Advanced Algorithms – COMS31900

2014/2015

Orthogonal Range Searching

Benjamin Sach
Orthogonal range searching

- A **2D range searching data structure** stores \(n \) distinct \((x, y)\)-pairs and supports:

 the \texttt{lookup}(x_1, x_2, y_1, y_2) operation
 which returns every point in the rectangle \([x_1 : x_2] \times [y_1 : y_2]\)
 i.e. every \((x, y)\) with \(x_1 \leq x \leq x_2\) and \(y_1 \leq y \leq y_2\).
Orthogonal range searching

- A **2D range searching data structure** stores n distinct (x, y)-pairs and supports:

 the `lookup(x_1, x_2, y_1, y_2)` operation

 which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$

 i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

![Orthogonal range searching diagram](image)
A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

- The lookup(x_1, x_2, y_1, y_2) operation
 which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$
 i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

The universe

$|U|$

n points in 2D space

$|U|$
Orthogonal range searching

A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the $\text{lookup}(x_1, x_2, y_1, y_2)$ operation

which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$

i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

![Diagram of orthogonal range searching]
Orthogonal range searching

A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the $\text{lookup}(x_1, x_2, y_1, y_2)$ operation

which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$

i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.
Orthogonal range searching

- A 2D range searching data structure stores n distinct (x, y)-pairs and supports:
 - the $\text{lookup}(x_1, x_2, y_1, y_2)$ operation
 - which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$
 - i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

![Diagram of orthogonal range searching](image)
Orthogonal range searching

A 2D range searching data structure stores \(n \) distinct \((x, y)\)-pairs and supports:

the *lookup\((x_1, x_2, y_1, y_2)\)* operation

which returns every point in the rectangle \([x_1 : x_2] \times [y_1 : y_2]\)

i.e. every \((x, y)\) with \(x_1 \leq x \leq x_2 \) and \(y_1 \leq y \leq y_2 \).
Orthogonal range searching

A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

- the $\text{lookup}(x_1, x_2, y_1, y_2)$ operation
- which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$
 - i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

A classic database query

“find all employees aged between 21 and 48 with salaries between £23k and £36k”
Orthogonal range searching

- A 2D range searching data structure stores n distinct (x, y)-pairs and supports:
 - the `lookup(x_1, x_2, y_1, y_2)` operation
 which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$
 i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

A classic database query

“find all employees aged between 21 and 48 with salaries between £23k and £36k”
Orthogonal range searching

A 2D range searching data structure stores \(n \) distinct \((x, y)\)-pairs and supports:

the \(\text{lookup}(x_1, x_2, y_1, y_2) \) operation

which returns every point in the rectangle \([x_1 : x_2] \times [y_1 : y_2]\)

i.e. every \((x, y)\) with \(x_1 \leq x \leq x_2 \) and \(y_1 \leq y \leq y_2 \).
Orthogonal range searching

- A **d-dimensional range searching data structure** stores n distinct points for $d = 1$, the lookup (x_1, x_2) operation returns every point with $x_1 \leq x \leq x_2$.

- for $d = 2$, the lookup (x_1, x_2, y_1, y_2) operation returns every point with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

- for $d = 3$, the lookup $(x_1, x_2, y_1, y_2, z_1, z_2)$ operation returns every point with $x_1 \leq x \leq x_2$, $y_1 \leq y \leq y_2$ and $z_1 \leq z \leq z_2$.

(we assume d is a constant)
A **d-dimensional range searching data structure** stores \(n \) distinct points:

- each point has \(d \) coordinates

(we assume \(d \) is a constant)

For \(d = 1 \), the \(\text{lookup}(x_1, x_2) \) operation returns every point with \(x_1 \leq x \leq x_2 \).

For \(d = 2 \), the \(\text{lookup}(x_1, x_2, y_1, y_2) \) operation returns every point with

\[
 x_1 \leq x \leq x_2 \quad \text{and} \quad y_1 \leq y \leq y_2.
\]

For \(d = 3 \), the \(\text{lookup}(x_1, x_2, y_1, y_2, z_1, z_2) \) operation returns every point with

\[
 x_1 \leq x \leq x_2, \\
 y_1 \leq y \leq y_2 \quad \text{and} \quad z_1 \leq z \leq z_2.
\]
Orthogonal range searching

A **d-dimensional range searching data structure** stores n distinct points

each point has d coordinates

(we assume d is a constant)

for $d = 1$, the $\text{lookup}(x_1, x_2)$ operation returns every point with $x_1 \leq x \leq x_2$.

for $d = 2$, the $\text{lookup}(x_1, x_2, y_1, y_2)$ operation returns every point with

$$x_1 \leq x \leq x_2 \text{ and } y_1 \leq y \leq y_2.$$

for $d = 3$, the $\text{lookup}(x_1, x_2, y_1, y_2, z_1, z_2)$ operation returns every point with

$$x_1 \leq x \leq x_2, \quad y_1 \leq y \leq y_2 \quad \text{and} \quad z_1 \leq z \leq z_2.$$
Starting simple... 1D range searching
Starting simple... 1D range searching

preprocess \(n \) points on a line
Starting simple... 1D range searching

lookup(x_1, x_2) should return all points between x_1 and x_2

preprocess n points on a line
Starting simple... 1D range searching
Starting simple... 1D range searching
Starting simple... 1D range searching

\[x_1 = 15 \]

\[x_2 = 64 \]
Starting simple... 1D range searching

Build a sorted array containing the x-coordinates in $O(n \log n)$ preprocessing (prep.) time
Starting simple… 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time

and $O(n)$ space
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time

and $O(n)$ space

to perform $\text{lookup}(x_1, x_2)$...

find the successor of x_1 by binary search and then 'walk' right

$x_1 = 15$

$x_2 = 64$

3 7 11 19 23 27 35 43 53 61 67

\mathbf{n}
Starting simple... 1D range searching

build a sorted array containing the \(x \)-coordinates

in \(O(n \log n) \) preprocessing (prep.) time

and \(O(n) \) space

to perform \(\text{lookup}(x_1, x_2) \)...

find the successor of \(x_1 \) by binary search and then ‘walk’ right

(i.e. the closest point to the right)

\(x_1 = 15 \)

\(x_2 = 64 \)
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time
and $O(n)$ space

to perform $\text{lookup}(x_1, x_2)$...

find the successor of x_1 by binary search and then ‘walk’ right

(i.e. the closest point to the right)

$x_1 = 15$
$x_2 = 64$

3 7 11 19 23 27 35 43 53 61 67
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time

and $O(n)$ space

to perform $\text{lookup}(x_1, x_2)$...

find the successor of x_1 by binary search and then ‘walk’ right

$x_1 = 15$

$15 < 27$
Starting simple... 1D range searching

build a sorted array containing the \(x \)-coordinates

in \(O(n \log n) \) preprocessing (prep.) time

and \(O(n) \) space

to perform \(\text{lookup}(x_1, x_2) \)...

find the successor of \(x_1 \) by binary search and then ‘walk’ right
build a sorted array containing the \(x \)-coordinates

in \(O(n \log n) \) preprocessing time and \(O(n) \) space

to perform \(\text{lookup}(x_1, x_2) \)...

find the successor of \(x_1 \) by binary search and then ‘walk’ right

\[n \]

\[
\begin{array}{cccccccccc}
3 & 7 & 11 & 19 & 23 & 27 & 35 & 43 & 53 & 61 & 67 \\
\end{array}
\]

\[15 > 11 \]
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time

and $O(n)$ space

to perform $\text{lookup}(x_1, x_2)$...

find the successor of x_1 by binary search and then 'walk' right

$x_1 = 15$

$x_2 = 64$

$3 \ 7 \ 11 \ 19 \ 23 \ 27 \ 35 \ 43 \ 53 \ 61 \ 67$

n

$15 > 11$
build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time

and $O(n)$ space

to perform $\text{lookup}(x_1, x_2)$...

find the successor of x_1 by binary search and then ‘walk’ right

$x_1 = 15$

$3 \quad 7 \quad 11 \quad 19 \quad 23 \quad 27 \quad 35 \quad 43 \quad 53 \quad 61 \quad 67$

$x_2 = 64$

$15 < 19$
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time
and $O(n)$ space

to perform $\text{lookup}(x_1, x_2)$...

find the successor of x_1 by binary search and then 'walk' right
Starting simple… 1D range searching

build a sorted array containing the \(x \)-coordinates

in \(O(n \log n) \) *preprocessing (prep.) time*

and \(O(n) \) *space*

to perform \(\text{lookup}(x_1, x_2) \) *

find the successor of \(x_1 \) *by binary search and then ‘walk’ right*
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

...in $O(n \log n)$ preprocessing (prep.) time

...and $O(n)$ space

to perform $\text{lookup}(x_1, x_2)$...

...find the successor of x_1 by binary search and then ‘walk’ right
Starting simple... 1D range searching

build a sorted array containing the \(x \)-coordinates

in \(O(n \log n) \) preprocessing (prep.) time

and \(O(n) \) space

\(\text{to perform } \text{lookup}(x_1, x_2) \ldots \)

find the successor of \(x_1 \) by binary search and then \('walk' \) right

\[
\begin{array}{cccccccc}
& & 3 & 7 & 11 & 19 & 23 & 27 & 35 & 43 & 53 & 61 & 67
\end{array}
\]
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time and $O(n)$ space

to perform $\text{lookup}(x_1, x_2)$...

find the successor of x_1 by binary search and then ‘walk’ right

$x_1 = 15$

3 7 11 19 23 27 35 43 53 61 67

$x_2 = 64$
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time

and $O(n)$ space

to perform lookup(x_1, x_2)...

find the successor of x_1 by binary search and then 'walk' right

$x_1 = 15$

$x_2 = 64$

| 3 | 7 | 11 | 19 | 23 | 27 | 35 | 43 | 53 | 61 | 67 |
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time

and $O(n)$ space

to perform lookup(x_1, x_2)...

find the successor of x_1 by binary search and then ‘walk’ right

$x_1 = 15$

$x_2 = 64$

3 7 11 19 23 27 35 43 53 61 67
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time

and $O(n)$ space

to perform $\text{lookup}(x_1, x_2)$...

find the successor of x_1 by binary search and then ‘walk’ right

$x_1 = 15$

$x_2 = 64$

n

| 3 | 7 | 11 | 19 | 23 | 27 | 35 | 43 | 53 | 61 | 67 |
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time

and $O(n)$ space

*to perform lookup(x_1, x_2)...

find the successor of x_1 by binary search and then 'walk' right

$x_1 = 15$

n

$x_2 = 64$

$67 > 64 = x_2$
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time
and $O(n)$ space

to perform $\text{lookup}(x_1, x_2)$...

find the successor of x_1 by binary search and then ‘walk’ right
Starting simple... 1D range searching

build a sorted array containing the x-coordinates

in $O(n \log n)$ preprocessing (prep.) time

and $O(n)$ space

to perform $\text{lookup}(x_1, x_2)$...

find the successor of x_1 by binary search and then ‘walk’ right

lookup takes $O(\log n + k)$ time (k is the number of points reported)
Starting simple... 1D range searching

build a sorted array containing the \(x \)-coordinates

in \(O(n \log n) \) preprocessing (prep.) time

and \(O(n) \) space

to perform \(\text{lookup}(x_1, x_2) \)...

find the successor of \(x_1 \) by binary search and then 'walk' right

lookups take \(O(\log n + k) \) time (\(k \) is the number of points reported)

this is called being 'output sensitive'
Starting simple... 1D range searching
Starting simple... 1D range searching

alternatively we could build a balanced tree...
Starting simple... 1D range searching

alternatively we could build a balanced tree...
Starting simple... 1D range searching

alternatively we could build a balanced tree...

half the points are to the left

half the points are to the right

find the point in the middle
Starting simple... 1D range searching

alternatively we could build a balanced tree...

find the point in the middle
Starting simple... 1D range searching

alternatively we could build a balanced tree...

find the point in the middle

...and recurse on each half
Starting simple... 1D range searching

alternatively we could build a balanced tree...

find the point in the middle

...and recurse on each half
Starting simple... 1D range searching

alternatively we could build a balanced tree...

find the point in the middle

...and recurse on each half
Starting simple... 1D range searching

alternatively we could build a balanced tree...

find the point in the middle

...and recurse on each half

(in a tie, pick the left)
Starting simple... 1D range searching

alternatively we could build a balanced tree...

find the point in the middle

...and recurse on each half

(in a tie, pick the left)
Starting simple... 1D range searching

alternatively we could build a balanced tree...

find the point in the middle

... and recurse on each half

(in a tie, pick the left)
Starting simple... 1D range searching

alternatively we could build a balanced tree...

find the point in the middle

...and recurse on each half

(in a tie, pick the left)
Starting simple... 1D range searching

alternatively we could build a balanced tree...

We can store the tree in $O(n)$ space *(it has one node per point)*
Starting simple... 1D range searching

alternatively we could build a balanced tree...

We can store the tree in $O(n)$ space \((\text{it has one node per point})\)

It has $O(\log n)$ depth
Starting simple... 1D range searching

alternatively we could build a balanced tree...

We can store the tree in $O(n)$ space \textit{(it has one node per point)}

It has $O(\log n)$ depth
Starting simple... 1D range searching

alternatively we could build a balanced tree...

We can store the tree in $O(n)$ space (it has one node per point)

It has $O(\log n)$ depth and can be built in $O(n \log n)$ time
Starting simple... 1D range searching

alternatively we could build a balanced tree...

We can store the tree in $O(n)$ space (it has one node per point)

It has $O(\log n)$ depth and can be built in $O(n \log n)$ time
Starting simple... 1D range searching

alternatively we could build a balanced tree...

We can store the tree in $O(n)$ space (*it has one node per point*)

It has $O(\log n)$ depth and can be built in $O(n \log n)$ time (*$O(n)$ time if the points are sorted*)
Starting simple... 1D range searching

how do we do a lookup?
Starting simple... 1D range searching

how do we do a lookup?
Starting simple... 1D range searching

Step 1: find the successor of x_1

how do we do a lookup?
Starting simple... 1D range searching

how do we do a lookup?

Step 1: find the successor of x_1
Starting simple... 1D range searching

Step 1: find the successor of x_1

how do we do a lookup?

x_1 is to the left
Starting simple... 1D range searching

how do we do a lookup?

x_1 is to the right

Step 1: find the successor of x_1
Starting simple... 1D range searching

how do we do a lookup?

Step 1: find the successor of x_1
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

how do we do a lookup?
Starting simple... 1D range searching

how do we do a lookup?

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2
Starting simple... 1D range searching

*how do we do a *lookup*?*

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2
Starting simple... 1D range searching

how do we do a lookup?

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

how do we do a lookup?

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

look at any node on the path

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple… 1D range searching

look at any node on the path

this is called an off-path edge

“it’s all or nothing”

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple… 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

how do we do a lookup?

look at any node on the path

this is called an off-path edge

“it’s all or nothing”

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

how do we do a lookup?

look at any node on the path

this is called an off-path edge

“it’s all or nothing”

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

how do we do a lookup?

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?

look at any node on the path

this is called an off-path edge

"it's all or nothing"
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

Step 1: find the successor of \(x_1 \) in \(O(\log n) \) time

Step 2: find the predecessor of \(x_2 \) in \(O(\log n) \) time

which points in the tree should we output?

how do we do a lookup?

look at any node on the path

this is called an off-path edge

"it's all or nothing"
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?

how do we do a lookup?

look at any node on the path

this is called an off-path edge

"it's all or nothing"
Starting simple... 1D range searching

look at any node on the path

this is called an off-path edge

“it’s all or nothing”

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple… 1D range searching

look at any node on the path
this is called an off-path edge
“it’s all or nothing”

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

how do we do a lookup?

look at any node on the path

des this called an off-path edge

"it's all or nothing"

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?
Starting simple... 1D range searching

Step 1: find the successor of x_1 in $O(\log n)$ time

Step 2: find the predecessor of x_2 in $O(\log n)$ time

which points in the tree should we output?

those in the $O(\log n)$ selected subtrees on the path
Starting simple... 1D range searching

how do we do a lookup?

look at any node on the path

after the split

this is called an off-path edge

"it's all or nothing"

x_1

x_2
Starting simple... 1D range searching

how do we do a lookup?

look at any node on the path
after the split

this is called an off-path edge

"it's *all* or *nothing*"

lookups take $O(\log n + k)$ time (k is the number of points reported)
Starting simple... 1D range searching

how do we do a lookup?

look at any node on the path

after the split

this is called an
off-path edge

"it's all or
nothing"

as before

lookups take $O(\log n + k)$ time (k is the number of points reported)

so what have we gained?
Warning: the root to split path isn’t to scale
Warning: the root to split path isn’t to scale

after the paths to x_1 and x_2 split…
Warning: the root to split path isn’t to scale

after the paths to x_1 and x_2 split...

any off-path subtree is either \textit{in} or \textit{out}
Warning: the root to split path isn’t to scale

after the paths to x_1 and x_2 split…

any off-path subtree is either in or out

i.e. every point in the subtree has $x_1 \leq x \leq x_2$ or none has
Warning: the root to split path isn’t to scale

after the paths to x_1 and x_2 split...

any off-path subtree is either \emph{in} or \emph{out}

i.e. every point in the subtree has $x_1 \leq x \leq x_2$ or none has

\emph{this will be useful for 2D range searching}
1D range searching summary

lookup \((x_1, x_2)\) should report all points between \(x_1\) and \(x_2\)

preprocess \(n\) points on a line

\(O(n \log n)\) prep time

\(O(n)\) space

\(O(\log n + k)\) lookup time

where \(k\) is the number of points reported

(this is known as being output sensitive)
2D range searching

A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

- the $\text{lookup}(x_1, x_2, y_1, y_2)$ operation
 - which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$
 - i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.
2D range searching

A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

- the $\text{lookup}(x_1, x_2, y_1, y_2)$ operation which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$

i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

Attempt one:
A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

- the $\text{lookup}(x_1, x_2, y_1, y_2)$ operation

which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$

i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

Attempt one:

- Find all the points with $x_1 \leq x \leq x_2$
2D range searching

A **2D range searching data structure** stores \(n \) distinct \((x, y)\)-pairs and supports:

- the lookup\((x_1, x_2, y_1, y_2)\) operation

 which returns every point in the rectangle \([x_1 : x_2] \times [y_1 : y_2]\)

 i.e. every \((x, y)\) with \(x_1 \leq x \leq x_2\) and \(y_1 \leq y \leq y_2\).

Attempt one:

- Find all the points with \(x_1 \leq x \leq x_2\)
A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

- the `lookup(x_1, x_2, y_1, y_2)` operation

 which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$

 i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

Attempt one:

- Find all the points with $x_1 \leq x \leq x_2$
A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x_1, x_2, y_1, y_2) operation

which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$

i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

Attempt one:

- Find all the points with $x_1 \leq x \leq x_2$
- Find all the points with $y_1 \leq y \leq y_2$
2D range searching

A 2D range searching data structure stores \(n \) distinct \((x, y)\)-pairs and supports:

- the \(\text{lookup}(x_1, x_2, y_1, y_2) \) operation

which returns every point in the rectangle \([x_1 : x_2] \times [y_1 : y_2]\)

i.e. every \((x, y)\) with \(x_1 \leq x \leq x_2 \) and \(y_1 \leq y \leq y_2 \).

Attempt one:
- Find all the points with \(x_1 \leq x \leq x_2 \)
- Find all the points with \(y_1 \leq y \leq y_2 \)
2D range searching

- A **2D range searching data structure** stores n distinct (x, y)-pairs and supports:
 - the **lookup(x_1, x_2, y_1, y_2)** operation which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$ i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

Attempt one:
- Find all the points with $x_1 \leq x \leq x_2$
- Find all the points with $y_1 \leq y \leq y_2$
- Find all the points in both lists
2D range searching

- A **2D range searching data structure** stores \(n \) distinct \((x, y)\)-pairs and supports:

 the **lookup\((x_1, x_2, y_1, y_2)\)** operation

 which returns every point in the rectangle \([x_1 : x_2] \times [y_1 : y_2]\)

 i.e. every \((x, y)\) with \(x_1 \leq x \leq x_2\) and \(y_1 \leq y \leq y_2\).

Attempt one:

- Find all the points with \(x_1 \leq x \leq x_2\)
- Find all the points with \(y_1 \leq y \leq y_2\)
- Find all the points in both lists
2D range searching

A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

- the lookup(x_1, x_2, y_1, y_2) operation

 which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$

 i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

Attempt one:

- Find all the points with $x_1 \leq x \leq x_2$
- Find all the points with $y_1 \leq y \leq y_2$
- Find all the points in both lists

How long does this take?
2D range searching

- A 2D range searching data structure stores \(n \) distinct \((x, y)\)-pairs and supports:

 the lookup\((x_1, x_2, y_1, y_2)\) operation

 which returns every point in the rectangle \([x_1 : x_2] \times [y_1 : y_2]\)

 i.e. every \((x, y)\) with \(x_1 \leq x \leq x_2 \) and \(y_1 \leq y \leq y_2 \).

Attempt one:

- Find all the points with \(x_1 \leq x \leq x_2 \)
- Find all the points with \(y_1 \leq y \leq y_2 \)
- Find all the points in both lists

How long does this take?

\[O(\log n + k) + O(\log n + k) + O(k) \]
2D range searching

A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x_1, x_2, y_1, y_2) operation

which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$

i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

Attempt one:

- Find all the points with $x_1 \leq x \leq x_2$
- Find all the points with $y_1 \leq y \leq y_2$
- Find all the points in both lists

How long does this take?

$$O(\log n + k) + O(\log n + k) + O(k) = O(\log n + k)$$
A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the $\text{lookup}(x_1, x_2, y_1, y_2)$ operation

which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$

i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

Attempt one:

- Find all the points with $x_1 \leq x \leq x_2$
- Find all the points with $y_1 \leq y \leq y_2$
- Find all the points in both lists

How long does this take?

$O(\log n + k) + O(\log n + k) + O(k)$

$= O(\log n + k)$
A 2D range searching data structure stores \(n \) distinct \((x, y)\)-pairs and supports:

the \(\text{lookup}(x_1, x_2, y_1, y_2) \) operation

which returns every point in the rectangle \([x_1 : x_2] \times [y_1 : y_2]\)

i.e. every \((x, y)\) with \(x_1 \leq x \leq x_2\) and \(y_1 \leq y \leq y_2\).

Attempt one:

- Find all the points with \(x_1 \leq x \leq x_2\)
- Find all the points with \(y_1 \leq y \leq y_2\)
- Find all the points in both lists

How long does this take?

\[
O(\log n + k) + O(\log n + k) + O(k) = O(\log n + k)
\]
2D range searching

- A **2D range searching data structure** stores \(n \) distinct \((x, y)\)-pairs and supports:
 - the **lookup**\((x_1, x_2, y_1, y_2)\) operation
 - which returns every point in the rectangle \([x_1 : x_2] \times [y_1 : y_2]\)
 - i.e. every \((x, y)\) with \(x_1 \leq x \leq x_2\) and \(y_1 \leq y \leq y_2\).

Attempt one:
- Find all the points with \(x_1 \leq x \leq x_2\)
- Find all the points with \(y_1 \leq y \leq y_2\)
- Find all the points in both lists

How long does this take?

\[
O(\log n + k) + O(\log n + k) + O(k) = O(\log n + k)
\]
2D range searching

A 2D range searching data structure stores \(n \) distinct \((x, y)\)-pairs and supports:

the \(\text{lookup}(x_1, x_2, y_1, y_2) \) operation

which returns every point in the rectangle \([x_1 : x_2] \times [y_1 : y_2]\)

i.e. every \((x, y)\) with \(x_1 \leq x \leq x_2\) and \(y_1 \leq y \leq y_2\).

Attempt one:

- Find all the points with \(x_1 \leq x \leq x_2\)
- Find all the points with \(y_1 \leq y \leq y_2\)
- Find all the points in both lists

How long does this take?

\[
O(\log n + k_x) + O(\log n + k_y) + O(k_x + k_y)
= O(\log n + k_x + k_y)
\]

here \(k_x\) is the number of points with \(x_1 \leq x \leq x_2\) (respectively for \(k_y\))
2D range searching

A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

- the $\text{lookup}(x_1, x_2, y_1, y_2)$ operation
 which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$
 i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

Attempt one:
- Find all the points with $x_1 \leq x \leq x_2$
- Find all the points with $y_1 \leq y \leq y_2$
- Find all the points in both lists

How long does this take?

$$O(\log n + k_x) + O(\log n + k_y) + O(k_x + k_y)$$

$$= O(\log n + k_x + k_y)$$

here k_x is the number of points with $x_1 \leq x \leq x_2$ (respectively for k_y)
2D range searching

A 2D range searching data structure stores \(n \) distinct \((x, y)\)-pairs and supports:

the \text{lookup}(x_1, x_2, y_1, y_2) \text{ operation}

which returns every point in the rectangle \([x_1 : x_2] \times [y_1 : y_2]\)

i.e. every \((x, y)\) with \(x_1 \leq x \leq x_2\) and \(y_1 \leq y \leq y_2\).
2D range searching

A 2D range searching data structure stores \(n \) distinct \((x, y)\)-pairs and supports:

the \(\text{lookup}(x_1, x_2, y_1, y_2) \) operation

which returns every point in the rectangle \([x_1 : x_2] \times [y_1 : y_2]\)

i.e. every \((x, y)\) with \(x_1 \leq x \leq x_2 \) and \(y_1 \leq y \leq y_2 \).

\(\text{how can we do better?} \)
Subtree decomposition in 2D

Warning: the root to split path isn’t to scale

During preprocessing, build a balanced binary tree using the x-coordinates.
Subtree decomposition in 2D

Warning: the root to split path isn’t to scale

 offen-path edge

off-path subtree

(during preprocessing) build a balanced binary tree using the x-coordinates

 to perform a lookup(x_1, x_2, y_1, y_2) follow the paths to x_1 and x_2 as before
Subtree decomposition in 2D

Warning: the root to split path isn’t to scale

\[(x_1, x_2, y_1, y_2)\] follow the paths to \(x_1\) and \(x_2\) as before for any off-path subtree...

every point in the subtree has \(x_1 \leq x \leq x_2\) or no point has

(during preprocessing) build a balanced binary tree using the \(x\)-coordinates

\textit{to perform a lookup(} \(x_1, x_2, y_1, y_2\) \textit{) follow the paths to } \(x_1\text{ and } x_2\text{ as before}}
Subtree decomposition in 2D

Warning: the root to split path isn’t to scale

(during preprocessing) build a balanced binary tree using the x-coordinates

To perform a lookup(x_1, x_2, y_1, y_2) follow the paths to x_1 and x_2 as before

for any off-path subtree...

every point in the subtree has $x_1 \leq x \leq x_2$ or no point has

Idea: filter these subtrees by y-coordinate
Subtree decomposition in 2D

\[(\text{during preprocessing})\] build a balanced binary tree using the \(x\)-coordinates

\[\text{to perform a lookup}(x_1, x_2, y_1, y_2)\] follow the paths to \(x_1\) and \(x_2\) as before

for any off-path subtree...

\[\text{every point in the subtree has } x_1 \leq x \leq x_2 \text{ or no point has}\]

\[\text{Idea: filter these subtrees by } y\text{-coordinate}\]
Subtree decomposition in 2D

we want to find all points in here with \(y_1 \leq y \leq y_2 \)
(they all have \(x_1 \leq x \leq x_2 \))

(during preprocessing) build a balanced binary tree using the \(x \)-coordinates

to perform a \text{lookup}(x_1, x_2, y_1, y_2) follow the paths to \(x_1 \) and \(x_2 \) as before

for any off-path subtree...

every point in the subtree has \(x_1 \leq x \leq x_2 \) or no point has

\textbf{Idea}: filter these subtrees by \(y \)-coordinate
Subtree decomposition in 2D

we want to find *all* points in here with $y_1 \leq y \leq y_2$
(they all have $x_1 \leq x \leq x_2$)

how?

(during preprocessing) build a balanced binary tree using the x-coordinates
to perform a $\text{lookup}(x_1, x_2, y_1, y_2)$ follow the paths to x_1 and x_2 as before
for any off-path subtree...

every point in the subtree has $x_1 \leq x \leq x_2$ or no point has

Idea: filter these subtrees by y-coordinate
Subtree decomposition in 2D

we want to find all points in here with $y_1 \leq y \leq y_2$
(they all have $x_1 \leq x \leq x_2$)

how?
build a 1D range searching structure at every node
on the y-coordinates of the points in the subtree
(during preprocessing)

(during preprocessing) build a balanced binary tree using the x-coordinates

to perform a lookup(x_1, x_2, y_1, y_2) follow the paths to x_1 and x_2 as before
for any off-path subtree...
every point in the subtree has $x_1 \leq x \leq x_2$ or no point has

Idea: filter these subtrees by y-coordinate
Subtree decomposition in 2D

we want to find *all* points in here with \(y_1 \leq y \leq y_2 \)
(they all have \(x_1 \leq x \leq x_2 \))

how?

build a 1D range searching structure at every node
on the \(y \)-coordinates of the points in the subtree
(during preprocessing)

a 1D lookup takes \(O(\log n + k') \) time

(during preprocessing) build a balanced binary tree using the \(x \)-coordinates

to perform a \(\text{lookup}(x_1, x_2, y_1, y_2) \) follow the paths to \(x_1 \) and \(x_2 \) as before
for any off-path subtree...

every point in the subtree has \(x_1 \leq x \leq x_2 \) or no point has

Idea: filter these subtrees by \(y \)-coordinate
Subtree decomposition in 2D

we want to find all points in here with \(y_1 \leq y \leq y_2 \)
(they all have \(x_1 \leq x \leq x_2 \))

how?

build a 1D range searching structure at every node
on the \(y \)-coordinates of the points in the subtree
(during preprocessing)

a 1D lookup takes \(O(\log n + k') \) time
and only returns points we want

(during preprocessing) build a balanced binary tree using the \(x \)-coordinates

to perform a lookup\((x_1, x_2, y_1, y_2)\) follow the paths to \(x_1 \) and \(x_2 \) as before
for any off-path subtree...

every point in the subtree has \(x_1 \leq x \leq x_2 \) or no point has

Idea: filter these subtrees by \(y \)-coordinate
Subtree decomposition in 2D

Query summary
Query summary

1. Follow the paths to x_1 and x_2.
Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)

2. Discard off-path subtrees where the x coordinates are too large or too small
Subtree decomposition in 2D

Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)

2. Discard off-path subtrees where the x coordinates are too large or too small
Subtree decomposition in 2D

Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range...

 use the 1D range structure for that subtree to filter the y coordinates
Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range...
 use the 1D range structure for that subtree to filter the y coordinates
Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range...
 use the 1D range structure for that subtree to filter the y coordinates
Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range...
 use the 1D range structure for that subtree
to filter the y coordinates
Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range...

 use the 1D range structure for that subtree to filter the y coordinates
Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range...
 use the 1D range structure for that subtree to filter the y coordinates

perform $\text{lookup}(y_1, y_2)$ on the points in this subtree
Subtree decomposition in 2D

How long does a query take?

Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
2. Discard off-path subtrees where the x coordinates are *too large* or *too small*
3. For each off-path subtree where the x coordinates are in range...

 use the 1D range structure for that subtree to filter the y coordinates
Subtree decomposition in 2D

How long does a query take?

The paths have length $O(\log n)$

Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range... use the 1D range structure for that subtree to filter the y coordinates
Subtree decomposition in 2D

How long does a query take?

The paths have length $O(\log n)$

So steps 1. and 2. take $O(\log n)$ time

Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range...
 use the 1D range structure for that subtree to filter the y coordinates
Subtree decomposition in 2D

How long does a query take?

The paths have length $O(\log n)$

So steps 1. and 2. take $O(\log n)$ time

As for step 3,

Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
2. Discard off-path subtrees where the x coordinates are *too large* or *too small*
3. For each off-path subtree where the x coordinates are in range...

 use the 1D range structure for that subtree to filter the y coordinates
Subtree decomposition in 2D

How long does a query take?

The paths have length $O(\log n)$

So steps 1. and 2. take $O(\log n)$ time

As for step 3,

We do $O(\log n)$ 1D lookups…

Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
2. Discard off-path subtrees where the x coordinates are *too large* or *too small*
3. For each off-path subtree where the x coordinates are in range…

 use the 1D range structure for that subtree to filter the y coordinates
Subtree decomposition in 2D

How long does a query take?

The paths have length $O(\log n)$
So steps 1. and 2. take $O(\log n)$ time
As for step 3,
We do $O(\log n)$ 1D lookups…
Each takes $O(\log n + k')$ time

Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range...
 use the 1D range structure for that subtree to filter the y coordinates
How long does a query take?

The paths have length $O(\log n)$

So steps 1. and 2. take $O(\log n)$ time

As for step 3,

We do $O(\log n)$ 1D lookups…

Each takes $O(\log n + k')$ time

This sums to…

$O(\log^2 n + k)$

Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range…

 use the 1D range structure for that subtree to filter the y coordinates
Subtree decomposition in 2D

How long does a query take?

The paths have length $O(\log n)$

So steps 1. and 2. take $O(\log n)$ time

As for step 3,

We do $O(\log n)$ 1D lookups…

Each takes $O(\log n + k')$ time

This sums to…

$O(\log^2 n + k)$

because the 1D lookups are disjoint

Query summary

1. Follow the paths to x_1 and x_2 (inspecting the points on the path as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range...

 use the 1D range structure for that subtree to filter the y coordinates
Space Usage

How much space does our 2D range structure use?

the original (1D) structure used $O(n)$ space…

but we added some stuff

at each node we store an array

containing the points in its subtree

the array is sorted by y coordinate

(this gives us a 1D range data structure)
Space Usage

How much space does our 2D range structure use?

the original (1D) structure used $O(n)$ space…

but we added some stuff

at each node we store an array

containing the points in its subtree

the array is sorted by y coordinate

(this gives us a 1D range data structure)

look at any level in the tree

i.e. all nodes at the same distance from the root
Space Usage

How much space does our 2D range structure use?

the original (1D) structure used $O(n)$ space...

but we added some stuff

at each node we store an array
containing the points in its subtree
the array is sorted by y coordinate
(this gives us a 1D range data structure)

look at any level in the tree
i.e. all nodes at the same distance from the root
the points in these subtrees are disjoint
Space Usage

How much space does our 2D range structure use?

the original (1D) structure used $O(n)$ space…

but we added some stuff

at each node we store an array

containing the points in its subtree

the array is sorted by \(y \) coordinate

(this gives us a 1D range data structure)

look at any level in the tree

i.e. all nodes at the same distance from the root

the points in these subtrees are disjoint

so the sizes of the arrays add up to \(n \)
Space Usage

How much space does our 2D range structure use?

the original (1D) structure used $O(n)$ space…

but we added some stuff

at each node we store an array

containing the points in its subtree

the array is sorted by y coordinate

(this gives us a 1D range data structure)

look at any level in the tree

i.e. all nodes at the same distance from the root

the points in these subtrees are disjoint

so the sizes of the arrays add up to n

As the tree has depth $O(\log n)$…
Space Usage

How much space does our 2D range structure use?

the original (1D) structure used $O(n)$ space…

but we added some stuff

at each node we store an array containing the points in its subtree

the array is sorted by y coordinate

(this gives us a 1D range data structure)

look at any level in the tree

i.e. all nodes at the same distance from the root

the points in these subtrees are disjoint

so the sizes of the arrays add up to n

As the tree has depth $O(\log n)$…

the total space used is $O(n \log n)$
Preprocessing time

How much prep time does our 2D range structure take?

the original (1D) structure used $O(n \log n)$ *prep time…*

but we added some stuff

How long does it take to build the arrays at the nodes?
Preprocessing time

How much prep time does our 2D range structure take?

the original (1D) structure used $O(n \log n)$ prep time…

but we added some stuff

How long does it take to build the arrays at the nodes?
Preprocessing time

How much prep time does our 2D range structure take?

The original (1D) structure used $O(n \log n)$ prep time... but we added some stuff.

How long does it take to build the arrays at the nodes?

The figure shows the process of merging arrays at the nodes. The length of the merged array is $O(\ell)$.

As the arrays are already sorted, merging them takes $O(\ell)$ time.

Therefore the total time is $O(n \log n)$ (which is the sum of the lengths of the arrays).
2D range searching

A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the lookup(x_1, x_2, y_1, y_2) operation

which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$

i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

Summary

$O(n \log n)$ prep time

$O(n \log n)$ space

$O(\log^2 n + k)$ lookup time

where k is the number of points reported
A 2D range searching data structure stores n distinct (x, y)-pairs and supports:

the $\text{lookup}(x_1, x_2, y_1, y_2)$ operation

which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$

i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

Summary

$O(n \log n)$ prep time

$O(n \log n)$ space

$O(\log^2 n + k)$ lookup time

where k is the number of points reported

actually we can improve this :)

2D range searching
Improving the query time

when we do a 2D look-up we do $O(\log n)$ 1D lookups...

all with the same y_1 and y_2

(But on different point sets)
Improving the query time

when we do a 2D look-up we do $O(\log n)$ 1D lookups…

all with the same y_1 and y_2

(but on different point sets)

The *slow* part is finding the successor of y_1
Improving the query time

when we do a 2D look-up we do $O(\log n)$ 1D lookups...

all with the same y_1 and y_2

(but on different point sets)

The *slow* part is finding the successor of y_1

If I told you where this point was, a 1D lookup would only take $O(k')$ time

(where k' is the number of points between y_1 and $y_2)
Improving the query time

The arrays of points at the children partition the array of the parent.
Improving the query time

The arrays of points at the children partition the array of the parent
Improving the query time

The arrays of points at the children partition the array of the parent
Improving the query time

The arrays of points at the children partition the array of the parent

The child arrays are sorted by \(y \) coordinate

(but have been partitioned by \(x \) coordinate)
Improving the query time

The arrays of points at the children partition the array of the parent

The child arrays are sorted by \(y \) coordinate

(but have been partitioned by \(x \) coordinate)

Consider a point in the parent array...
Improving the query time

The arrays of points at the children partition the array of the parent.

The child arrays are sorted by y coordinate (but have been partitioned by x coordinate).

Consider a point in the parent array...
Improving the query time

The arrays of points at the children partition the array of the parent

The child arrays are sorted by y coordinate

(but have been partitioned by x coordinate)

Consider a point in the parent array...
Improving the query time

The arrays of points at the children partition the array of the parent

The child arrays are sorted by y coordinate

(but have been partitioned by x coordinate)

Consider a point in the parent array... we add a link to its successor in both child arrays

(we do this for every point during preprocessing)
Improving the query time

Consider a point in the parent array... we add a link to its successor in both child arrays

(we do this for every point during preprocessing)
Improving the query time

The arrays of points at the children partition the array of the parent.

The child arrays are sorted by \(y \) coordinate

(but have been partitioned by \(x \) coordinate)

Consider a point in the parent array... we add a link to its successor in both child arrays

(we do this for every point during preprocessing)
Improving the query time

3 7 11 19 23 27 35 43 53 61 67

7 11 35 43 61 67

3 19 23 27 53
Observation if we know where the successor of y_1 is in the parent, can find the successor in either child in $O(1)$ time
Observation if we know where the successor of \(y_1\) is in the parent, can find the successor in either child in \(O(1)\) time
Observation if we know where the successor of y_1 is in the parent, can find the successor in either child in $O(1)$ time.

adding these links doesn’t increase the space or the prep time
The improved query time

How long does a query take?

Query summary

1. Follow the paths to x_1 and x_2 (updating the successor to y_1 as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range...
 use the 1D range structure for that subtree to filter the y coordinates
The improved query time

How long does a query take?

The paths have length $O(\log n)$

Query summary

1. Follow the paths to x_1 and x_2 (updating the successor to y_1 as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range...
 use the 1D range structure for that subtree to filter the y coordinates
The improved query time

How long does a query take?

The paths have length $O(\log n)$

So steps 1. and 2. take $O(\log n)$ time

Query summary

1. Follow the paths to x_1 and x_2 (updating the successor to y_1 as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range...
 use the 1D range structure for that subtree to filter the y coordinates
How long does a query take?

The paths have length $O(\log n)$

So steps 1. and 2. take $O(\log n)$ time

As for step 3,

Query summary

1. Follow the paths to x_1 and x_2 (updating the successor to y_1 as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range...
 use the 1D range structure for that subtree to filter the y coordinates
The improved query time

How long does a query take?

The paths have length $O(\log n)$

So steps 1. and 2. take $O(\log n)$ time

As for step 3,

We do $O(\log n)$ 1D lookups…

Query summary

1. Follow the paths to x_1 and x_2 (updating the successor to y_1 as you go)

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range…
 use the 1D range structure for that subtree to filter the y coordinates
The improved query time

How long does a query take?

The paths have length $O(\log n)$

So steps 1. and 2. take $O(\log n)$ time

As for step 3,

We do $O(\log n)$ 1D lookups…

Each takes $O(k')$ time

Query summary

1. Follow the paths to x_1 and x_2 (updating the successor to y_1 as you go)
2. Discard off-path subtrees where the x coordinates are too large or too small
3. For each off-path subtree where the x coordinates are in range…
 use the 1D range structure for that subtree to filter the y coordinates
The improved query time

How long does a query take?

The paths have length $O(\log n)$

So steps 1. and 2. take $O(\log n)$ time

As for step 3,

We do $O(\log n)$ 1D lookups…

Each takes $O(k')$ time

This sums to…

$O(\log n + k)$

Query summary

1. Follow the paths to x_1 and x_2 (updating the successor to y_1 as you go)

2. Discard off-path subtrees where the x coordinates are too large or too small

3. For each off-path subtree where the x coordinates are in range…

 use the 1D range structure for that subtree to filter the y coordinates
A **2D range searching data structure** stores n distinct (x, y)-pairs and supports:

- the `lookup(x_1, x_2, y_1, y_2)` operation
 - which returns every point in the rectangle $[x_1 : x_2] \times [y_1 : y_2]$
 - i.e. every (x, y) with $x_1 \leq x \leq x_2$ and $y_1 \leq y \leq y_2$.

Summary

- $O(n \log n)$ prep time
- $O(n \log n)$ space
- $O(\log n + k)$ lookup time

where k is the number of points reported

we improved this :) using fractional cascading