2 & 4 & 8 & \ldots & \log_2 q \\
1 & 2 & 4 & 8 & \ldots & \log_2 q \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2 & 4 & 8 & \ldots & \log_2 q
\end{bmatrix}
$$
Inverting with a Trapdoor

\[A = [A' \mid A'R+G] \]

Want to find a small \(s \) such that \(As = b \)

\[s = (s_1,s_2) \]

\[b = As = A's_1 + (A'R+G)s_2 \]

\[= A'(s_1 + Rs_2) + Gs_2 \]

set to 0

\[b = Gs_2 \quad s_1 = -Rs_2 \]

Revealing \(R \)!

(probably bad...)
Inverting with a Trapdoor

$A = [A' \mid A'R+G]$

Want to find a small s such that $As = b$

$s = (s_1, s_2)$

$b = As = A's_1 + (A'R+G)s_2$

$= A'(s_1 + Rs_2) + Gs_2$

Maybe y hides R?

$b - A'y = Gs_2$

$s_1 = y - Rs_2$
Signature Scheme

Secret (Signing) Key: R

Public (Verification) Key: $A = [A' \mid A'R+G]$

Random Oracle $H: \{0,1\}^* \rightarrow \mathbb{Z}_q^n$

Sign(m):

Find short s such that $As = H(m,u)$

Verify (s,u,m)

Check that s is short, and $As=H(m,u)$
Security Proof Sketch

\[A \text{ pick from D} = H(m_i, u_i) \]

sign \(m_i \)
Security Proof Sketch

A pick from D

= H(m_i,u_j)

program the random oracle

give me H(m_i,u_j)
Security Proof Sketch

To forge on m, the Adversary needs $H(m,u)$

So m is one of the m_j he asked for $H(m_i,u_j)$

Thus we know an s_j such that $A s_j = H(m_i,u_j)$
Security Proof Sketch

\[
A - \begin{bmatrix}
\text{short and hopefully non-zero}
\end{bmatrix} = 0
\]

if it’s non-zero, then we have a solution to SIS
Properties Needed

1. Can sample the distribution D of s without knowing the trapdoor.

2. The following produce the same distribution of (s,b)

 (a) Choose $s \sim D$. Set $b = As$

 (b) Choose random b. Use the trapdoor to find an s such that $As = b$.

3. For a random b, there is more than one likely possible output s such that $b = As$.
Inverting with a Trapdoor

\[A = [A' \ | \ A'R+G] \]

Want to find a small \(s \) such that \(As = b \)

\[s = (s_1, s_2) \]

\[H(m, u) = As = A's_1 + (A'R + G)s_2 \]

\[= A'(s_1 + Rs_2) + Gs_2 \]

Maybe \(y \) hides \(R \)?

\[H(m, u) - A'y = Gs_2 \]

\[s_1 = y - Rs_2 \]
Rejection Sampling

\[H(m, u) - A'y = Gs_2 \]

\[s_1 = y - Rs_2 \]

Choose \(y \) to be a Gaussian.

If \(y \) has a lot of entropy, the distribution of \(s_2 \) is uniform and does not depend on the exact value of \(y \).

\(s_1 = y - Rs_2 \) is now a shifted Gaussian. Use rejection sampling as before (this requires a proof).
Another Approach for Sampling

Suppose we have a matrix A and a trapdoor R such that $AR=G$.

Here is another way to generate an s such that $As=b$

Sample some vector p
Sample a z such that $Gz = b - Ap$
Output $s = p + Rz$ (so $As=Ap+Gz=b$)
Correcting the Distribution

Sample some vector p
Sample a z such that $Gz = b - Ap$
Output $s = p + Rz$ (so $As = Ap + Gz = b$)

How to make the distribution of s independent of R?
Tailor the distribution of p to R
1. Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ.
 (pos def means: $u^T \Sigma u > 0$ for all unit u.)
 Spherical Gaussian \leftrightarrow covariance $s^2 I$.

2. Convolution of Gaussians:

$$
\Sigma_1 + \Sigma_2 = \Sigma = s^2 I
$$

$$
Rz + p = s
$$

$$
RR^t + (s^2 I - RR^t) = s^2 I
$$
IDENTITY-BASED ENCRYPTION
“Dual” Cryptosystem

\[A = t \]

Public Key

Secret Key (short)

\[r + A \]

\[0 + m \]

\[= u + v \]
“Dual” Cryptosystem

A - s = t

r + A + s = t

v - u = m

represent 0 by m=0
represent 1 by m=(q-1)/2
“Dual” Cryptosystem Security

A = t

Random

Pseudorandom

r

A + 0

m

= u + v

v
Identity-Based Encryption

Key Authority
Master Public Key
Master Secret Key

Secret Key = s
Public Key = Bob
Identity-Based Encryption

- Key Authority
 - Master Public Key
 - Master Secret Key

- Secret Key = s_{Bob}
 - Public Key = Bob

- Secret Key = s_{Chris}
 - Public Key = Chris

- Secret Key = s_{Dave}
 - Public Key = Dave

Encrypt(Chris, msg)
Security for IBE

Key Authority
 Master Public Key
 Master Secret Key

Secret Key = s_{Bob}
Public Key = Bob

Secret Key = s_{Chris}
Public Key = Chris

Secret Key = s_{Dave}
Public Key = Dave

Encrypt(Chris, msg)

CPA-Security: For all m_i Encrypt(Chris, m_i) are **computationally indistinguishable** from each other
IBE Based on LWE

Master Public Key: \(A \)
Master Secret Key: \(R \)

Identity = “Bob”
\(b = H(Bob) \)

Use the sampling algorithm to find a short \(s \) such that \(As = b \) mod \(q \)

Use “Dual” LWE encryption to Encrypt to Bob
Security Proof Sketch

Show that breaking IBE implies breaking the “Dual” cryptosystem.

- **Public key**:
 - \(A\)
 - \(t\)
- **Ciphertext**:
 - \(u\)
 - \(v\)
- **Master public key**:
 - \(A\)
 - \(=\) \(= H(Bob)\)

Bob picks \(A\) from \(D\)

Program the random oracle.
Show that breaking IBE implies breaking the “Dual” cryptosystem

A

A

Bob

H(Bob)

program the random oracle
Security Proof Sketch

Show that breaking IBE implies breaking the “Dual” cryptosystem

I will break an encryption to Dave

\[\text{master public key} = \text{H(Dave)} \]

Decryption
SIGNATURES WITHOUT RANDOM ORACLES
Signatures without Random Oracles

Public Key: \([A \mid AR], b\)

Messages will be square invertible matrices \(M\)

To sign \(M\), find a short \(s\) such that \([A \mid AR+MG]s = b\)

\[A(s_1+Rs_2)+MGs_2 = b \]
\[Gs_2 = M^{-1}(b - A(s_1+Rs_2)) \]
\[s_1 = s_1+Rs_2 - Rs_2 \]
Proof of “Selective” Security

In a selectively secure scheme, the adversary declares the message he will forge on before seeing the public key.
Proof of “Selective” Security

Given \(A, b \), want to find a short \(r \) such that \(Ar = b \).

Adversary gives message \(M' \) on which he will forge

We want to construct a public key \([A | B]\) so that a signature of \(M' \) will be an \(s \) that \([A | B + M'G]s = b \) will let us find the short \(r \).

Pick a trap-door \(R \) and let \(B = AR - M'G \)

Then if the adversary can forge, we will get \([A | AR]s = b\)

So \(A(s_1 + Rs_2) = b \), and so \(s_1 + Rs_2 \) is the \(r \) we need.
Proof of “Selective” Security

Adversary designed to work on public key

\[A | AR \]

We give it public key \[A | AR - M’G \]

Will it still succeed in forging?

Yes, if \[A | AR \] is uniformly random, then

\[A | AR \] has the same distribution as \[A | AR - M’G \]

Adversary may ask us to sign other messages \(M \).

How do we do it?
Proof of “Selective” Security

To sign \mathbf{M}, we need to find an s such that
\[
[A \mid AR - M'G + MG]s = b
\]
\[
A(s_1 + Rs_2) + (M-M')Gs_2 = b
\]
\[
Gs_2 = (M-M')^{-1}(b - A(s_1 + Rs_2))
\]
\[
s_1 = s_1 + Rs_2 - Rs_2
\]

Need $\mathbf{M}-\mathbf{M}'$ to always be invertible.

Such a set of size q^n is easy to construct.

Hint: consider a field F of order q^n. Every difference of polynomials in the field is invertible.

How do you map this to matrices?