Pattern Matching in Multiple Streams

CPM, 3–5 July 2012 in Helsinki

Markus Jalsenius

Joint work with
Raphaël Clifford, Benjamin Sach and Ely Porat
Output **Match** or **No Match** before next symbol arrives.

We consider different notions of a match.
Problem

Stream

Pattern

bdcbababdacdcddccddcaad

bddddccbdacababbacbbabcccbcbdbcbabbcacdcdddcaaccddca

bacbbabcbddbdacdcddccddccbdacababacccbbdcbabaaaccddca

abcccbddccbdbbdcbbadacdcddccddccbdacababcbbcbdbaaaccddca

abdacdcdddcddcaaccddcbdcbbdabcbbdcbdbbabdacdcddccdaaccddccdd
A new symbol arrives in any one of the streams. Output **Match** or **No Match** before the next symbol arrives (in any of the streams).
<table>
<thead>
<tr>
<th>Stream</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>bdcbabdbacdcddccddcccaad</td>
</tr>
<tr>
<td>bdddcbbbdbdaabbbcbbbbbcbacbbacbabccccbbdcbabdacdcddccddcaacccdcaabbc</td>
<td>...</td>
</tr>
<tr>
<td>bacbbabcbddbdacdcddcddccddcbdbabdacabbbaccbbbdcbabaacaccddcaabc</td>
<td>...</td>
</tr>
<tr>
<td>abcccbddccbbdbdcbabdacdcdddcddccddcccdacababaccbbbdcbabaacaccddcaabc</td>
<td>...</td>
</tr>
<tr>
<td>abdacdcddcdddcaaccddccbdccbdacbbdcababbaaababccbc</td>
<td>...</td>
</tr>
<tr>
<td>ccdbdacababbaacaabbbcbdcdcbbdbdbabdacdcddccaaaccddcdcd</td>
<td>...</td>
</tr>
</tbody>
</table>
Problem

Pattern

```
bdcbabdacdcddcccaad
```

Stream

Approach

Preprocess pattern, store the output in **read-only memory** that is shared across the streams.

Eqip each stream with **small working memory**.
Problem

Read-only memory

Pattern

bdcbabdacdcddcccaad

Stream

Approach

Preprocess pattern, store the output in read-only memory that is shared across the streams.

Eqip each stream with small working memory.

Want fast outputs!
Results

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th></th>
<th>Time</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 stream</td>
<td>(s) streams</td>
<td>1 stream</td>
<td>(s) streams</td>
</tr>
<tr>
<td>Exact matching</td>
<td>(O(m)) words</td>
<td>(\Omega(m \log</td>
<td>\Sigma</td>
<td>+ s)) bits</td>
</tr>
<tr>
<td>k-mismatch</td>
<td>(O(m + ks)) words</td>
<td>(\Omega(m \log</td>
<td>\Sigma</td>
<td>+ ks)) bits</td>
</tr>
<tr>
<td>k-difference</td>
<td>(edit distance) (O(m))</td>
<td>(O(m + ks)) words</td>
<td>(\Omega(m \log</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

Notation:
\(m = \) pattern length, \(n = \) text length (when offline), \(\Sigma = \) alphabet. We operate in the RAM model.
Results

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 stream</td>
<td>1 stream</td>
</tr>
<tr>
<td></td>
<td>(s) streams</td>
<td>(s) streams</td>
</tr>
<tr>
<td>Exact matching</td>
<td>(O(m)) words</td>
<td>(O(1))</td>
</tr>
<tr>
<td></td>
<td>(\Omega(m \log</td>
<td>\Sigma</td>
</tr>
<tr>
<td>k-mismatch</td>
<td>(O(m)) words</td>
<td>(O(n\sqrt{k \log k}))</td>
</tr>
<tr>
<td></td>
<td>(\Omega(m \log</td>
<td>\Sigma</td>
</tr>
<tr>
<td>k-difference</td>
<td>(O(m)) words</td>
<td>(O(nk))</td>
</tr>
<tr>
<td>(edit distance)</td>
<td>(\Omega(m \log</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

Notation:

\(m \) = pattern length, \(n \) = text length (when offline), \(\Sigma \) = alphabet. We operate in the RAM model.
Results

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1 stream</td>
<td>s streams</td>
</tr>
<tr>
<td>Exact matching</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>k-mismatch</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>k-difference (edit distance)</td>
<td>$O(m)$</td>
</tr>
</tbody>
</table>

Notation:
$m =$ pattern length, $n =$ text length (when offline), $\Sigma =$ alphabet. We operate in the RAM model.
Results

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 stream</td>
<td>1 stream</td>
</tr>
<tr>
<td></td>
<td>s streams</td>
<td>s streams</td>
</tr>
<tr>
<td>Exact matching</td>
<td>$O(m)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td></td>
<td>$O(m+s)$ words</td>
<td>$O(1)$</td>
</tr>
<tr>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
</tr>
<tr>
<td>k-mismatch</td>
<td>$O(m)$</td>
<td>$O(nk)$ offline</td>
</tr>
<tr>
<td></td>
<td>$O(m+k\cdot s)$ words</td>
<td>$O(k)$</td>
</tr>
<tr>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
</tr>
<tr>
<td>k-difference</td>
<td>$O(m)$</td>
<td>$O(nk)$ offline</td>
</tr>
<tr>
<td>(edit distance)</td>
<td>$O(m+k\cdot s)$ words</td>
<td>$O(k)$</td>
</tr>
<tr>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
</tr>
<tr>
<td>Naive solution:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$O(ms)$ space</td>
<td></td>
</tr>
</tbody>
</table>

Notation:

$m =$ pattern length, $n =$ text length (when offline), $\Sigma =$ alphabet. We operate in the RAM model.
Results

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 stream</td>
<td>1 stream</td>
</tr>
<tr>
<td></td>
<td>s streams</td>
<td>s streams</td>
</tr>
<tr>
<td>Exact matching</td>
<td>$O(m)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td></td>
<td>$O(m+s)$ words</td>
<td>$O(n\sqrt{k\log k})$ offline</td>
</tr>
<tr>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
</tr>
<tr>
<td>k-mismatch</td>
<td>$O(m)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td></td>
<td>$O(m+ks)$ words</td>
<td>$O(nk)$ offline</td>
</tr>
<tr>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
</tr>
<tr>
<td>k-difference (edit distance)</td>
<td>$O(m)$</td>
<td>$O(nk)$ offline</td>
</tr>
<tr>
<td></td>
<td>$O(m+ks)$ words</td>
<td>$O(k)$</td>
</tr>
<tr>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

Naive solution: $O(ms)$ space

Read-only space

Read/write space

Preprocessing time is roughly $O(m \log m)$

Notation:

$m = \text{pattern length}, \ n = \text{text length (when offline)}, \ \Sigma = \text{alphabet. We operate in the RAM model.}$
<table>
<thead>
<tr>
<th></th>
<th>1 stream</th>
<th>s streams</th>
<th>1 stream</th>
<th>s streams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact matching</td>
<td>$O(m)$</td>
<td>$O(m + s)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
<td>+ s)$ bits</td>
</tr>
<tr>
<td>k-mismatch</td>
<td>$O(m)$</td>
<td>$O(m + ks)$</td>
<td>$O(n \sqrt{k \log k})$ offline</td>
<td>$O(k)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
<td>+ ks)$ bits</td>
</tr>
<tr>
<td>k-difference</td>
<td>$O(m)$</td>
<td>$O(m + ks)$</td>
<td>$O(nk)$ offline</td>
<td>$O(k)$</td>
</tr>
<tr>
<td>(edit distance)</td>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
<td>+ ks)$ bits</td>
</tr>
</tbody>
</table>

Naive solution: $O(ms)$ space

Notation:
$m =$ pattern length, $n =$ text length (when offline), $\Sigma =$ alphabet. We operate in the RAM model.
Results

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 stream</td>
<td>s streams</td>
</tr>
<tr>
<td>Exact matching</td>
<td>$O(m)$</td>
<td>$O(m + s)$ words</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(m \log</td>
</tr>
<tr>
<td>k-mismatch</td>
<td>$O(m)$</td>
<td>$O(m + ks)$ words</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(m \log</td>
</tr>
<tr>
<td>k-difference (edit distance)</td>
<td>$O(m)$</td>
<td>$O(m + ks)$ words</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(m \log</td>
</tr>
</tbody>
</table>

Notation:

$m =$ pattern length, $n =$ text length (when offline), $\Sigma =$ alphabet. We operate in the RAM model.
Results

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 stream</td>
<td>s streams</td>
<td></td>
</tr>
<tr>
<td>Exact matching</td>
<td>$O(m)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
</tr>
<tr>
<td>k-mismatch</td>
<td>$O(m)$</td>
<td>$O(n\sqrt{k \log k})$ offline</td>
</tr>
<tr>
<td></td>
<td>$O(m + ks)$ words</td>
<td>$O(k)$</td>
</tr>
<tr>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
</tr>
<tr>
<td>k-difference (edit distance)</td>
<td>$O(m)$</td>
<td>$O(nk)$ offline</td>
</tr>
<tr>
<td></td>
<td>$O(m + ks)$ words</td>
<td>$O(k)$</td>
</tr>
<tr>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

Also, for one stream: $O(\sqrt{k \log k} + \log m)$

Notation:

$m = \text{pattern length}$, $n = \text{text length (when offline)}$, $\Sigma = \text{alphabet}$. We operate in the RAM model.
Results

<table>
<thead>
<tr>
<th></th>
<th>1 stream</th>
<th>s streams</th>
<th>1 stream</th>
<th>s streams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact matching</td>
<td>$O(m)$</td>
<td>$O(m+s)$ words</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
<td>+ s)$ bits</td>
</tr>
<tr>
<td>k-mismatch</td>
<td>$O(m)$</td>
<td>$O(m+ks)$ words</td>
<td>$O(n\sqrt{k \log k})$ offline</td>
<td>$O(k)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
<td>+ ks)$ bits</td>
</tr>
<tr>
<td>k-difference (edit distance)</td>
<td>$O(m)$</td>
<td>$O(m+ks)$ words</td>
<td>$O(nk)$ offline</td>
<td>$O(k)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(m \log</td>
<td>\Sigma</td>
<td>+ ks)$ bits</td>
</tr>
</tbody>
</table>

Notation:

$m =$ pattern length, $n =$ text length (when offline), $\Sigma =$ alphabet. We operate in the RAM model.

Results

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 stream</td>
</tr>
<tr>
<td>Exact matching</td>
<td>(O(m))</td>
</tr>
<tr>
<td></td>
<td>(\Omega(m \log</td>
</tr>
<tr>
<td>k-mismatch</td>
<td>(O(m))</td>
</tr>
<tr>
<td>((\text{edit distance}))</td>
<td>(\Omega(m \log</td>
</tr>
<tr>
<td>(L_1, L_2, \text{Hamming distances, convolution/cross-correlation})</td>
<td>(\Omega(ms)) bits</td>
</tr>
</tbody>
</table>

Notation:

- \(m\) = pattern length,
- \(n\) = text length (when offline),
- \(\Sigma\) = alphabet. We operate in the RAM model.
Results

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 stream</td>
<td>s streams</td>
</tr>
<tr>
<td>Exact matching</td>
<td>$O(m)$</td>
<td>$O(m+s)$ words</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(m \log</td>
</tr>
<tr>
<td>k-mismatch</td>
<td>$O(m)$</td>
<td>$O(m+ks)$ words</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(m \log</td>
</tr>
<tr>
<td>k-difference</td>
<td>$O(m)$</td>
<td>$O(m+ks)$ words</td>
</tr>
<tr>
<td>(edit distance)</td>
<td></td>
<td>$\Omega(m \log</td>
</tr>
<tr>
<td>L_1, L_2, Hamming distances, convolution/</td>
<td>$\Omega(ms)$ bits</td>
<td></td>
</tr>
<tr>
<td>cross-correlation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>are open!</td>
</tr>
</tbody>
</table>

Notation:

$m =$ pattern length, $n =$ text length (when offline), $\Sigma =$ alphabet. We operate in the RAM model.
Exact matching

$O(1)$ amortised (e.g. KMP)
$O(1)$ unamortised (e.g. Galil 1981)
Exact matching

\[O(1) \text{ amortised (e.g. KMP)} \]
\[O(1) \text{ unamortised (e.g. Galil 1981)} \]

⚠️ Buffering the text \[\implies\] \[O(ms)\] space
Exact matching

Simple modification of KMP

Pattern

```
  a  a  b  a  a  c  a  a  b  a  a  c  a  a  d  a  a  c  a  a  b  a  
```
Exact matching

Simple modification of KMP

Pattern

Prefix table
Exact matching

Simple modification of KMP

Pattern

Prefix table

Stream

$O(m+s)$ $O(1)$
Simple modification of KMP

Exactly matching

Stream

Prefix table

Pattern

$O(m+s)$ $O(1)$
Exact matching

Simple modification of KMP

Prefix table

Pattern

Stream

Shift pattern 10 steps

$O(m+s)$

$O(1)$
Exact matching

Simple modification of KMP

Pattern

Prefix table

Stream
Exact matching

Simple modification of KMP

Pattern

Prefix table

Stream

Shift pattern 9 steps

$O(m + s) \quad O(1)$
Exact matching

Simple modification of KMP

Pattern

Prefix table
Simple modification of KMP

For each position, the shift is found in $O(1)$ time through static perfect hashing.
Exact matching

Simple modification of KMP

Pattern

Prefix table

Total number of elements to store is at most m.

Exact matching

Simple modification of KMP

Storing the hash tables: $O(m)$ space.

Each stream has a pointer into the pattern: $O(1)$ space per stream.

Time per symbol: $O(1)$.

Total number of elements to store is at most m.

Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

Pattern

\[
\begin{array}{cccccccccc}
\text{Pattern} & a & a & b & a & a & c & a & a & b & a \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
\]
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

(2, 5)

Pattern

<table>
<thead>
<tr>
<th>a</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>c</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

0 1 2 3 4 5 6 7 8 9 10
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

Pattern

a a b a a a c a a a b a c

0 1 2 3 4 5 6 7 8 9 10

(2, 5) (5, 7)

b a a c c a a a b a a c a b a a
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

Pattern:

```
| a | a | b | a | a | c | a | c | a | b | a | c |
```

Indices:

```
0 1 2 3 4 5 6 7 8 9 10
```

Stream:

```
baacccaaabaccaabaa
```

Indices:

```
(2, 5)  (5, 7)  (1, 6)
```
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

Encoding is not necessarily unique.
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

Pattern: \[\text{Encoding is not necessarily unique.}\]

Greedy construction

Extend pair if possible...
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

Pattern

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Encoding is not necessarily unique.

Greedy construction

Extend pair if possible...
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

(2, 5) (5, 7) (1, 6) (2, 7)

b a a c c a a a b a a c a

Pattern:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>c</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Greedy construction

Extend pair if possible...

Encoding is not necessarily unique.
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

```plaintext
(2, 5)  (5, 7)  (1, 6)  (2, 7)
baaaccaaaabaaaccaabbaccaaa
```

Pattern:

```
0 1 2 3 4 5 6 7 8 9 10
```

Greedy construction

Extend pair if possible... ...if not, start a new pair.

Encoding is not necessarily unique.
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

Pattern

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
</tr>
</tbody>
</table>

(2, 5) (5, 7) (1, 6) (2, 7) (0, 0)

b a a c c a a a b a a c a b a a c a a a a

Encoding is not necessarily unique.

Greedy construction

Extend pair if possible... ...if not, start a new pair.
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

(2, 5) (5, 7) (1, 6) (2, 7) (0, 1)

b a a c c a a a b a a c c a b a a c c a a a a a

Pattern: a a b b a a c c a a b a c

0 1 2 3 4 5 6 7 8 9 10

Encoding is not necessarily unique.

Greedy construction

Extend pair if possible... ...if not, start a new pair.
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>a a a b a a c a a a b a a c a a b a a c a a a a a a c</td>
<td>(2, 5) (5, 7) (1, 6) (2, 7) (0, 1)</td>
</tr>
</tbody>
</table>

Encoding is not necessarily unique.

Greedy construction

Extend pair if possible... ...if not, start a new pair.

Results in a minimal length encoding.

Takes $O(1)$ time per symbol (using suffix tree of pattern).
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>c</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Any stream/pattern LCE query can be answered through at most **three** self-LCE queries on the pattern.
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

Any stream/pattern LCE query can be answered through at most three self-LCE queries on the pattern.
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

Any stream/pattern LCE query can be answered through at most three self-LCE queries on the pattern.
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

Any stream/pattern LCE query can be answered through at most three self-LCE queries on the pattern.
Preparation for \(k \)-mismatch/difference

Encoding the stream in terms of the pattern.

Any stream/pattern \textbf{LCE} query can be answered through at most \textbf{three} self-LCE queries on the pattern.
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

Any stream/pattern LCE query can be answered through at most three self-LCE queries on the pattern.
Encoding the stream in terms of the pattern.

Any stream/pattern LCE query can be answered through at most three self-LCE queries on the pattern.
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

Any stream/pattern LCE query can be answered through at most \textbf{three} self-LCE queries on the pattern.
Preparation for k-mismatch/difference

Encoding the stream in terms of the pattern.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>0 1 2 3 4 5 6 7 8 9 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a a b a a a c a a b a c</td>
</tr>
</tbody>
</table>

Any stream/pattern LCE query can be answered through at most \textbf{three} self-LCE queries on the pattern.

Preprocess pattern to support LCE queries in constant time.
k-mismatch

Pattern

| b | a | a | c | c | a | a | a | a | b | a | a | c | a | b | a | a | a | c | a | a | a | a |

Pattern

| c | c | c | a | a | b | a | a | a | a | a | b | a | a | c | b | a | a | a | a |
\(k\)-mismatch

LCE query

(’kangaroo jumping’)

Pattern

\[
\begin{array}{cccccccccccccccc}
\text{b} & \text{a} & \text{a} & \text{c} & \text{c} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{a} & \text{c} & \text{a} & \text{b} & \text{a} & \text{a} & \text{a} & \text{a} & \text{a} \\
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
\text{c} & \text{c} & \text{c} & \text{a} & \text{a} & \text{b} & \text{a} & \text{a} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{a} & \text{a} & \text{c} & \text{b} & \text{a} & \text{a} & \text{a} \\
\end{array}
\]
LCE query ('kangaroo jumping')

Pattern: `c c c a a b a a a a a b a a c b a a a a`

Sequence: `b a a c c a a a b a a c a b a a c a a a a a a a a`

k-mismatch

$O(m + ks)$ $O(k)$
k-mismatch

LCE query
(‘kangaroo jumping’)

Pattern

```
c c c c a a b a a a a a b a a c b a a a a
```
k-mismatch

LCE query ('kangaroo jumping')

- Each jump spans at most three pairs in stream encoding.
- A mismatch could be in its own pair.

 \implies Only store the last $4(k + 1)$ pairs of each stream.

\[O(m + ks) \] space (m for pattern/pattern LCE queries), \[O(k) \] time per symbol.
k-difference

Edit operations: **insert, delete, mismatch**.
Report smallest edit distance between pattern and suffixes of stream if k or less.

Pattern P: a c b a a a a b a a a a c b a a

Stream T: b a a c c a a a b a a c a b a a c a a a a
k-difference

Edit operations: **insert, delete, mismatch**.
Report smallest edit distance between pattern and suffixes of stream if *k* or less.

Dynamic programming

\[D[j, i] = \text{the minimum of all } k\text{-bounded edit distances between pattern prefix } P[0 \ldots j] \text{ and all suffixes of } T[0 \ldots i]. \]

Thus, we want \(D[m-1, i] \) as symbol \(i \) arrives.
k-difference

Edit operations: **insert, delete, mismatch**.
Report smallest edit distance between pattern and suffixes of stream if k or less.

Dynamic programming

$$D[j, i] = \text{the minimum of all } k\text{-bounded edit distances between pattern prefix } P[0 \ldots j] \text{ and all suffixes of } T[0 \ldots i].$$

Thus, we want $D[m-1, i]$ as symbol i arrives.

$$D[j, i] = \min \begin{cases} D[j, i-1] + 1 & \text{(insert)} \\ D[j-1, i] + 1 & \text{(delete)} \\ D[j-1, i-1] + 1 - \text{eq}(i, j) & \text{(mismatch)} \\ k + 1 & \text{(k-bounded)} \end{cases}$$
k-difference

Edit operations: **insert**, **delete**, **mismatch**.
Report smallest edit distance between pattern and suffixes of stream if k or less.

Pattern P: $abcbaaabaacbabaa$

Stream T: $bacaacbabaaacaaca$

Question
How do we compute this fast for a stream with small working memory?

Thus, we want $D[m−1, i]$ as symbol i arrives.

$$D[j, i] = \min \begin{cases}
D[j, i−1] + 1 \\
D[j−1, i] + 1 \\
D[j−1, i−1] + 1 - \text{eq}(i, j) \\
k + 1
\end{cases}$$

(insert)
(delete)
(mismatch)
(k-bounded)
k-difference

Dynamic programming table

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$m-1$</td>
<td></td>
</tr>
</tbody>
</table>

$O(m+ks)$ $O(k)$
k-difference

Dynamic programming table

Pattern
0

$m-1$

Stream

m

k

k

Compute $D[m-1, i]$ for i in this interval. Start work here.
k-difference

Dynamic programming table

Pattern

- Compute the \(k \)-values using offline method of Landau-Vishkin 1988.
- Ingredient: LCE
- Table space: \(O(k) \)
- Time: \(O(k^2) \)

 \(O(k) \) per symbol

Stream

Compute \(D[m - 1, i] \) for \(i \) in this interval.
Start work here.
k-difference

Dynamic programming table

Pattern

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m-1)</td>
<td>(n)</td>
</tr>
</tbody>
</table>

Compute the \(k \)-values using offline method of Landau-Vishkin 1988.

Ingredient: LCE

Table space: \(O(k) \)

Time: \(O(k^2) \) (\(O(k) \) per symbol)

These values can be set to some constant

Stream

- Compute \(D[m-1, i] \) for \(i \) in this interval.
- Start work here.

- Compute the \(k \)-values directly using the recurrence.

Space: \(O(k) \)

Time: \(O(k^2) \) \(O(k) \) per symbol
Dynamic programming table

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$m-1$</td>
<td></td>
</tr>
</tbody>
</table>

Compute the k-values using offline method of Landau-Vishkin 1988.

- **Ingredient:** LCE
- **Table space:** $O(k)$
- **Time:** $O(k^2)$ ($O(k)$ per symbol)

Compute the i-values directly using the recurrence.

- **Space:** $O(k)$
- **Time:** $O(k^2)$ $O(k)$ per symbol

These values can be set to some constant

Use the recurrence.

- **Space:** $O(k)$
- **Time:** $O(k)$ per symbol

Compute $D[m-1, i]$ for i in this interval. Start work here.

These values can be set to some constant.

k-difference

$O(m+k\sigma)$ $O(k)$
Dynamic programming table

Compute the k-values directly using the recurrence.

Space: $O(k)$
Time: $O(k^2)$ $O(k)$ per symbol

Use the recurrence.

Space: $O(k)$
Time: $O(k)$ per symbol

Compute $D[m-1, i]$ for i in this interval. Start work here.

These values can be set to some constant

Compute the k-values using offline method of Landau-Vishkin 1988.

Ingredient: LCE
Table space: $O(k)$
Time: $O(k^2)$ ($O(k)$ per symbol)

These values can be set to some constant

Compute the k-values using offline method of Landau-Vishkin 1988.

Ingredient: LCE
Table space: $O(k)$
Time: $O(k^2)$ ($O(k)$ per symbol)
Compute the \(k \)-values using offline method of Landau-Vishkin 1988.

Ingredient: LCE

Table space: \(O(k) \)

Time: \(O(k^2) \) (\(O(k) \) per symbol)
k-difference

Dynamic programming table

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$m-1$</td>
</tr>
</tbody>
</table>

- **Compute the **k**-values using offline method of Landau-Vishkin 1988.**
 - **Ingredient:** LCE
 - **Table space:** $O(k)$
 - **Time:** $O(k^2)$ ($O(k)$ per symbol)

- **Compute the **k**-values directly using the recurrence.**
 - **Space:** $O(k)$
 - **Time:** $O(k^2)$ $O(k)$ per symbol

Use the recurrence.

- **Space:** $O(k)$
- **Time:** $O(k)$ per symbol

Compute $D[m-1, i]$ for i in this interval. Start work here.

These values can be set to some constant.
k-difference

Dynamic programming table

Run **two** dynamic programming processes in parallel to cover every symbol in the stream.

Compute the \(k \)-values using offline method of Landau-Vishkin 1988.

- **Ingredient:** LCE
- **Table space:** \(O(k) \)
- **Time:** \(O(k^2) \) (\(O(k) \) per symbol)

Compute the \(k \)-values directly using the recurrence.

- **Space:** \(O(k) \)
- **Time:** \(O(k^2) \) \(O(k) \) per symbol

These values can be set to some constant

Use the recurrence.

- **Space:** \(O(k) \)
- **Time:** \(O(k) \) per symbol

Compute \(D[m-1, i] \) for \(i \) in this interval.

Start work here.

\[O(m+ks) \quad O(k) \]
Dynamic programming table

Pattern

Shared $O(m)$ space for LCE queries.

Each process: $O(k)$ space and $O(k)$ time per arriving symbol.

Multiple streams: $O(m + ks)$ space and $O(k)$ time.

Run two dynamic programming processes in parallel to cover every symbol in the stream.

These values can be set to some constant

Space: $O(k)$
Time: $O(k)$

per symbol

Compute $D[m-1, i]$ for i in this interval. Start work here.
One-way communication complexity

The equality problem

Is my string equal to Alice’s?

00101010101000101101

n bits

001010101010101010101001

n bits
One-way communication complexity

The equality problem

Is my string equal to Alice’s?

Alice must send n bits.

n bits

001010101000101101

n bits

00101010101001001

n bits
One-way communication complexity

The indexing problem

What’s the bit at position i of Alice’s string?

n bits
One-way communication complexity

The indexing problem

What’s the bit at position i of Alice’s string?

Alice must send n bits.

001010101000101101

n bits

Index i
Space lower bound (k-mismatch/difference)

Part 1 – the equality problem

Has pattern P over alphabet Σ
$$= m \log |\Sigma| \text{ bits.}$$

Bit string T of length $m \log |\Sigma|$.
Space lower bound \((k\text{-mismatch/difference})\)

Part 1 – the equality problem

Step 1
Sends internal state of pattern matching machine on \(P\).

Has pattern \(P\) over alphabet \(\Sigma\)
\[= m \log |\Sigma| \text{ bits.}\]

Bit string \(T\) of length
\[m \log |\Sigma|.\]
Space lower bound (k-mismatch/difference)

Part 1 – the equality problem

Step 1
Sends internal state of pattern matching machine on P.

Has pattern P over alphabet $\Sigma = m \log |\Sigma|$ bits.

Bit string T of length $m \log |\Sigma|$.

Step 2
Bob feeds T into one stream to determine if $P = T$.
Space lower bound (k-mismatch/difference)

Part 1 – the equality problem

Step 1
Sends internal state of pattern matching machine on P.

Has pattern P over alphabet Σ

$= m \log |\Sigma|$ bits.

Bit string T of length

$m \log |\Sigma|$.

Step 2
Bob feeds T into one stream to determine if $P = T$.

Conclusion: Space must be $\Omega(m \log |\Sigma|)$ bits.
Space lower bound (k-mismatch/difference)

Part 2 – the indexing problem

Has k_s-length bit string

Index i
Space lower bound (k-mismatch/difference)

Part 2 – the indexing problem

Has ks-length bit string

Step 1

Pattern matching machine:

Alphabet $\Sigma = \{0, 1\}$.

$P = 00 \cdots 0$ (m zeros).

Feeds in k bits into each stream.
Space lower bound \((k\text{-mismatch/difference})\)

Part 2 – the indexing problem

Step 2
Sends internal state

Has \(k_s\)-length bit string

Step 1
Pattern matching machine:
Alphabet \(\Sigma = \{0, 1\}\).
\(P = 00 \cdots 0\) \((m\) zeros).
Feeds in \(k\) bits into each stream.
Space lower bound (k-mismatch/difference)

Part 2 – the indexing problem

Step 2
Sends internal state

Has ks-length bit string

Step 1
Pattern matching machine:
Alphabet $\Sigma = \{0, 1\}$.
$P = 00 \cdots 0$ (m zeros).
Feeds in k bits into each stream.

Step 3
Bob feeds 0s into the appropriate stream, takes the outputted distance, feeds in another 0 and compare the two distances. This reveals the bit at position i.

Index i
Space lower bound (k-mismatch/difference)

Part 2 – the indexing problem

Step 2

Conclusion: Space must be $\Omega(ks)$ bits.

Combining Parts 1 and 2: $\Omega(m \log |\Sigma| + ks)$ bits of space.

Has ks-length bit string

Step 1

Pattern matching machine:
Alphabet $\Sigma = \{0, 1\}$.
$P = 00 \cdots 0$ (m zeros).
Feeds in k bits into each stream.

Step 3

Bob feeds 0s into the appropriate stream, takes the outputted distance, feeds in another 0 and compare the two distances. This reveals the bit at position i.
Space lower bound (k-mismatch/difference)

Part 2 – the indexing problem

Conclusion: Space must be $\Omega(ks)$ bits.

Combining Parts 1 and 2: $\Omega(m \log |\Sigma| + ks)$ bits of space.

The bounds $\Omega(m \log |\Sigma| + s)$ for **exact matching** and $\Omega(ms)$ for L_1, L_2, **Hamming distance** and **convolution** are obtained similarly.

Pattern matching machine: Bob feeds 0s into the appropriate stream, takes the outputted distance, feeds in another 0 and compare the two distances. This reveals the bit at position i.

Step 2

Pattern matching machine: Alphabet $\Sigma = \{0, 1\}$. $P = 00 \cdots 0$ (m zeros). Feeds in k bits into each stream.
Open problems

• Close the gap for \(k \)-mismatch:
 Our \(O(k) \) time versus \(O(\sqrt{k \log k}) \) offline.

 Potentially exponential gap for constant size alphabets:
 Our \(O(k) \) time versus \(O(\log^2 m) \) in a single stream.

• Randomised space lower bound for \(k \)-mismatch/difference is \(O(\log m + k \cdot s) \) and \(O(\log m + s) \) for exact matching.
 Can we get (near) matching upper bounds?

• Conjecture: for every multiple-streams algorithm, there is an equivalent (time and space) one with read-only space that is independent of \(s \) (like our bounds).
Thank you!