Approximation algorithms part two
more constant factor approximations

Benjamin Sach
Approximation Algorithms Recap

An algorithm A is an α-approximation for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s

 within an α factor of Opt

Here P is an optimisation problem with optimal solution of value Opt

- If P is a maximisation problem, $\frac{\text{Opt}}{\alpha} \leq s \leq \text{Opt}$
- If P is a minimisation problem, $\text{Opt} \leq s \leq \alpha \cdot \text{Opt}$

We have seen a $3/2$-approximation for Bin Packing (and a faster 2-approximation)
Scheduling Jobs on Parallel Machines

Goal: minimise the (wall-clock) time taken to process all jobs

m identical machines

n jobs

time taken
Scheduling Jobs on Parallel Machines

Goal: minimise the (wall-clock) time taken to process all jobs

(it’s NP-hard)
Scheduling Jobs on Parallel Machines

Goal: minimise the *wall-clock* time taken to process all jobs

wall-clock time *(also called makespan)*
Scheduling Jobs on Parallel Machines

Goal: minimise the (wall-clock) time taken to process all jobs

- Job j takes t_j time units

wall-clock time (also called makespan)
Scheduling Jobs on Parallel Machines

1. Goal: minimise the (wall-clock) time taken to process all jobs

 - Job \(j \) takes \(t_j \) time units

 - We say that \(j \in J(i) \) iff job \(j \) is assigned to machine \(i \)

 - wall-clock time (also called makespan)
Goal: minimise the (wall-clock) time taken to process all jobs

- We say that $j \in J(i)$ iff job j is assigned to machine i
- The load of machine i is $L_i = \sum_{j \in J(i)} t_j$
Scheduling Jobs on Parallel Machines

Goal: minimise the (wall-clock) time taken to process all jobs

- We say that $j \in J(i)$ iff job j is assigned to machine i
- The load of machine i is $L_i = \sum_{j \in J(i)} t_j$

wall-clock time (also called makespan)
Scheduling Jobs on Parallel Machines

Goal: minimise the (wall-clock) time taken to process all jobs

- We say that \(j \in J(i) \) iff job \(j \) is assigned to machine \(i \)
- The load of machine \(i \) is \(L_i = \sum_{j \in J(i)} t_j \)
- So the wall-clock time is \(\max_i L_i \) (which we want to minimise)
Scheduling Jobs on Parallel Machines

Goal: minimise the (wall-clock) time taken to process all jobs

- We say that $j \in J(i)$ iff job j is assigned to machine i
- The load of machine i is $L_i = \sum_{j \in J(i)} t_j$
- So the wall-clock time is $\max_i L_i$ (which we want to minimise)
Scheduling Jobs on Parallel Machines
Algorithm: Put job j on the machine i with smallest (current) load
Scheduling Jobs on Parallel Machines

Algorithm: Put job j on the machine i with smallest (current) load
Algorithm: Put job j on the machine i with smallest (current) load
Algorithm: Put job j on the machine i with smallest (current) load
Algorithm: Put job j on the machine i with smallest (current) load
Algorithm: Put job j on the machine i with smallest (current) load
Scheduling Jobs on Parallel Machines

Algorithm: Put job j on the machine i with smallest (current) load
Algorithm: Put job j on the machine i with smallest (current) load
Scheduling Jobs on Parallel Machines

Algorithm: Put job \(j \) on the machine \(i \) with smallest (current) load
Scheduling Jobs on Parallel Machines

Algorithm: Put job j on the machine i with smallest (current) load
Scheduling Jobs on Parallel Machines

Algorithm: Put job j on the machine i with smallest (current) load
Scheduling Jobs on Parallel Machines

Algorithm: Put job j on the machine i with smallest (current) load
Scheduling Jobs on Parallel Machines

Algorithm: Put job j on the machine i with smallest (current) load
Scheduling Jobs on Parallel Machines

Algorithm: Put job j on the machine i with smallest (current) load
Algorithm: Put job j on the machine i with smallest (current) load
Algorithm: Put job j on the machine i with smallest (current) load
Algorithm: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?
Algorithm: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?
Algorithm: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?

$O(nm)$ time naively, $O(n \log m)$ time using a priority queue
Algorithm: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?

$O(nm)$ time naively, $O(n \log m)$ time using a priority queue

(it's also an online solution)
Scheduling Jobs on Parallel Machines

Algorithm: Put job \(j \) on the machine \(i \) with smallest (current) load

How long does it take to compute this schedule?

- \(O(nm) \) time naively,
- \(O(n \log m) \) time using a priority queue

(it's also an online solution)

How good is it?
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs.

Let T_g denote the time taken by the greedy schedule.

Theorem The greedy algorithm given is a 2-approximation.
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

- Before we prove this, we prove two useful facts,
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

- Before we prove this, we prove two useful facts,

Fact $Opt \geq \max_j t_j$
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

- Before we prove this, we prove two useful facts,

Fact $\text{Opt} \geq \max_j t_j$

 - Some machine must process the largest job

L_i is the load of machine i

Job j takes t_{j} time units

m machines
n jobs
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs.
Let T_g denote the time taken by the greedy schedule.

Theorem The greedy algorithm given is a 2-approximation.

- Before we prove this, we prove two useful facts,

Fact $\text{Opt} \geq \max_j t_j$

 - Some machine must process the largest job.

Fact $\text{Opt} \geq \frac{\sum_j t_j}{m}$

L_i is the load of machine i.

Job j takes t_j time units.

m machines

n jobs.
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs.
Let T_g denote the time taken by the greedy schedule.

Theorem The greedy algorithm given is a 2-approximation.

- Before we prove this, we prove two useful facts,

Fact $\text{Opt} \geq \max_j t_j$

 - Some machine must process the largest job.

Fact $\text{Opt} \geq \frac{\sum_j t_j}{m}$

 - There is a total of $\sum_j t_j$ time units of work to be done.

L_i is the load of machine i.

Job j takes t_j time units.

m machines

n jobs.
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs

Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

- Before we prove this, we prove two useful facts,

Fact $\text{Opt} \geq \max_j t_j$

 - Some machine must process the largest job

Fact $\text{Opt} \geq \frac{\sum_j t_j}{m}$

 - There is a total of $\sum_j t_j$ time units of work to be done
 - Some machine i must have load L_i at least $\frac{\sum_j t_j}{m}$
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

- Before we prove this, we prove two useful facts,

Fact $\text{Opt} \geq \max_j t_j$

 - Some machine must process the largest job

Fact $\text{Opt} \geq \frac{\sum_j t_j}{m}$

 - There is a total of $\sum_j t_j$ time units of work to be done

 - Some machine i must have load L_i at least $\frac{\sum_j t_j}{m}$

 (the m machines can’t all have below average load)
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs

Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

L_i is the load of machine i

Job j takes t_{ij} time units

m machines

n jobs
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine i with largest load $T_g = L_i$
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs.
Let T_g denote the time taken by the greedy schedule.

Theorem The greedy algorithm given is a 2-approximation.

Proof Consider the machine i with largest load $T_g = L_i$.

L_i is the load of machine i.

<table>
<thead>
<tr>
<th>Machine</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

T_g is the time taken by the greedy schedule.

Job j takes t_{ij} time units.

m machines

n jobs
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine i with largest load $T_g = L_i$

- Let j denote the last job machine i completes

m machines
n jobs
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs.
Let T_g denote the time taken by the greedy schedule.

Theorem The greedy algorithm given is a 2-approximation.

Proof Consider the machine i with largest load $T_g = L_i$.

- Let j denote the last job machine i completes.

L_i is the load of machine i.

Job j takes t_j time units.

m machines
n jobs.
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine i with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i - t_j$

L_i is the load of machine i

Job j takes t_j time units

m machines
n jobs
Let Opt denote the time taken by the optimal scheduling of jobs. Let T_g denote the time taken by the greedy schedule.

Theorem The greedy algorithm given is a 2-approximation.

Proof Consider the machine i with largest load $T_g = L_i$.

- Let j denote the last job machine i completes.
- When job j was assigned, machine i had the smallest load, $L_i - t_j$.

L_i is the load of machine i.

Job j takes t_j time units.

m machines

n jobs
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs.
Let T_g denote the time taken by the greedy schedule.

Theorem The greedy algorithm given is a 2-approximation.

Proof Consider the machine i with largest load $T_g = L_i$.

- Let j denote the last job machine i completes.
- When job j was assigned, machine i had the smallest load, $L_i - t_j$.

L_i is the load of machine i.

Job j takes t_j time units.

m machines

n jobs
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine i with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i - t_j$

So…

L_i is the load of machine i

Job j takes t_j time units

m machines
n jobs
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs

Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine i with largest load $T_g = L_i$

- Let j denote the last job machine i completes

- When job j was assigned, machine i had the smallest load, $L_i - t_j$

So...

$$L_i - t_j \leq L_k \text{ for all } 1 \leq k \leq m,$$
The greedy approximation

Let \(\text{Opt} \) denote the time taken by the optimal scheduling of jobs
Let \(T_g \) denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine \(i \) with largest load \(T_g = L_i \)

- Let \(j \) denote the last job machine \(i \) completes
- When job \(j \) was assigned, machine \(i \) had the smallest load, \(L_i - t_j \)

So...

\[
L_i - t_j \leq L_k \text{ for all } 1 \leq k \leq m,
\]

- If we then sum over all \(k \),

\(m \) machines
\(n \) jobs
The greedy approximation

Let \(\text{Opt} \) denote the time taken by the optimal scheduling of jobs
Let \(T_g \) denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine \(i \) with largest load \(T_g = L_i \)

- Let \(j \) denote the last job machine \(i \) completes
- When job \(j \) was assigned, machine \(i \) had the smallest load, \(L_i - t_j \)

So...

\[
L_i - t_j \leq L_k \text{ for all } 1 \leq k \leq m,
\]

- If we then sum over all \(k \),

\[
m(L_i - t_j) \leq \sum_{k=1}^{m} L_k
\]
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine i with largest load $T_g = L_i$

- Let j denote the last job machine i completes

- When job j was assigned, machine i had the smallest load, $L_i - t_j$

So...

$$L_i - t_j \leq L_k \text{ for all } 1 \leq k \leq m,$$

- If we then sum over all k,

$$m(L_i - t_j) \leq \sum_{k=1}^{m} L_k$$

so $(L_i - t_j) \leq \frac{\sum_{k=1}^{m} L_k}{m} \leq \text{Opt}$ (by the second fact)
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs

Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine i with largest load $T_g = L_i$

- Let j denote the last job machine i completes

- When job j was assigned, machine i had the smallest load, $L_i - t_j$

So...

$$L_i - t_j \leq L_k \text{ for all } 1 \leq k \leq m,$$

- If we then sum over all k,

$$m(L_i - t_j) \leq \sum_{k=1}^{m} L_k$$

so $$(L_i - t_j) \leq \frac{\sum_{k=1}^{m} L_k}{m} \leq \text{Opt} \text{ (by the second fact)}$$

Fact $\text{Opt} \geq \frac{\sum_j t_j}{m}$
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine i with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i - t_j$

So...

$$L_i - t_j \leq L_k \text{ for all } 1 \leq k \leq m,$$

- If we then sum over all k,

$$m(L_i - t_j) \leq \sum_{k=1}^{m} L_k$$

so

$$(L_i - t_j) \leq \frac{\sum_{k=1}^{m} L_k}{m} \leq \text{Opt} \text{ (by the second fact)}$$
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine i with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i - t_j$

So...

$$L_i - t_j \leq L_k \text{ for all } 1 \leq k \leq m,$$

- If we then sum over all k,

$$m(L_i - t_j) \leq \sum_{k=1}^{m} L_k$$

so $(L_i - t_j) \leq \frac{\sum_{k=1}^{m} L_k}{m} \leq \text{Opt}$ (by the second fact)

also $t_j \leq \text{Opt}$ (by the first fact)
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine i with largest load $T_g = L_i$

- Let j denote the last job machine i completes

- When job j was assigned, machine i had the smallest load, $L_i - t_j$

So...

$$L_i - t_j \leq L_k \text{ for all } 1 \leq k \leq m,$$

- If we then sum over all k,

$$m(L_i - t_j) \leq \sum_{k=1}^{m} L_k$$

so $(L_i - t_j) \leq \frac{\sum_{k=1}^{m} L_k}{m} \leq \text{Opt}$ (by the second fact)

also $t_j \leq \text{Opt}$ (by the first fact)

Fact $\text{Opt} \geq \max_j t_j$
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine i with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i - t_j$

 So...

 \[L_i - t_j \leq L_k \quad \text{for all } 1 \leq k \leq m, \]

- If we then sum over all k,

 \[m(L_i - t_j) \leq \sum_{k=1}^{m} L_k \]

 so \((L_i - t_j) \leq \frac{\sum_{k=1}^{m} L_k}{m} \leq \text{Opt} \) (by the second fact)

 also \(t_j \leq \text{Opt} \) (by the first fact)
The greedy approximation

Let Opt denote the time taken by the optimal scheduling of jobs
Let T_g denote the time taken by the greedy schedule

Theorem The greedy algorithm given is a 2-approximation

Proof Consider the machine i with largest load $T_g = L_i$

- Let j denote the last job machine i completes
- When job j was assigned, machine i had the smallest load, $L_i - t_j$

So...

$$L_i - t_j \leq L_k \text{ for all } 1 \leq k \leq m,$$

- If we then sum over all k,

$$m(L_i - t_j) \leq \sum_{k=1}^{m} L_k$$

so $$(L_i - t_j) \leq \frac{\sum_{k=1}^{m} L_k}{m} \leq Opt \text{ (by the second fact)}$$

also $t_j \leq Opt \text{ (by the first fact)}$

Therefore, $T_g = L_i = (L_i - t_j) + t_j \leq Opt + Opt = 2Opt$
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)
Step 1: Sort the jobs into non-increasing order (job 1 is now largest)
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job \(j \) on the machine \(i \) with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

1. Sort the jobs into non-increasing order (job 1 is now largest)
2. Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job \(j \) on the machine \(i \) with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job \(j \) on the machine \(i \) with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)
Step 2: Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)
Step 2: Put job j on the machine i with smallest (current) load
Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job j on the machine i with smallest (current) load
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)
Step 2: Put job \(j \) on the machine \(i \) with smallest (current) load

How long does it take to compute this schedule?
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)

Step 2: Put job \(j \) on the machine \(i \) with smallest (current) load

How long does it take to compute this schedule?

\(O(n \log n) \) time (to sort the jobs)
Longest Processing Time (LPT)

Step 1: Sort the jobs into non-increasing order (job 1 is now largest)
Step 2: Put job j on the machine i with smallest (current) load

How long does it take to compute this schedule?

$O(n \log n)$ time (to sort the jobs)

How good is it?
The LPT approximation

Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a $3/2$-approximation
The LPT approximation

- Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a $3/2$-approximation

- Before we prove this, we prove another useful fact and a Lemma

L_i is the load of machine i

m machines

n jobs

Job j takes $t_{.j}$ time units
The LPT approximation

- Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a $3/2$-approximation

- Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

L_i is the load of machine i

m machines

n jobs

Job j takes t_j

time units
The LPT approximation

- Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a $3/2$-approximation

- Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

If there are at most m jobs then

- LPT gives each job its own machine so $\max_i L_i \leq \max_j t_j \leq \text{Opt}$

L_i is the *load* of machine i

m machines

n jobs

Job j takes t_j time units
The LPT approximation

- Let T_l denote the time taken by the LPT schedule.

Theorem The LPT algorithm is a $3/2$-approximation.

- Before we prove this, we prove another useful fact and a Lemma.

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal.

If there are at most m jobs then

LPT gives each job its own machine so $\max_i L_i \leq \max_j t_j \leq \text{Opt}$

Lemma If $n > m$ then $\text{Opt} \geq 2t(m+1)$ (after sorting).

L_i is the load of machine i.

m machines, n jobs.

Job j takes t_j time units.
The LPT approximation

- Let T_i denote the time taken by the LPT schedule

Theorem The LPT algorithm is a $3/2$-approximation

- Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

If there are at most m jobs then

LPT gives each job its own machine so $\max_i L_i \leq \max_j t_j \leq \text{Opt}$

Lemma If $n > m$ then $\text{Opt} \geq 2t_{(m+1)}$ (after sorting)

Proof
The LPT approximation

- Let T_i denote the time taken by the LPT schedule

Theorem The LPT algorithm is a $\frac{3}{2}$-approximation

- Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

If there are at most m jobs then
LPT gives each job its own machine so $\max_i L_i \leq \max_j t_j \leq \text{Opt}$

Lemma If $n > m$ then $\text{Opt} \geq 2t(m+1)$ (after sorting)

Proof

- Note that $t_1 \geq t_2 \geq t_3 \geq \ldots t_m \geq t(m+1)$
The LPT approximation

- Let T_i denote the time taken by the LPT schedule

Theorem The LPT algorithm is a $\frac{3}{2}$-approximation

- Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

- If there are at most m jobs then
 - LPT gives each job its own machine so $\max_i L_i \leq \max_j t_j \leq \text{Opt}$

Lemma If $n > m$ then $\text{Opt} \geq 2t_{(m+1)}$ (after sorting)

Proof

- Note that $t_1 \geq t_2 \geq t_3 \geq \ldots t_m \geq t_{(m+1)}$

- One of the m machines must be assigned
 (at least) two of these $m + 1$ jobs under any schedule
The LPT approximation

- Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a $3/2$-approximation

- Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

If there are at most m jobs then

- LPT gives each job its own machine so $\max_i L_i \leq \max_j t_j \leq \text{Opt}$

Lemma If $n > m$ then $\text{Opt} \geq 2t(m+1)$ (after sorting)

Proof

- Note that $t_1 \geq t_2 \geq t_3 \geq \ldots t_m \geq t(m+1)$

- One of the m machines must be assigned
 - (at least) two of these $m + 1$ jobs under any schedule

- So we have that any schedule takes at least $2t(m+1)$ time
The LPT approximation

- Let T_l denote the time taken by the LPT schedule

Theorem The LPT algorithm is a $3/2$-approximation

- Before we prove this, we prove another useful fact and a Lemma

Fact If there are at most m jobs ($n \leq m$) then LPT is optimal

 If there are at most m jobs then
 LPT gives each job its own machine so $\max_i L_i \leq \max_j t_j \leq \text{Opt}$

Lemma If $n > m$ then $\text{Opt} \geq 2t(m+1)$ (after sorting)

Proof

- Note that $t_1 \geq t_2 \geq t_3 \geq \ldots t_m \geq t(m+1)$

- One of the m machines must be assigned
 (at least) two of these $m + 1$ jobs under any schedule

- So we have that any schedule takes at least $2t(m+1)$ time
 in particular $\text{Opt} \geq 2t(m+1)$
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

L_i is the load of machine i

m machines

n jobs

Job j takes t_j

time units
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes

L_i is the load of machine i

1 2 3 4 5

m machines

n jobs

Job j takes t_j time units
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

\[(L_i - t_j) \leq \text{Opt}\]
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

$$(L_i - t_j) \leq \text{Opt}$$

- If $n \leq m$ then we are done so assume $n > m$
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_i = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $$(L_i - t_j) \leq \text{Opt}$$

- If $n \leq m$ then we are done so assume $n > m$

because LPT is optimal in this case
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_i = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

$$ (L_i - t_j) \leq \text{Opt} $$

- If $n \leq m$ then we are done so assume $n > m$
Theorem The LPT algorithm is a $3/2$-approximation.

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes.
- Using the same argument as before, we have that,

$$(L_i - t_j) \leq \text{Opt}$$

- If $n \leq m$ then we are done so assume $n > m$.
- Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$
Theorem The LPT algorithm is a $3/2$-approximation.

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

$$ (L_i - t_j) \leq \text{Opt} $$

- If $n \leq m$ then we are done so assume $n > m$
- Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$

Fact $\text{Opt} \geq \max_j t_j$
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $$(L_i - t_j) \leq \text{Opt}$$

- If $n \leq m$ then we are done so assume $n > m$
- Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$

L_i is the load of machine i

m machines

n jobs

Job j takes t_j time units
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $$(L_i - t_j) \leq \text{Opt}$$

- If $n \leq m$ then we are done so assume $n > m$
- Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$

 so assume that $(L_i - t_j) > 0$
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

$$ (L_i - t_j) \leq \text{Opt} $$

- If $n \leq m$ then we are done so assume $n > m$
- Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$

 so assume that $(L_i - t_j) > 0$

- Therefore machine i was assigned at least two jobs
Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

$$ (L_i - t_j) \leq \text{Opt} $$

- If $n \leq m$ then we are done so assume $n > m$
- Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$
 so assume that $(L_i - t_j) > 0$

- Therefore machine i was assigned at least two jobs
 By the algorithm description, we have that $j \geq m + 1$
The LPT approximation

Theorem The LPT algorithm is a $\frac{3}{2}$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

• Let j denote the last job machine i completes

• Using the same argument as before, we have that,

$$(L_i - t_j) \leq \text{Opt}$$

• If $n \leq m$ then we are done so assume $n > m$

• Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$

 so assume that $(L_i - t_j) > 0$

• Therefore machine i was assigned at least two jobs

 By the algorithm description, we have that $j \geq m + 1$

 it doesn’t assign a second job to any machine until

 every machine has at least one job
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

$$ (L_i - t_j) \leq \text{Opt} $$

- If $n \leq m$ then we are done so assume $n > m$
- Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$

 so assume that $(L_i - t_j) > 0$

- Therefore machine i was assigned at least two jobs

 By the algorithm description, we have that $j \geq m + 1$
The LPT approximation

Theorem The LPT algorithm is a $\frac{3}{2}$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

 $$(L_i - t_j) \leq \text{Opt}$$

- If $n \leq m$ then we are done so assume $n > m$
- Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$

 so assume that $(L_i - t_j) > 0$

- Therefore machine i was assigned at least two jobs

 By the algorithm description, we have that $j \geq m + 1$

 $$t_j \leq t_{m+1} \leq \text{Opt}/2 \text{ (by the Lemma)}$$
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

\[(L_i - t_j) \leq \text{Opt} \]

- If $n \leq m$ then we are done so assume $n > m$
- Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$

 so assume that $(L_i - t_j) > 0$

- Therefore machine i was assigned at least two jobs

 By the algorithm description, we have that $j \geq m + 1$

\[t_j \leq t_{m+1} \leq \text{Opt}/2 \] (by the Lemma)

Lemma If $n > m$ then $\text{Opt} \geq 2t_{(m+1)}$ (after sorting)
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

$$ (L_i - t_j) \leq \text{Opt} $$

- If $n \leq m$ then we are done so assume $n > m$
- Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$

 so assume that $(L_i - t_j) > 0$

- Therefore machine i was assigned at least two jobs

 By the algorithm description, we have that $j \geq m + 1$

 $$ t_j \leq t_{m+1} \leq \text{Opt}/2 \text{ (by the Lemma)} $$
The LPT approximation

Theorem The LPT algorithm is a $3/2$-approximation

Proof Consider the machine i with largest load $T_l = L_i$

- Let j denote the last job machine i completes
- Using the same argument as before, we have that,

$$ (L_i - t_j) \leq \text{Opt} $$

- If $n \leq m$ then we are done so assume $n > m$
- Further if $(L_i - t_j) = 0$ then $T_l = L_i = t_j \leq \text{Opt}$
 so assume that $(L_i - t_j) > 0$

- Therefore machine i was assigned at least two jobs

 By the algorithm description, we have that $j \geq m + 1$

 $$ t_j \leq t_{m+1} \leq \text{Opt}/2 \text{ (by the Lemma)} $$

Therefore, $T_l = L_i = (L_i - t_j) + t_j \leq \text{Opt} + \text{Opt}/2 = (3/2) \cdot \text{Opt}$
Scheduling conclusions

Theorem The greedy algorithm is a 2-approximation which runs in $O(n \log m)$ time and it’s online.

Theorem The LPT algorithm is a $3/2$-approximation which runs in $O(n \log n)$ time.

In fact, LPT is a $4/3$-approximation (using better analysis).
k-centers

Goal: Minimise the largest distance from any site to the closest center.
k-centers

Goal
Minimise the largest distance from any site to the closest center
\(k\)-centers

\(n\) points (\textit{sites}) in 2D space

\textbf{Goal}

Minimise the largest distance from any site to the closest center
k-centers

n points (sites) in 2D space

The distance between points s_i, s_j is $\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

Goal
Minimise the largest distance from any site to the closest center
k-centers

n points (*sites*) in 2D space

The distance between points s_i, s_j is $\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

(i.e. ‘normal’ euclidean distance)
k-centers

n points (sites) in 2D space

Select k sites to be centers

The distance between points s_i, s_j is $\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

(i.e. ‘normal’ euclidean distance)
k-centers

n points (sites) in 2D space

Select k sites to be centers

The distance between points s_i, s_j is $\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

(i.e. ‘normal’ euclidean distance)
k-centers

n points (sites) in 2D space

Select k sites to be centers

The distance between points s_i, s_j is $\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$
\(k \)-centers

\(n \) points (sites) in 2D space

The distance between points \(s_i, s_j \) is

\[
\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
\]

Goal Minimise the largest distance from any site to the closest center
k-centers

n points (*sites*) in 2D space

The distance between points \(s_i, s_j \) is \(\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \)

Goal Minimise the largest distance from any site to the closest center
\(k\)-centers

\(n \) points (sites) in 2D space

The distance between points \(s_i, s_j \) is

\[
\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
\]

Goal Minimise the largest distance from any site to the closest center.
k-centers

n points (sites) in 2D space

Select k sites to be centers

The distance between points s_i, s_j is $\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

Goal Minimise the largest distance from any site to the closest center
k-centers

n points (sites) in 2D space

Select k sites to be centers

The distance between points s_i, s_j is $\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

Goal Minimise the largest distance from any site to the closest center
\textbf{\textit{k}-centers}

\textit{n} points (\textit{sites}) in 2D space

Select \textit{k} sites to be centers

The distance between points \(s_i, s_j \) is
\[
\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
\]

\textbf{Goal} Minimise the largest distance from any site to the closest center
\(k \)-centers

\(n \) points (sites) in 2D space

The distance between points \(s_i, s_j \) is

\[
\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
\]

Goal
Minimise the largest distance from any site to the closest center

(in general it’s NP-hard)

Select \(k \) sites to be centers
A Greedy approximation
A Greedy approximation

Start by picking any point to be a center
A Greedy approximation

Start by picking any point to be a center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

This takes $O(nk)$ time
A Greedy approximation

Start by picking any point to be a center

Repeatedly pick the site which is furthest from any existing center

This takes $O(nk)$ time

but is it any good?
The Greedy approximation

Theorem The Greedy algorithm for \(k \)-center is a 2-approximation

Proof

Let \(C_g \) (resp. \(C_{\text{Opt}} \)) denote the set of centers selected by Greedy (resp. Optimal)

Let \(r_g \) (resp. \(r_{\text{Opt}} \)) denote largest site-center distance using Greedy (resp. Optimal)
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)

Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No $s_i, s_i' \in C_g$ are closest to the same $s_j \in C_{Opt}$
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)
Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{Opt}$
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)

Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No $s_i, s_i' \in C_g$ are closest to the same $s_j \in C_{Opt}$
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)

Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No $s_i, s_i' \in C_g$ are closest to the same $s_j \in C_{Opt}$
The Greedy approximation

Theorem The Greedy algorithm for \(k \)-center is a 2-approximation

Proof

Let \(C_g \) (resp. \(C_{Opt} \)) denote the set of centers selected by Greedy (resp. Optimal)

Let \(r_g \) (resp. \(Opt \)) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No \(s_i, s_{i'} \in C_g \) are closest to the same \(s_j \in C_{Opt} \)
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)

Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No $s_i, s_i' \in C_g$ are closest to the same $s_j \in C_{Opt}$
The Greedy approximation

Theorem The Greedy algorithm for \(k\)-center is a 2-approximation

Proof

Let \(C_g\) (resp. \(C_{\text{Opt}}\)) denote the set of centers selected by Greedy (resp. Optimal)

Let \(r_g\) (resp. \(\text{Opt}\)) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No \(s_i, s_i' \in C_g\) are closest to the same \(s_j \in C_{\text{Opt}}\)
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)
Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No $s_i, s_i' \in C_g$ are closest to the same $s_j \in C_{Opt}$

Disclaimer: for illustrative purposes only
The Greedy approximation

Theorem The Greedy algorithm for \(k \)-center is a 2-approximation

Proof

Let \(C_g \) (resp. \(C_{\text{Opt}} \)) denote the set of centers selected by Greedy (resp. Optimal)

Let \(r_g \) (resp. \(\text{Opt} \)) denote largest site-center distance using Greedy (resp. Optimal)

Case 1: No \(s_i, s_{i'} \in C_g \) are closest to the same \(s_j \in C_{\text{Opt}} \)

\[r_g \leq 2\text{Opt} \]

\(\text{Distance at most } 2\text{Opt} \)

\(\text{so } r_g \leq 2\text{Opt} \)

Disclaimer: for illustrative purposes only
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)

Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{Opt}$
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)

Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_i' \in C_g$ are closest to the same $s_j \in C_{\text{Opt}}$
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)

Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{Opt}$

Assume wlog. that Greedy made s_i a center after $s_{i'}$
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal).

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{Opt}$

Assume wlog. that Greedy made s_i a center after $s_{i'}$

s_i was added as a center because it was
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)

Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_{i'} \in C_g$ are closest to the same $s_j \in C_{Opt}$

Assume wlog. that Greedy made s_i a center after $s_{i'}$

s_i was added as a center because it was the furthest from any existing Greedy center
The Greedy approximation

Theorem The Greedy algorithm for \(k \)-center is a 2-approximation.

Proof

Let \(C_g \) (resp. \(C_{Opt} \)) denote the set of centers selected by Greedy (resp. Optimal).

Let \(r_g \) (resp. \(Opt \)) denote largest site-center distance using Greedy (resp. Optimal).

Case 2: Some \(s_i, s_i' \in C_g \) are closest to the same \(s_j \in C_{Opt} \).

Assume wlog. that Greedy made \(s_i \) a center after \(s_i' \).

\(s_i \) was added as a center because it was the furthest from any existing Greedy center.

However, \(s_i \) is at most \(2Opt \) away from \(s_i' \).
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)

Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_i' \in C_g$ are closest to the same $s_j \in C_{Opt}$

Assume wlog. that Greedy made s_i a center after s_i'

s_i was added as a center because it was

the furthest from any existing Greedy center

However, s_i is at most $2Opt$ away from s_i'

![Diagram showing the Greedy algorithm and its approximation properties](diagram.png)
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)

Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_i' \in C_g$ are closest to the same $s_j \in C_{Opt}$

Assume wlog. that Greedy made s_i a center after s_i'

s_i was added as a center because it was the furthest from any existing Greedy center

However, s_i is at most $2Opt$ away from s_i'

So even before adding s_i as a center, all sites were $\leq 2Opt$ away from a Greedy center
The Greedy approximation

Theorem The Greedy algorithm for k-center is a 2-approximation

Proof

Let C_g (resp. C_{Opt}) denote the set of centers selected by Greedy (resp. Optimal)

Let r_g (resp. Opt) denote largest site-center distance using Greedy (resp. Optimal)

Case 2: Some $s_i, s_i' \in C_g$ are closest to the same $s_j \in C_{Opt}$

Assume wlog. that Greedy made s_i a center after s_i'

s_i was added as a center because it was the furthest from any existing Greedy center

However, s_i is at most $2Opt$ away from s_i'

So even before adding s_i as a center, all sites were $\leq 2Opt$ away from a Greedy center

Therefore, $r_g \leq 2Opt$
Theorem The Greedy algorithm for k-center is a 2-approximation which runs in $O(nk)$ time.
The Greedy algorithm for k-center is a 2-approximation which runs in $O(nk)$ time.

- The approximation works for any (metric) distance function,
k-center Conclusions

Theorem The Greedy algorithm for k-center is a 2-approximation which runs in $O(nk)$ time

- The approximation works for any (metric) distance function,

$$d(s_i, s_j) = L_1 \text{ or } L_\infty \text{ for example}$$
\textbf{Theorem} The Greedy algorithm for \(k \)-center is a 2-approximation which runs in \(O(nk) \) time

- The approximation works for any (metric) distance function,
 \[d(s_i, s_j) = L_1 \text{ or } L_\infty \text{ for example} \]

- Distance function \(d \) is a metric iff
 \[d(x, y) = d(y, x), \quad d(x, y) \geq 0 \]
 \[(d(x, y) = 0 \text{ iff } x = y) \text{ and } d(x, z) \leq d(x, y) + d(y, z) \]
\(k\)-center Conclusions

Theorem The Greedy algorithm for \(k\)-center is a 2-approximation which runs in \(O(nk)\) time

- The approximation works for any (metric) distance function,
 \[d(s_i, s_j) = L_1 \text{ or } L_\infty \text{ for example}\]

- Distance function \(d\) is a metric iff
 \[d(x, y) = d(y, x), d(x, y) \geq 0\]
 \[(d(x, y) = 0 \text{ iff } x = y) \text{ and } d(x, z) \leq d(x, y) + d(y, z)\]

- For a general (metric) \(d\), the problem is not \(\alpha\)-approximable with \(\alpha < 2\)
Theorem The Greedy algorithm for \(k \)-center is a 2-approximation which runs in \(O(nk) \) time

- The approximation works for any (metric) distance function,

 \[d(s_i, s_j) = L_1 \text{ or } L_\infty \text{ for example} \]

- Distance function \(d \) is a metric iff

 \[d(x, y) = d(y, x), d(x, y) \geq 0 \]

 \[(d(x, y) = 0 \text{ iff } x = y) \text{ and } d(x, z) \leq d(x, y) + d(y, z) \]

- For a general (metric) \(d \), the problem is not \(\alpha \)-approximable with \(\alpha < 2 \)

- For \(d = L_2 \), the problem is not \(\alpha \)-approximable with \(\alpha < \sqrt{3} \approx 1.73 \)
Theorem The Greedy algorithm for k-center is a 2-approximation which runs in $O(nk)$ time

- The approximation works for any (metric) distance function,
 \[d(s_i, s_j) = L_1 \text{ or } L_{\infty} \text{ for example} \]

- Distance function d is a metric iff
 \[
 d(x, y) = d(y, x), \quad d(x, y) \geq 0
 \]
 \[(d(x, y) = 0 \text{ iff } x = y) \text{ and } d(x, z) \leq d(x, y) + d(y, z) \]

- For a general (metric) d, the problem is not α-approximable with $\alpha < 2$
- For $d = L_2$, the problem is not α-approximable with $\alpha < \sqrt{3} \approx 1.73$
- For $d = L_1$ or $d = L_{\infty}$, the problem is not α-approximable with $\alpha < 2$