Pattern matching part three

Hamming distance

Benjamin Sach
Exact pattern matching

Input: A text string T (length n) and a pattern string P (length m)

$$
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline \\
T & a & b & c & b & a & b & a & b & a & c & a & b & a \\
\hline \\
P & a & b & a \\
\hline \\
\end{array}
$$

Goal: Find all the locations where P matches in T

P matches at location i iff for all $0 \leq j < m$ we have that $P[j] = T[i + j]$

(our strings are zero-indexed)
Exact pattern matching

Input: A text string T (length n) and a pattern string P (length m)

Goal: Find all the locations where P matches in T

P matches at location i iff for all $0 \leq j < m$ we have that $P[j] = T[i + j]$

(our strings are zero-indexed)
Exact pattern matching

Input: A text string T (length n) and a pattern string P (length m)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Goal: Find all the locations where P matches in T

P matches at location i iff there exists $0 \leq j < m$ such that for all $0 \leq j < m$ we have that $P[j] = T[i + j]$

(our strings are zero-indexed)
Exact pattern matching

Input: A text string T (length n) and a pattern string P (length m)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

Goal: Find all the locations where P matches in T

P matches at location i iff

for all $0 \leq j < m$ we have that $P[j] = T[i + j]$

(our strings are zero-indexed)
Exact pattern matching

Input: A text string T (length n) and a pattern string P (length m).

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
</tbody>
</table>

Goal: Find all the locations where P matches in T

P matches at location i iff for all $0 \leq j < m$ we have that $P[j] = T[i + j]$

(our strings are zero-indexed)
Exact pattern matching

Input: A text string T (length n) and a pattern string P (length m)

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Goal: Find all the locations where P matches in T

P matches at location i iff for all $0 \leq j < m$ we have that $P[j] = T[i + j]$

(our strings are zero-indexed)
Exact pattern matching

Input: A text string T (length n) and a pattern string P (length m)

Goal: Find all the locations where P matches in T

P matches at location i iff for all $0 \leq j < m$ we have that $P[j] = T[i + j]$

(our strings are zero-indexed)

- A naive algorithm takes $O(nm)$ time
Exact pattern matching

Input: A text string T (length n) and a pattern string P (length m)

```
T: a b c b a b a c a b a
P: a b a
```

Goal: Find all the locations where P matches in T

P matches at location i iff for all $0 \leq j < m$ we have that $P[j] = T[i + j]$

(our strings are zero-indexed)

- A naive algorithm takes $O(nm)$ time
- Many $O(n)$ time algorithms are known (for example the KMP algorithm)
Pattern matching with mismatches

Input: A text string T (length n) and a pattern string P (length m)

$$
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
T & a & b & c & d & a & b & a & a & d & a & c & a & a \\
\end{array}

\begin{array}{cccc}
a & b & d & a \\
\hline
\end{array}

P

T

n

P

m

Goal: For every *alignment* i, output

$$\text{Ham}(i), \text{ the Hamming distance between } P \text{ and } T[i \ldots i + m - 1]$$

The Hamming distance is the number of mismatches...

i.e. the number of distinct j such that $P[j] \neq T[i + j]$
Pattern matching with mismatches

Input: A text string T (length n) and a pattern string P (length m)

Goal: For every alignment i, output

$\text{Ham}(i)$, the Hamming distance between P and $T[i \ldots i + m - 1]$

The Hamming distance is the number of mismatches…

i.e. the number of distinct j such that $P[j] \neq T[i + j]$

Ham(4) = 1
Pattern matching with mismatches

Input: A text string T (length n) and a pattern string P (length m)

```
T: a b c d a b a a d a c a a
P: a b d a
```

Goal: For every alignment i, output $Ham(i)$, the Hamming distance between P and $T[i \ldots i + m - 1]$

The Hamming distance is the number of mismatches...

i.e. the number of distinct j such that $P[j] \neq T[i + j]$
Pattern matching with mismatches

Input: A text string T (length n) and a pattern string P (length m)

Goal: For every alignment i, output $\text{Ham}(i)$, the Hamming distance between P and $T[i \ldots i + m - 1]$

The Hamming distance is the number of mismatches...
i.e. the number of distinct j such that $P[j] \neq T[i + j]$
Pattern matching with mismatches

Input: A text string T (length n) and a pattern string P (length m).

[Diagram of text string T and pattern string P]

Goal: For every alignment i, output $\text{Ham}(i)$, the Hamming distance between P and $T[i \ldots i + m - 1]$.

The Hamming distance is the number of mismatches...

i.e. the number of distinct j such that $P[j] \neq T[i + j]$.
Pattern matching with mismatches

Input: A text string T (length n) and a pattern string P (length m)

\[
\begin{array}{c}
\text{T} \\
\text{a b c d a b a a d d c a a} \\
\text{P} \\
\text{a b d a} \\
\end{array}
\]

this is alignment 7

\[
\begin{array}{c}
\text{n} \\
0 1 2 3 4 5 6 7 8 9 10 11 12 \\
\end{array}
\]

\[
\begin{array}{c}
\text{m} \\
\end{array}
\]

\[\text{Ham}(7) = 3\]

Goal: For every alignment i, output

\[\text{Ham}(i), \text{ the Hamming distance between } P \text{ and } T[i \ldots i + m - 1]\]

The Hamming distance is the number of mismatches...

i.e. the number of distinct j such that $P[j] \neq T[i + j]$
Pattern matching with mismatches

Input: A text string T (length n) and a pattern string P (length m)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

this is **alignment 8**

$\text{Ham}(8) = 3$

Goal: For every **alignment** i, output $\text{Ham}(i)$, the Hamming distance between P and $T[i \ldots i + m - 1]$

The Hamming distance is the number of mismatches...

i.e. the number of distinct j such that $P[j] \neq T[i + j]$
Pattern matching with mismatches

Input: A text string T (length n) and a pattern string P (length m)

Goal: For every alignment i, output $\operatorname{Ham}(i)$, the Hamming distance between P and $T[i \ldots i + m - 1]$

The Hamming distance is the number of mismatches...
 i.e. the number of distinct j such that $P[j] \neq T[i + j]$

A naive algorithm for this problem takes $O(nm)$ time
Pattern matching with mismatches

Input: A text string T (length n) and a pattern string P (length m)

![Diagram of text and pattern strings]

Goal: For every *alignment* i, output $\text{Ham}(i)$, the Hamming distance between P and $T[i \ldots i + m - 1]$

The Hamming distance is the number of mismatches...

i.e. the number of distinct j such that $P[j] \neq T[i + j]$

A naive algorithm for this problem takes $O(nm)$ time

...but we can do better
Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...
It's a small alphabet after all

Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

Replace all d symbols with 1 and everything else with 0
It's a small alphabet after all

Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

\[
\begin{array}{c}
\text{Replace all } d \text{ symbols with 1 and everything else with 0}
\end{array}
\]
It's a small alphabet after all

Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

\[
T \quad \begin{array}{cccccccc}
1 & a & c & b & 1 & a & 1 & 1 & b & 1 & c & 1 & 1 \\
\end{array}
\]

\[
P \quad \begin{array}{ccc}
1 & a & b & 1 \\
\end{array}
\]

Replace all \(d \) symbols with 1 and everything else with 0
It’s a small alphabet after all

Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
T & 1 & a & c & b & 1 & a & 1 & 1 & b & 1 & c & 1 & 1 \\
P & 1 & a & b & 1 \\
\hline
& m &
\end{array}
\]

Replace all \textit{d} symbols with 1 and everything else with 0
It’s a small alphabet after all

Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

Replace all \(d \) symbols with 1 and everything else with 0.
It's a small alphabet after all

Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

Replace all d symbols with 1 and everything else with 0.
Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 10 11 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_d</td>
</tr>
<tr>
<td>1 0 0 0 1 0 1 1 0 1 0 1 1</td>
</tr>
<tr>
<td>P_d</td>
</tr>
<tr>
<td>1 0 0 1</td>
</tr>
</tbody>
</table>

Replace all d symbols with 1 and everything else with 0

We denote these new strings T_d and P_d and consider...
Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

Replace all d symbols with 1 and everything else with 0

We denote these new strings T_d and P_d and consider...

$$(T_d \otimes P_d)[i] = \sum_{j=0}^{m-1} P_d[j] \times T_d[i + j]$$
Imagine that the alphabet contains only a small number of different symbols, which we will consider individually.

Replace all d symbols with 1 and everything else with 0.

We denote these new strings T_d and P_d and consider:

$$(T_d \otimes P_d)[i] = \sum_{j=0}^{m-1} P_d[j] \times T_d[i + j]$$
It's a small alphabet after all

Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

\[
(T_d \otimes P_d)[i] = \sum_{j=0}^{m-1} P_d[j] \times T_d[i + j]
\]

Replace all d symbols with 1 and everything else with 0

We denote these new strings T_d and P_d and consider...
It's a small alphabet after all

Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

Replace all \(d \) symbols with 1 and everything else with 0

We denote these new strings \(T_d \) and \(P_d \) and consider...

\[
(T_d \otimes P_d)[i] = \sum_{j=0}^{m-1} P_d[j] \times T_d[i+j]
\]

1 iff \(P[j] = T[i+j] = d \)
It's a small alphabet after all

Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

\[
\begin{array}{c}
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
T_d & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
\end{array}
\end{array}
\]

Replace all \(d \) symbols with 1 and everything else with 0

We denote these new strings \(T_d \) and \(P_d \) and consider...

\[
(T_d \otimes P_d)[i] = \sum_{j=0}^{m-1} P_d[j] \times T_d[i + j]
\]

This is the exactly number of matching \(d \)s at the \(i \)-th alignment.

\[
(T_d \otimes P_d)[4] = (1 \times 1) + (0 \times 0) + (1 \times 0) + (1 \times 1) = 2
\]
It's a small alphabet after all

Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

We denote these new strings T_d and P_d and consider...

\[
(T_d \otimes P_d)[4] = (1 \times 1) + (0 \times 0) + (1 \times 0) + (1 \times 1) = 2
\]

Replace all d symbols with 1 and everything else with 0

We denote these new strings T_d and P_d and consider...

\[
(T_d \otimes P_d)[i] = \sum_{j=0}^{m-1} P_d[j] \times T_d[i+j]
\]

This is the exactly number of matching ds at the i-th alignment.

How can we work out $(T_d \otimes P_d)$ quickly?
Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

Replace all d symbols with 1 and everything else with 0

We denote these new strings T_d and P_d and consider...

\[
(T_d \otimes P_d)[i] = \sum_{j=0}^{m-1} P_d[j] \times T_d[i + j]
\]

This is the exactly number of matching d's at the i-th alignment.

How can we work out $(T_d \otimes P_d)$ quickly?
Last year on COMS21103...

Let A and B be $(n - 1)$ degree polynomials which can be expressed as...

$$A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i$$
Last year on COMS21103...

Let A and B be $(n - 1)$ degree polynomials which can be expressed as...

$$A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i$$

$A[i] = a_i$

(or be seen as arrays of length n)

$B[i] = b_i$
Last year on COMS21103 . . .

Let A and B be $(n - 1)$ degree polynomials which can be expressed as . . .

\[
A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i
\]

The polynomial $C = A \times B$ can be expressed as . . .

\[
C(x) = \sum_{i=0}^{2n-1} c_i x^i \quad \text{where} \quad c_i = \sum_{j=0}^{i} a_j \times b_{(i-j)}
\]

A $A[i] = a_i$

B $B[i] = b_i$ (or be seen as arrays of length n)
Let \(A \) and \(B \) be \((n - 1)\) degree polynomials which can be expressed as:

\[
A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i
\]

The polynomial \(C = A \times B \) can be expressed as:

\[
C(x) = \sum_{i=0}^{2n-1} c_i x^i \quad \text{where} \quad c_i = \sum_{j=0}^{i} a_j \times b_{(i-j)}
\]
Let A and B be $(n - 1)$ degree polynomials which can be expressed as...

$$A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i$$

The polynomial $C = A \times B$ can be expressed as...

$$C(x) = \sum_{i=0}^{2n-1} c_i x^i \quad \text{where} \quad c_i = \sum_{j=0}^{i} a_j \times b_{i-j}$$

By the *magic* of the FFT we can compute C (i.e. every c_i) in $O(n \log n)$ time.
Last year on COMS21103...

Let A and B be $(n − 1)$ degree polynomials which can be expressed as...

$$A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i$$

The polynomial $C = A \times B$ can be expressed as...

$$C(x) = \sum_{i=0}^{2n-1} c_i x^i \quad \text{where} \quad c_i = \sum_{j=0}^{i} a_j \times b_{(i−j)}$$

By the *magic* of the FFT we can compute C (i.e. every c_i) in $O(n \log n)$ time.
Let A and B be $(n - 1)$ degree polynomials which can be expressed as...

$$A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i$$

The polynomial $C = A \times B$ can be expressed as...

$$C(x) = \sum_{i=0}^{2n-1} c_i x^i \quad \text{where} \quad c_i = \sum_{j=0}^{i} a_j \times b_{i-j}$$

By the *magic* of the FFT we can compute C (i.e. every c_i) in $O(n \log n)$ time.
Let A and B be $(n - 1)$ degree polynomials which can be expressed as...

$$A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i$$

The polynomial $C = A \times B$ can be expressed as...

$$C(x) = \sum_{i=0}^{2n-1} c_i x^i \quad \text{where} \quad c_i = \sum_{j=0}^{i} a_j \times b_{i-j}$$

By the magic of the FFT we can compute C (i.e. every c_i) in $O(n \log n)$ time.
Last year on COMS21103...

Let A and B be $(n - 1)$ degree polynomials which can be expressed as...

$$A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i$$

The polynomial $C = A \times B$ can be expressed as...

$$C(x) = \sum_{i=0}^{2n-1} c_i x^i \quad \text{where} \quad c_i = \sum_{j=0}^{i} a_j \times b_{i-j}$$

By the *magic* of the FFT we can compute C (i.e. every c_i) in $O(n \log n)$ time.

Hint 1 Let $A = P_d$ and $B = T_d$
Let A and B be $(n - 1)$ degree polynomials which can be expressed as.

$$A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i$$

The polynomial $C = A \times B$ can be expressed as.

$$C(x) = \sum_{i=0}^{2n-1} c_i x^i \quad \text{where} \quad c_i = \sum_{j=0}^{i} P_d[j] T_d[i - j]$$

By the *magic* of the FFT we can compute C (i.e. every c_i) in $O(n \log n)$ time.

Hint 1 Let $A = P_d$ and $B = T_d$
Let A and B be $(n - 1)$ degree polynomials which can be expressed as . . .

\[A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i \]

By the magic of the FFT we can compute C (i.e. every c_i) in $O(n \log n)$ time.

The polynomial $C = A \times B$ can be expressed as . . .

\[C(x) = \sum_{i=0}^{2n-1} c_i x^i \quad \text{where} \quad c_i = \sum_{j=0}^{i} P_d[j] T_d[i-j] \]

By the \textit{magic} of the FFT we can compute C (i.e. every c_i) in $O(n \log n)$ time.

\textbf{Hint 2} Let $A = P_d$ (padded with zeros) and $B = T_d$
Last year on COMS21103...

Let A and B be $(n - 1)$ degree polynomials which can be expressed as...

$$A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i$$

These polynomials can be represented as arrays of length m:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \ 0 \ 0 \ 0 \ \cdots \ 0$</td>
<td>m</td>
</tr>
</tbody>
</table>

$A[i] = a_i = P_d[i]$ (or be seen as arrays of length n) $B[i] = b_i = T_d[n - i]$

The polynomial $C = A \times B$ can be expressed as...

$$C(x) = \sum_{i=0}^{2n-1} c_i x^i \quad \text{where} \quad c_{n-i} = \sum_{j=0}^{n-i} P_d[j] T_d[i+j]$$

C can be represented as an array of length $m - 1$:

<table>
<thead>
<tr>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m - 1$</td>
</tr>
</tbody>
</table>

$C[i] = c_i$

By the magic of the FFT we can compute C (i.e. every c_i) in $O(n \log n)$ time.

Hint 3 Let $A = P_d$ (padded with zeros) and $B = T_d$ (reversed)
Let \(A \) and \(B \) be \((n - 1)\) degree polynomials which can be expressed as

\[
A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{and} \quad B(x) = \sum_{i=0}^{n-1} b_i x^i
\]

The polynomial \(C = A \times B \) can be expressed as

\[
C(x) = \sum_{i=0}^{2n-1} c_i x^i \quad \text{where} \quad c_{n-i} = \sum_{j=0}^{n-i} P_d[j] T_d[i+j]
\]

By the *magic* of the FFT we can compute \(C \) (i.e. every \(c_i \)) in \(O(n \log n) \) time.

Hint 3 Let \(A = P_d \) (padded with zeros) and \(B = T_d \) (reversed) . . . now \(C \) contains \((T_d \otimes P_d)\)
Computing cross-correlations via the FFT

Let T_σ be T with all σs replaced with 1s and everything else replaced with a 0s

$(P_\sigma$ is defined analogously)

alignment 4

$$T_\sigma$$

\[
\begin{array}{cccccccccccc}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
\end{array}
\]

$$P_\sigma$$

\[
\begin{array}{cccc}
1 & 0 & 0 & 1 \\
\end{array}
\]

\[
(T_\sigma \otimes P_\sigma)[i] = \sum_{j=0}^{m-1} P_\sigma[j] \times T_\sigma[i + j]
\]

is exactly number of matching ds at the i-th alignment.
Let T_σ be T with all σs replaced with 1s and everything else replaced with a 0s $(P_\sigma$ is defined analogously)

Alignment 4

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>T_\sigma</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>m-1</td>
<td></td>
</tr>
<tr>
<td>P_\sigma</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$(T_\sigma \otimes P_\sigma)[i] = \sum_{j=0}^{m-1} P_\sigma[j] \times T_\sigma[i+j]$ is exactly number of matching ds at the i-th alignment.

We can compute $(T_\sigma \otimes P_\sigma)$ in $O(n \log n)$ time via the FFT
Computing cross-correlations via the FFT

Let T_{σ} be T with all σs replaced with 1s and everything else replaced with a 0s

(P$_{\sigma}$ is defined analogously)

Alignment 4

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
T_{\sigma} & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
\end{array}
\]

\[
P_{\sigma} = \begin{array}{c}
1 & 0 & 0 & 1 \\
\end{array}
\]

\[
(T_{\sigma} \otimes P_{\sigma})[i] = \sum_{j=0}^{m-1} P_{\sigma}[j] \times T_{\sigma}[i + j]
\]

is exactly number of matching ds at the i-th alignment.

We can compute $(T_{\sigma} \otimes P_{\sigma})$ in $O(n \log n)$ time via the FFT

i.e after $O(n \log n)$ time we have $(T_d \otimes P_d)[i]$ for every i
Computing cross-correlations via the FFT

Let T_σ be T with all σs replaced with 1s and everything else replaced with a 0s. $(P_\sigma$ is defined analogously)

We can compute $(T_\sigma \otimes P_\sigma)$ in $O(n \log m)$ time via the FFT

$$\sum_{j=0}^{m-1} P_\sigma[j] \times T_\sigma[i + j]$$

is exactly number of matching ds at the i-th alignment.

We can compute $(T_d \otimes P_d)[i]$ for every i
Computing cross-correlations via the FFT

Let T_σ be T with all σs replaced with 1s and everything else replaced with a 0s

(P_σ is defined analogously)

alignment 4

```
 0 1 2 3 4 5 6 7 8 9 10 11 12
```

```
T_\sigma
1 0 0 0 1 0 1 1 0 1 0 1 1
```

```
P_\sigma
1 0 0 1
```

$(T_\sigma \otimes P_\sigma)[i] = \sum_{j=0}^{m-1} P_\sigma[j] \times T_\sigma[i + j]$ is exactly number of matching ds at the i-th alignment.

We can compute $(T_\sigma \otimes P_\sigma)$ in $O(n \log m)$ time via the FFT

i.e after $O(n \log m)$ time we have $(T_d \otimes P_d)[i]$ for every i

Clarification: (covered on whiteboard in lecture)
this improvement comes from splitting T_σ into
$O(n/m)$ overlapping sections of length $2m$
and using the FFT method once per section
Computing cross-correlations via the FFT

Let T_σ be T with all σs replaced with 1s and everything else replaced with a 0s.

$(P_\sigma$ is defined analogously)

We can compute $(T_\sigma \otimes P_\sigma)$ in $O(n \log m)$ time via the FFT.

i.e after $O(n \log m)$ time we have $(T_d \otimes P_d)[i]$ for every i.

Alignment 4

\[
T_\sigma = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
\end{bmatrix}
\]

\[
P_\sigma = \begin{bmatrix}
1 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
(T_\sigma \otimes P_\sigma)[i] = \sum_{j=0}^{m-1} P_\sigma[j] \times T_\sigma[i + j]
\]

is exactly number of matching ds at the i-th alignment.
Computing cross-correlations via the FFT

Let T_σ be T with all σs replaced with 1s and everything else replaced with a 0s

$(P_\sigma$ is defined analogously)

alignment 4

\[
\begin{align*}
T_\sigma &= \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1
\end{bmatrix} \\
P_\sigma &= \begin{bmatrix}
1 & 0 & 0 & 1
\end{bmatrix}
\end{align*}
\]

$$(T_\sigma \otimes P_\sigma)[i] = \sum_{j=0}^{m-1} P_\sigma[j] \times T_\sigma[i + j]$$

is exactly number of matching ds at the i-th alignment.

We can compute $(T_\sigma \otimes P_\sigma)$ in $O(n \log m)$ time via the FFT

i.e after $O(n \log m)$ time we have $(T_d \otimes P_d)[i]$ for every i

$(T_\sigma \otimes P_\sigma)$ is called the cross-correlation of T_σ and P_σ
Computing cross-correlations via the FFT

Let T_σ be T with all σs replaced with 1s and everything else replaced with a 0s

Let T_σ be T with all σs replaced with 1s and everything else replaced with a 0s

Let T_σ be T with all σs replaced with 1s and everything else replaced with a 0s

$(P_\sigma$ is defined analogously)

alignment 4

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
T_\sigma & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
P_\sigma & & 1 & 0 & 0 & 1 & & & & & & & & \\
\end{array}
\]

$(T_\sigma \otimes P_\sigma)[i] = \sum_{j=0}^{m-1} P_\sigma[j] \times T_\sigma[i + j]$ is exactly number of matching ds at the i-th alignment.

We can compute $(T_\sigma \otimes P_\sigma)$ in $O(n \log m)$ time via the FFT i.e after $O(n \log m)$ time we have $(T_d \otimes P_d)[i]$ for every i

$(T_\sigma \otimes P_\sigma)$ is called the cross-correlation of T_σ and P_σ it is also very often (but technically incorrectly) called the convolution
Computing cross-correlations via the FFT

Let T_σ be T with all σs replaced with 1s and everything else replaced with a 0s

P_σ is defined analogously

alignment 4

$$\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
T_\sigma & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
\end{array}$$

$$\begin{array}{cccc}
1 & 0 & 0 & 1 \\
\hline
P_\sigma \\
\end{array}$$

cross-correlations are used a lot in the pattern matching literature

$$(T_\sigma \otimes P_\sigma)[i] = \sum_{j=0}^{m-1} P_\sigma[j] \times T_\sigma[i+j]$$

is exactly number of matching ds at the i-th alignment.

We can compute $(T_\sigma \otimes P_\sigma)$ in $O(n \log m)$ time via the FFT

i.e after $O(n \log m)$ time we have $(T_d \otimes P_d)[i]$ for every i

$(T_\sigma \otimes P_\sigma)$ is called the cross-correlation of T_σ and P_σ

it is also very often (but technically incorrectly) called the convolution
Computing cross-correlations via the FFT

Let T_{σ} be T with all σs replaced with 1s and everything else replaced with a 0s

$$(P_{\sigma} \text{ is defined analogously)}$$

alignment 4

$$T_{\sigma} = \begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1
\end{array}$$

$$P_{\sigma} = \begin{array}{cccc}
1 & 0 & 0 & 1
\end{array}$$

$$(T_{\sigma} \otimes P_{\sigma})[i] = \sum_{j=0}^{m-1} P_{\sigma}[j] \times T_{\sigma}[i + j]$$

is exactly number of matching ds at the i-th alignment.

We can compute $(T_{\sigma} \otimes P_{\sigma})$ in $O(n \log n)$ time via the FFT

i.e after $O(n \log n)$ time we have $(T_d \otimes P_d)[i]$ for every i

$(T_{\sigma} \otimes P_{\sigma})$ is called the cross-correlation of T_{σ} and P_{σ}

it is also very often (but technically incorrectly) called the convolution
Computing cross-correlations via the FFT

Let T_σ be T with all σs replaced with 1s and everything else replaced with a 0s.

$(P_\sigma$ is defined analogously)

$$T_\sigma \ egin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$P_\sigma \ egin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$$

is exactly number of matching ds at the i-th alignment.

We can compute $(T_\sigma \otimes P_\sigma)$ in $O(n \log n)$ time via the FFT

i.e after $O(n \log n)$ time we have $(T_d \otimes P_d)[i]$ for every i

$(T_\sigma \otimes P_\sigma)$ is called the cross-correlation of T_σ and P_σ

it is also very often (but technically incorrectly) called the convolution
It’s a small alphabet after all

We have seen how to find all matches with a single symbol in $O(n \log m)$ time.

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

\quad (in the example $\Sigma = \{a, b, c, d\}$ so $|\Sigma| = 4$)

Algorithm Summary

- Construct T_σ and P_σ for each symbol σ in Σ
- Compute $(T_\sigma \otimes P_\sigma)$ for each symbol σ in Σ
- For every i, compute,

\quad $\text{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i]$.
It's a small alphabet after all

We have seen how to find all matches with a single symbol in $O(n \log m)$ time.

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size.

(in the example $\Sigma = \{a, b, c, d\}$ so $|\Sigma| = 4$)

Algorithm Summary

- Construct T_σ and P_σ for each symbol σ in Σ.
- Compute $(T_\sigma \otimes P_\sigma)$ for each symbol σ in Σ.
- For every i, compute,

$$\text{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i].$$

matches involving σ
It's a small alphabet after all

We have seen how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

(in the example $\Sigma = \{a, b, c, d\}$ so $|\Sigma| = 4$)

Algorithm Summary

1. Construct T_σ and P_σ for each symbol σ in Σ
2. Compute $(T_\sigma \otimes P_\sigma)$ for each symbol σ in Σ
3. For every i, compute,

$$\text{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i].$$

all matches
It's a small alphabet after all

We have seen how to find all matches with a single symbol in $O(n \log m)$ time.

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size.

(in the example $\Sigma = \{a, b, c, d\}$ so $|\Sigma| = 4$)

Algorithm Summary

- Construct T_σ and P_σ for each symbol σ in Σ.
- Compute $(T_\sigma \otimes P_\sigma)$ for each symbol σ in Σ.
- For every i, compute,

$$\text{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i] .$$

mismatches $= m - \text{matches}$
It's a small alphabet after all

We have seen how to find all matches with a single symbol in $O(n \log m)$ time.

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size.

(in the example $\Sigma = \{a, b, c, d\}$ so $|\Sigma| = 4$)

Algorithm Summary

- Construct T_σ and P_σ for each symbol σ in Σ
- Compute $(T_\sigma \otimes P_\sigma)$ for each symbol σ in Σ
- For every i, compute,

$$\text{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i].$$
It's a small alphabet after all

We have seen how to find all matches with a single symbol in $O(n \log m)$ time.

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size.

(in the example $\Sigma = \{a, b, c, d\}$ so $|\Sigma| = 4$)

Algorithm Summary

- Construct T_σ and P_σ for each symbol σ in Σ $(O(n|\Sigma|)$ time)
- Compute $(T_\sigma \otimes P_\sigma)$ for each symbol σ in Σ
- For every i, compute,

$$\text{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i].$$
It's a small alphabet after all

We have seen how to find all matches with a single symbol in $O(n \log m)$ time.

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size.

(in the example $\Sigma = \{a, b, c, d\}$ so $|\Sigma| = 4$)

Algorithm Summary

Construct T_σ and P_σ for each symbol σ in Σ $(O(n|\Sigma|)$ time)

Compute $(T_\sigma \otimes P_\sigma)$ for each symbol σ in Σ $(O(n|\Sigma| \log m)$ time)

For every i, compute,

$$\text{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i].$$
It’s a small alphabet after all

We have seen how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

(in the example $\Sigma = \{a, b, c, d\}$ so $|\Sigma| = 4$)

Algorithm Summary

Construct T_σ and P_σ for each symbol σ in Σ\hspace{1cm} (O(n|\Sigma|) time)

Compute $(T_\sigma \otimes P_\sigma)$ for each symbol σ in Σ\hspace{1cm} (O(n|\Sigma| \log m) time)

For every i, compute,

$$\text{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i].$$ \hspace{1cm} (O(n|\Sigma|) time)
It's a small alphabet after all

We have seen how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

(in the example $\Sigma = \{a, b, c, d\}$ so $|\Sigma| = 4$)

Algorithm Summary

Construct T_σ and P_σ for each symbol σ in Σ

(\(O(n|\Sigma|)\) time)

Compute $(T_\sigma \otimes P_\sigma)$ for each symbol σ in Σ

(\(O(n|\Sigma| \log m)\) time)

For every i, compute,

$\text{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i]$.

(\(O(n|\Sigma|)\) time)

This takes $O(n|\Sigma| \log m)$ total time (and $O(n)$ space)
It's a small alphabet after all

We have seen how to find all matches with a single symbol in $O(n \log m)$ time.

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size.

(in the example $\Sigma = \{a, b, c, d\}$ so $|\Sigma| = 4$)

Algorithm Summary

Construct T_σ and P_σ for each symbol σ in Σ $(O(n|\Sigma|)$ time)

Compute $(T_\sigma \otimes P_\sigma)$ for each symbol σ in Σ $(O(n|\Sigma| \log m)$ time)

For every i, compute,

$$\text{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i].$$

$(O(n|\Sigma|)$ time)

This takes $O(n|\Sigma| \log m)$ total time (and $O(n)$ space)

However, $|\Sigma|$ could be as big as m...
It’s a small alphabet after all

We have seen how to find all matches with a single symbol in $O(n \log m)$ time

Let Σ denote the set of alphabet symbols and $|\Sigma|$ be its size

(in the example $\Sigma = \{a, b, c, d\}$ so $|\Sigma| = 4$)

Algorithm Summary

Construct T_σ and P_σ for each symbol σ in Σ

$(O(n|\Sigma|)$ time)

Compute $(T_\sigma \otimes P_\sigma)$ for each symbol σ in Σ

$(O(n|\Sigma| \log m)$ time)

For every i, compute,

$$\text{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_\sigma \otimes P_\sigma)[i].$$

$(O(n|\Sigma|)$ time)

This takes $O(n|\Sigma| \log m)$ total time (and $O(n)$ space)

However, $|\Sigma|$ could be as big as m...

in which case, this is worse than the naive method!
Coping with a large alphabet

We will now see an algorithm which runs in $O(n\sqrt{m \log m})$ time regardless of the alphabet size.
Coping with a large alphabet

We will now see an algorithm which runs in $O(n\sqrt{m \log m})$ time regardless of the alphabet size.

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.
Coping with a large alphabet

We will now see an algorithm which runs in $O(n \sqrt{m \log m})$ time regardless of the alphabet size.

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

![Diagram showing an example string P with m = 9 and frequent symbols highlighted]
Coping with a large alphabet

We will now see an algorithm which runs in $O(n\sqrt{m \log m})$ time regardless of the alphabet size.

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = 9$</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
</tr>
</tbody>
</table>

($\sqrt{m} = 3$)
Coping with a large alphabet

We will now see an algorithm which runs in $O(n\sqrt{m \log m})$ time regardless of the alphabet size.

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

The sequence P is

```
| a | b | b | a | c | a | d | b | d |
```

with $m = 9$ and $\sqrt{m} = 3$.

a is frequent.
Coping with a large alphabet

We will now see an algorithm which runs in $O(n\sqrt{m\log m})$ time regardless of the alphabet size.

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

\[
\begin{array}{c}
\text{0} & \text{1} & \text{2} & \text{3} & \text{4} & \text{5} & \text{6} \\
\hline
m = 9 \\
\text{a} & \text{b} & \text{b} & \text{a} & \text{c} & \text{a} & \text{d} & \text{b} & \text{d}
\end{array}
\]

($\sqrt{m} = 3$)

a is frequent, b is frequent
Coping with a large alphabet

We will now see an algorithm which runs in \(O(n\sqrt{m \log m}) \) time regardless of the alphabet size.

Definition: An alphabet symbol is *frequent* if it occurs at least \(\sqrt{m} \) times in \(P \).

\[
P = \text{a b b a c a d b d}
\]

\(m = 9 \quad \text{(} \sqrt{m} = 3 \text{)} \)

\(a \) is frequent, \(b \) is frequent,
\(c \) and \(d \) are infrequent.
Coping with a large alphabet

We will now see an algorithm which runs in $O(n\sqrt{m \log m})$ time regardless of the alphabet size.

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = 9$</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
</tr>
</tbody>
</table>

a is frequent, b is frequent
c and d are infrequent

Key idea: Our algorithm will have two main stages:
Coping with a large alphabet

We will now see an algorithm which runs in $O(n\sqrt{m \log m})$ time regardless of the alphabet size.

Definition: An alphabet symbol is frequent if it occurs at least \sqrt{m} times in P.

Key idea: Our algorithm will have two main stages:

- Stage 1 will count all the matches involving frequent symbols (at each alignment of P and T)

Here is an example:

P: a b b a c a d b d

$m = 9$\hspace{1cm}($\sqrt{m} = 3$)

a is frequent, b is frequent
c and d are infrequent
Coping with a large alphabet

We will now see an algorithm which runs in $O(n\sqrt{m \log m})$ time regardless of the alphabet size.

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>m = 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

| a | b | b | a | c | a | d | b | d |

a is frequent, b is frequent.
c and d are infrequent.

Key idea: Our algorithm will have two main stages:

Stage 1 will count all the matches involving *frequent* symbols (at each alignment of P and T).

Stage 2 will count all the matches involving *infrequent* symbols (at each alignment of P and T).
Coping with a large alphabet

We will now see an algorithm which runs in $O(n\sqrt{m \log m})$ time regardless of the alphabet size

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

$$m = 9$$

P

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
</tr>
</tbody>
</table>
```

- a is frequent, b is frequent
- c and d are infrequent

Key idea: Our algorithm will have two main stages:

- **Stage 1** will count all the matches involving *frequent* symbols
 (at each alignment of P and T)

- **Stage 2** will count all the matches involving *infrequent* symbols
 (at each alignment of P and T)

The total number of matches is the sum of the matches from **Stage 1** and **Stage 2**
Coping with a large alphabet

We will now see an algorithm which runs in $O(n\sqrt{m \log m})$ time \textit{regardless of the alphabet size}.

Definition: An alphabet symbol is \textit{frequent} if it occurs at least \sqrt{m} times in P.

$$m = 9$$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
</tr>
</tbody>
</table>

a is \textit{frequent}, b is \textit{frequent},

c and d are \textit{infrequent}.

Key idea: Our algorithm will have two main stages:

Stage 1 will count all the matches involving \textit{frequent} symbols

(at each alignment of P and T)

Stage 2 will count all the matches involving \textit{infrequent} symbols

(at each alignment of P and T)

The total number of matches is the sum of the matches from **Stage 1** and **Stage 2**.
The frequent/infrequent symbols trick

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$m = 9$

$P = \text{a b b a c a d b d}$

a is *frequent*, b is *frequent*
c and d are *infrequent*
The frequent/infrequent symbols trick

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

![Example sequence and frequency count]

Stage 1: For each alignment i, count the number of matches involving frequent symbols:
The frequent/infrequent symbols trick

Definition: An alphabet symbol is *frequent* if it occurs at least \(\sqrt{m} \) times in \(P \).

Stage 1: For each alignment \(i \), count the number of matches involving **frequent** symbols:

Consider each frequent symbol \(\sigma \in \Sigma \) separately and compute \((T_\sigma \otimes P_\sigma)\)
The frequent/infrequent symbols trick

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

Stage 1: For each alignment i, count the number of matches involving frequent symbols:

Consider each frequent symbol $\sigma \in \Sigma$ separately and compute $(T_\sigma \otimes P_\sigma)$ in $O(n \log m)$ time (per symbol σ) using cross-correlations.
The frequent/infrequent symbols trick

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

Stage 1: For each alignment i, count the number of matches involving frequent symbols:

Consider each frequent symbol $\sigma \in \Sigma$ separately and compute $(T_\sigma \otimes P_\sigma)$ in $O(n \log m)$ time (per symbol σ) using cross-correlations

How many frequent symbols can there be?
The frequent/infrequent symbols trick

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

![Example alignment](image)

a is *frequent*, b is *frequent*
c and d are *infrequent*

Stage 1: For each alignment i, count the number of matches involving frequent symbols:

Consider each frequent symbol $\sigma \in \Sigma$ separately and compute $(T_\sigma \otimes P_\sigma)$

in $O(n \log m)$ time (per symbol σ) using cross-correlations

How many frequent symbols can there be?

Assume that there at least $(\sqrt{m} + 1)$ freq. symbols
The frequent/infrequent symbols trick

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

Stage 1: For each alignment i, count the number of matches involving frequent symbols:

Consider each frequent symbol $\sigma \in \Sigma$ separately and compute $(T\sigma \otimes P\sigma)$ in $O(n \log m)$ time (per symbol σ) using cross-correlations.

How many frequent symbols can there be?

Assume that there at least $(\sqrt{m} + 1)$ freq. symbols each occurs at least \sqrt{m} times...
The frequent/infrequent symbols trick

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

Stage 1: For each alignment i, count the number of matches involving frequent symbols:

Consider each frequent symbol $\sigma \in \Sigma$ separately and compute $(T_\sigma \otimes P_\sigma)$

in $O(n \log m)$ time (per symbol σ) using cross-correlations

How many frequent symbols can there be?

Assume that there at least $(\sqrt{m} + 1)$ freq. symbols

each occurs at least \sqrt{m} times... $(\sqrt{m} + 1)\sqrt{m} > m$
The frequent/infrequent symbols trick

Definition: An alphabet symbol is *frequent* if it occurs at least \sqrt{m} times in P.

Stage 1: For each alignment i, count the number of matches involving frequent symbols:

Consider each frequent symbol $\sigma \in \Sigma$ separately and compute $(T_\sigma \otimes P_\sigma)$ in $O(n \log m)$ time (per symbol σ) using cross-correlations

How many frequent symbols can there be?

Assume that there at least $(\sqrt{m} + 1)$ freq. symbols

each occurs at least \sqrt{m} times... $(\sqrt{m} + 1)\sqrt{m} > m$ Contradiction!
The frequent/infrequent symbols trick

Definition: An alphabet symbol is *frequent* if it occurs at least \(\sqrt{m} \) times in \(P \).

Stage 1: For each alignment \(i \), count the number of matches involving frequent symbols:

Consider each frequent symbol \(\sigma \in \Sigma \) separately and compute \((T_\sigma \otimes P_\sigma) \)

in \(O(n \log m) \) time (per symbol \(\sigma \)) using cross-correlations

How many frequent symbols can there be?

Assume that there at least \((\sqrt{m} + 1) \) freq. symbols

each occurs at least \(\sqrt{m} \) times...

\((\sqrt{m} + 1) \sqrt{m} > m \) \text{ Contradiction!}

so there are at most \(\sqrt{m} \) frequent symbols
The frequent/infrequent symbols trick

Definition: An alphabet symbol is frequent if it occurs at least \(\sqrt{m} \) times in \(P \).

Stage 1: For each alignment \(i \), count the number of matches involving frequent symbols:

Consider each frequent symbol \(\sigma \in \Sigma \) separately and compute \((T_{\sigma} \otimes P_\sigma) \)
in \(O(n \log m) \) time (per symbol \(\sigma \)) using cross-correlations.

How many frequent symbols can there be?

Assume that there at least \((\sqrt{m} + 1)\) freq. symbols

\[\text{each occurs at least } \sqrt{m} \text{ times...} \quad (\sqrt{m} + 1)\sqrt{m} > m \quad \text{Contradiction!} \]

so there are at most \(\sqrt{m} \) frequent symbols

So Stage 1 takes \(O(n \sqrt{m} \log m) \) time.
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent
- b is frequent
- c and d are infrequent

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>d</th>
<th>b</th>
<th>a</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either *frequent* or *infrequent*

Stage 2: Count all matches involving *infrequent* symbols.
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

a is frequent, b is frequent

c and d are infrequent

Stage 2: Count all matches involving *infrequent* symbols.
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

| T | a | d | b | a | c | c | c | d | a | d | c | d | c | d | a | c |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| P | a | b | b | a | c | a | d | b | c | d | a | b | a | c | d |
| A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \(\sqrt{m} \) times in \(P \).

Every symbol is either frequent or infrequent

\(T \)	a d b a c c c d a d c d c d a c
\(P \)	a b b a c a d b d
\(A \)	0 0 0 0 0 0 0 0

Stage 2: Count all matches involving infrequent symbols.

Construct an array \(A \) of length \((n - m + 1)\) - which initially contains all zeros

Make a single pass through \(T \)...
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

| T | a | d | b | a | c | c | c | d | a | d | c | d | c | d | a | c |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| P | a | b | b | a | c | a | d | b | d |
| A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Stage 2: Count all matches involving *infrequent* symbols.

Every symbol is either frequent or infrequent

a is frequent, b is frequent, c and d are infrequent

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent.

- a is *frequent*, b is *frequent*.
- c and d are *infrequent*.

| T | a | d | b | a | c | c | c | d | a | d | c | d | c | d | a | c |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

<table>
<thead>
<tr>
<th>P</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>c</th>
<th>a</th>
<th>d</th>
<th>b</th>
<th>d</th>
</tr>
</thead>
</table>

| A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros.

- Make a single pass through T...
 - For each character $T[k]$, (where $0 \leq k < n$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \(\sqrt{m} \) times in \(P \).

Every symbol is either frequent or infrequent

\(a \) is frequent, \(b \) is frequent
\(c \) and \(d \) are infrequent

\[
\begin{array}{cccccccccccccccccc}
T & a & d & b & a & c & c & c & d & a & d & c & d & c & d & a & c \\
\hline
P & a & b & b & a & c & a & d & b & d \\
A & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array \(A \) of length \((n - m + 1) \) - which initially contains all zeros

Make a single pass through \(T \) . . .

For each character \(T[k] \), (where \(0 \leq k < n \))

If \(T[k] \) is *infrequent* . . .
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent
- b is frequent
- c and d are infrequent

<table>
<thead>
<tr>
<th>Stage 2: Count all matches involving infrequent symbols.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct an array A of length $(n - m + 1)$ - which initially contains all zeros</td>
</tr>
<tr>
<td>Make a single pass through T…</td>
</tr>
<tr>
<td>For each character $T[k]$, (where $0 \leq k < n$)</td>
</tr>
<tr>
<td>If $T[k]$ is infrequent…</td>
</tr>
</tbody>
</table>
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent.

t is frequent, b is frequent
c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T . . .
For each character $T[k]$, (where $0 \leq k < n$)
If $T[k]$ is *infrequent* . . .
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent
- b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T . . .

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent* . . .
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent, b is frequent
- c and d are infrequent

![Diagram]

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is infrequent...

For all j such that $T[k] = P[j]$,
Increase $A[k - j]$ by one
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent, b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

a is frequent, b is frequent
c and d are infrequent

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent,
- b is frequent,
- c and d are infrequent

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T . . .

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent* . . .

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)

Example:

<table>
<thead>
<tr>
<th>T</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

$k - j < 0$
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

<table>
<thead>
<tr>
<th>T</th>
<th>d</th>
<th>b</th>
<th>a</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0</td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent.

- a is frequent
- b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$, increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent, b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros.

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

- If $T[k]$ is infrequent...
 - For all j such that $T[k] = P[j]$,
 - Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

![Diagram showing symbols and arrays]

Every symbol is either frequent or infrequent

- a is frequent
- b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is infrequent...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

```
T = [X d X X c c c d a d c d c d a c]
```

```
P = [a b b a c a d b d]
```

```
A = [0 0 0 0 0 0 0 0 0]
```

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

a is frequent, b is frequent
c and d are infrequent

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T . . .

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent* . . .

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \(\sqrt{m} \) times in \(P \).

![Diagram showing symbols and their frequencies]

- **Stage 2:** Count all matches involving infrequent symbols.

Construct an array \(A \) of length \((n - m + 1) \) - which initially contains all zeros.

Make a single pass through \(T \)...

For each character \(T[k] \), (where \(0 \leq k < n \))

If \(T[k] \) is infrequent...

For all \(j \) such that \(T[k] = P[j] \),

Increase \(A[k - j] \) by one (except when \(k - j < 0 \))

Every symbol is either frequent or infrequent

- \(a \) is frequent
- \(b \) is frequent
- \(c \) and \(d \) are infrequent
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either *frequent* or *infrequent*

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

$A = [1, 0, 0, 0, 0, 0, 0, 0, 0]$
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

a is frequent, b is frequent

c and d are infrequent

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>d</th>
<th>b</th>
<th>a</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$, increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \(\sqrt{m} \) times in \(P \).

\[
\begin{vmatrix}
T & \text{d} & \text{b} & \text{x} & \text{c} & \text{c} & \text{c} & \text{d} & \text{a} & \text{d} & \text{c} & \text{d} & \text{c} & \text{d} & \text{a} & \text{c} \\
P & \text{a} & \text{b} & \text{b} & \text{a} & \text{c} & \text{a} & \text{d} & \text{b} & \text{d} \\
A & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{vmatrix}
\]

Every symbol is either frequent or infrequent

\(a \) is frequent, \(b \) is frequent

\(c \) and \(d \) are infrequent

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array \(A \) of length \((n - m + 1)\) - which initially contains all zeros

Make a single pass through \(T \ldots \)

For each character \(T[k] \), (where \(0 \leq k < n \))

If \(T[k] \) is *infrequent* . . .

For all \(j \) such that \(T[k] = P[j] \),

Increase \(A[k - j] \) by one (except when \((k - j) < 0)\)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent.

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>d</th>
<th>b</th>
<th>a</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>c</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent
- b is frequent
- c and d are infrequent

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

- If $T[k]$ is *infrequent*...

 For all j such that $T[k] = P[j]$,

 Increase $A[k - j]$ by one *(except when $(k - j) < 0$)*
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

<table>
<thead>
<tr>
<th>T</th>
<th>d</th>
<th>b</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T . . .

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent* . . .

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either *frequent* or *infrequent*

a is *frequent*, b is *frequent*, c and d are *infrequent*

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \(\sqrt{m} \) times in \(P \).

Every symbol is either *frequent* or *infrequent*.

\(a \) is *frequent*, \(b \) is *frequent*, \(c \) and \(d \) are *infrequent*.

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array \(A \) of length \((n - m + 1)\) - which initially contains all zeros.

Make a single pass through \(T \)…

For each character \(T[k] \), (where \(0 \leq k < n \))

If \(T[k] \) is *infrequent*…

For all \(j \) such that \(T[k] = P[j] \),

Increase \(A[k - j] \) by one (except when \((k - j) < 0 \))
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent.

a is frequent, b is frequent, c and d are infrequent.

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros.

Make a single pass through T . . .

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent* . . .

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

<table>
<thead>
<tr>
<th>T</th>
<th>d</th>
<th>b</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$, $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent, b is frequent
- c and d are infrequent

<table>
<thead>
<tr>
<th>T</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is **infrequent** if it occurs fewer than \sqrt{m} times in P.

Every symbol is either **frequent** or **infrequent**

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>a d b x c c c d a d c d c d a c</td>
<td>a b b a c a d b b d</td>
<td>1 1 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros.

Make a single pass through T . . .

For each character $T[k]$, (where $0 \leq k < n$) If $T[k]$ is **infrequent** . . .

For all j such that $T[k] = P[j]$, Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>b</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Every symbol is either frequent or infrequent.

- a is frequent, b is frequent.
- c and d are infrequent.

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros.

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one *(except when $(k - j) < 0)$*
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros.

Make a single pass through T…

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*…

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either *frequent* or *infrequent*.

T =

```
A d b b c c c d a d c d c d a c
```

P =

```
a b b a c a d b d
```

A =

```
1 1 0 0 0 0 0 0
```

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent, b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

- Make a single pass through T...
 - For each character $T[k]$, (where $0 \leq k < n$)
 - If $T[k]$ is infrequent...
 - For all j such that $T[k] = P[j]$,
 - Increase $A[k - j]$ by one \(\text{except when } (k - j) < 0\)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \(\sqrt{m} \) times in \(P \).

\[
\begin{array}{cccccccccc}
T & d & b & c & c & c & d & a & d & c & d & a & c \\
| & a & b & b & a & c & a & d & b & d |
\end{array}
\]

\[
A = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Every symbol is either frequent or infrequent.

\(a \) is frequent, \(b \) is frequent, \(c \) and \(d \) are infrequent.

Stage 2: Count all matches involving infrequent symbols.

Construct an array \(A \) of length \((n - m + 1)\) - which initially contains all zeros.

Make a single pass through \(T \)...

For each character \(T[k] \), (where \(0 \leq k < n \))

If \(T[k] \) is infrequent...

For all \(j \) such that \(T[k] = P[j] \),

Increase \(A[k - j] \) by one (except when \((k - j) < 0\))
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

![Diagram](image)

Every symbol is either *frequent* or *infrequent*

- a is *frequent*, b is *frequent*
- c and d are *infrequent*

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T . . .

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent* . . .

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

a is frequent, b is frequent
c and d are infrequent

![Diagram](image)

<table>
<thead>
<tr>
<th>T</th>
<th>d</th>
<th>b</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

$A = [1, 1, 1, 0, 0, 0, 0, 0]$

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is infrequent...

For all j such that $T[k] = P[j]$, increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

<table>
<thead>
<tr>
<th>T</th>
<th>dna</th>
<th>abc</th>
<th>ccd</th>
<th>dad</th>
<th>cdc</th>
<th>ddc</th>
<th>aac</th>
<th>cdd</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>ab</td>
<td>bba</td>
<td>aca</td>
<td>dad</td>
<td>bbd</td>
<td>ddd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1110000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \(\sqrt{m} \) times in \(P \).

Every symbol is either frequent or infrequent

\(a \) is frequent, \(b \) is frequent
\(c \) and \(d \) are infrequent

<table>
<thead>
<tr>
<th>(T)</th>
<th>(d)</th>
<th>(b)</th>
<th>(c)</th>
<th>(c)</th>
<th>(c)</th>
<th>(d)</th>
<th>(a)</th>
<th>(d)</th>
<th>(c)</th>
<th>(d)</th>
<th>(c)</th>
<th>(d)</th>
<th>(a)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(a)</td>
<td>(b)</td>
<td>(b)</td>
<td>(a)</td>
<td>(c)</td>
<td>(a)</td>
<td>(d)</td>
<td>(b)</td>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving infrequent symbols.

Construct an array \(A \) of length \((n - m + 1) \) - which initially contains all zeros

Make a single pass through \(T \)...

For each character \(T[k] \), (where \(0 \leq k < n \))

If \(T[k] \) is infrequent...

For all \(j \) such that \(T[k] = P[j] \),
Increase \(A[k - j] \) by one (except when \(k - j < 0 \))
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

<table>
<thead>
<tr>
<th>T</th>
<th>d</th>
<th>b</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T . . .

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent* . . .

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent. a is frequent, b is frequent, c and d are infrequent.

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T…

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is infrequent…

For all j such that $T[k] = P[j]$, increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

a is frequent, b is frequent
c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T…

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is infrequent…

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

a is frequent, b is frequent

c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is infrequent...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

![Image of symbols with arrows indicating frequent and infrequent status]

Every symbol is either frequent or infrequent

- a is frequent, b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \(\sqrt{m} \) times in \(P \).

Every symbol is either *frequent* or *infrequent*

\(a \) is *frequent*, \(b \) is *frequent*, \(c \) and \(d \) are *infrequent*

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array \(A \) of length \((n - m + 1)\) - which initially contains all zeros

Make a single pass through \(T \)…

For each character \(T[k] \), (where \(0 \leq k < n \))

If \(T[k] \) is *infrequent*…

For all \(j \) such that \(T[k] = P[j] \),

Increase \(A[k - j] \) by one \((\text{except when } (k - j) < 0) \)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \(\sqrt{m} \) times in \(P \).

Every symbol is either *frequent* or *infrequent*.

\(a \) is frequent, \(b \) is frequent, \(c \) and \(d \) are infrequent.

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array \(A \) of length \((n - m + 1)\) - which initially contains all zeros.

Make a single pass through \(T \)...

For each character \(T[k] \), (where \(0 \leq k < n \))

If \(T[k] \) is *infrequent*...

For all \(j \) such that \(T[k] = P[j] \),

Increase \(A[k - j] \) by one (except when \(k - j < 0 \))
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

$\hspace{1cm} k = 7 \hspace{1cm} j = 6 \hspace{1cm} k - j = 1$

Every symbol is either *frequent* or *infrequent*

a is *frequent*, b is *frequent*, c and d are *infrequent*

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>d</th>
<th>b</th>
<th>b</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>d</th>
<th>d</th>
<th>a</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Every symbol is either frequent or infrequent

a is frequent, b is frequent
c and d are infrequent

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$, Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

![Diagram of symbols]

Every symbol is either frequent or infrequent

- a is frequent
- b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one \(\text{except when } (k - j) < 0\)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

<table>
<thead>
<tr>
<th>T</th>
<th>d b c c c d d c d d a c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a b b a c a d b d</td>
</tr>
<tr>
<td>A</td>
<td>1 2 1 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Every symbol is either frequent or infrequent:
- a is frequent, b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is infrequent...

For all j such that $T[k] = P[j],$

Increase $A[k - j]$ by one *(except when $(k - j) < 0$)*
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \(\sqrt{m} \) times in \(P \).

Every symbol is either *frequent* or *infrequent*.

<table>
<thead>
<tr>
<th>(T)</th>
<th>d</th>
<th>b</th>
<th>a</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>d</th>
<th>d</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array \(A \) of length \((n - m + 1)\) - which initially contains all zeros.

Make a single pass through \(T \)...

For each character \(T[k] \), (where \(0 \leq k < n \))

If \(T[k] \) is *infrequent*...

For all \(j \) such that \(T[k] = P[j] \),

Increase \(A[k - j] \) by one (except when \((k - j) < 0\))
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T…

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*…

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0)$
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

![Diagram showing symbols and arrays]

Every symbol is either *frequent* or *infrequent*

a is *frequent*, b is *frequent*, c and d are *infrequent*

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T…

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*…

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent, b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is infrequent...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either *frequent* or *infrequent*

<table>
<thead>
<tr>
<th>T</th>
<th>d b c c c d d c d c d a c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a b b a c a d b d</td>
</tr>
<tr>
<td>A</td>
<td>1 3 1 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

<table>
<thead>
<tr>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 1 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (*except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent
- b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

- If $T[k]$ is *infrequent*...

 For all j such that $T[k] = P[j]$, increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent
- b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is infrequent...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

a is frequent, b is frequent

c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is infrequent...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent.

- a is frequent, b is frequent
- c and d are infrequent

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0)$
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \(\sqrt{m} \) times in \(P \).

Every symbol is either frequent or infrequent

\[a \text{ is frequent }, \ b \text{ is frequent} \]
\[c \text{ and } d \text{ are infrequent} \]

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array \(A \) of length \((n - m + 1) \) - which initially contains all zeros

Make a single pass through \(T \)…

For each character \(T[k] \), (where \(0 \leq k < n \))

If \(T[k] \) is *infrequent*…

For all \(j \) such that \(T[k] = P[j] \),

Increase \(A[k - j] \) by one (except when \((k - j) < 0 \))
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

- a is frequent
- b is frequent
- c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

- Make a single pass through T...

 - For each character $T[k]$, (where $0 \leq k < n$)
 - If $T[k]$ is *infrequent*...
 - For all j such that $T[k] = P[j],$
 - Increase $A[k - j]$ by one (except when $(k - j) < 0)$
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either *frequent* or *infrequent*

- a is frequent, b is frequent
- c and d are infrequent

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (*except when* $(k - j) < 0)$
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)

Every symbol is either frequent or infrequent

a is frequent, b is frequent
c and d are infrequent

Fact $A[i]$ is the number of matches at alignment i involving an infrequent symbol
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either *frequent* or *infrequent*

- a is *frequent*
- b is *frequent*
- c and d are *infrequent*

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \(\sqrt{m} \) times in \(P \).

Every symbol is either frequent or infrequent

\[a \text{ is frequent, } b \text{ is frequent, } c \text{ and } d \text{ are infrequent} \]

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array \(A \) of length \((n - m + 1)\) - which initially contains all zeros

Make a single pass through \(T \)...

For each character \(T[k] \), (where \(0 \leq k < n \))

If \(T[k] \) is *infrequent*...

For all \(j \) such that \(T[k] = P[j] \),

Increase \(A[k - j] \) by one (except when \((k - j) < 0 \))
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

<table>
<thead>
<tr>
<th>T</th>
<th>a d b c c c d d c d d c c d</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a b b a c a d b d</td>
</tr>
<tr>
<td>A</td>
<td>1 3 1 2 0 2 1 1</td>
</tr>
</tbody>
</table>

How quick is Stage 2?

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0)$
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

a is frequent, b is frequent
c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)

$O(n)$ time
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

a is frequent, b is frequent
c and d are infrequent

Stage 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is infrequent...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)

How quick is Stage 2?

$O(n)$ time

(Each list has length less than \sqrt{m})

Store a list for each infrequent symbol

P
\[a \ b \ b \ a \ c \ a \ d \ b \ d\]

T
\[d \ b \ c \ c \ c \ d \ c \ d \ c \ d \ c \]

A
\[1 \ 3 \ 1 \ 2 \ 0 \ 2 \ 1 \ 1\]
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent

<table>
<thead>
<tr>
<th>T</th>
<th>d b x c c c d x d c d c d x c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a b b a c a d b d</td>
</tr>
<tr>
<td>A</td>
<td>1 3 1 2 0 2 1 1</td>
</tr>
</tbody>
</table>

a is frequent, b is frequent, c and d are infrequent

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

$$O(n\sqrt{m})$$ time

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)

$O(n)$ time

How quick is Stage 2?
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either *frequent* or *infrequent*

- a is *frequent*, b is *frequent*
- c and d are *infrequent*

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T...

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent*...

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)
The infrequent/frequent symbols trick

Definition: A symbol is *infrequent* if it occurs fewer than \sqrt{m} times in P.

Stage 2: Count all matches involving *infrequent* symbols.

Construct an array A of length $(n - m + 1)$ - which initially contains all zeros

Make a single pass through T . . .

For each character $T[k]$, (where $0 \leq k < n$)

If $T[k]$ is *infrequent* . . .

For all j such that $T[k] = P[j]$,

Increase $A[k - j]$ by one (except when $(k - j) < 0$)

$O(n\sqrt{m})$ total time

Every symbol is either frequent or infrequent

a is *frequent*, b is *frequent*
c and d are *infrequent*
Pattern matching with mismatches: putting it all together

Algorithm summary
Pattern matching with mismatches: putting it all together

Algorithm summary

Stage 0: Classify each symbol as frequent or infrequent - $O(m \log m)$ time
Pattern matching with mismatches: putting it all together

Algorithm summary

Stage 0: Classify each symbol as frequent or infrequent - $O(m \log m)$ time

Stage 1: Count all matches involving frequent symbols. - $O(n \sqrt{m} \log m)$ time
Pattern matching with mismatches: putting it all together

Algorithm summary

Stage 0: Classify each symbol as frequent or infrequent - $O(m \log m)$ time

Stage 1: Count all matches involving frequent symbols. - $O(n \sqrt{m} \log m)$ time

Stage 2: Count all matches involving infrequent symbols. - $O(n \sqrt{m})$ time
Algorithm summary

Stage 0: Classify each symbol as frequent or infrequent - $O(m \log m)$ time

Stage 1: Count all matches involving frequent symbols. - $O(n \sqrt{m} \log m)$ time

Stage 2: Count all matches involving infrequent symbols. - $O(n \sqrt{m})$ time
Pattern matching with mismatches: putting it all together

Algorithm summary

Stage 0: Classify each symbol as frequent or infrequent - \(O(m \log m)\) time

Stage 1: Count all matches involving frequent symbols. - \(O(n \sqrt{m} \log m)\) time

Stage 2: Count all matches involving infrequent symbols. - \(O(n \sqrt{m})\) time

at any alignment \(i\)

the number of mismatches is just \(m\) minus the total number of matches
Pattern matching with mismatches: putting it all together

Algorithm summary

Stage 0: Classify each symbol as frequent or infrequent - $O(m \log m)$ time

Stage 1: Count all matches involving frequent symbols. - $O(n \sqrt{m} \log m)$ time

Stage 2: Count all matches involving infrequent symbols. - $O(n \sqrt{m})$ time

at any alignment i
the number of mismatches is just m minus the total number of matches

Overall, we obtain a time complexity of $O(n \sqrt{m} \log m)$.
Algorithm summary

Stage 0: Classify each symbol as frequent or infrequent - $O(m \log m)$ time

Stage 1: Count all matches involving frequent symbols. - $O(n \sqrt{m} \log m)$ time

Stage 2: Count all matches involving infrequent symbols. - $O(n \sqrt{m})$ time

At any alignment i
the number of mismatches is just m minus the total number of matches

Overall, we obtain a time complexity of $O(n \sqrt{m} \log m)$.

Notice that **Stage 1** takes longer than **Stage 2**...
Pattern matching with mismatches: putting it all together

Algorithm summary

Stage 0: Classify each symbol as frequent or infrequent - $O(m \log m)$ time

Stage 1: Count all matches involving frequent symbols. - $O(n \sqrt{m \log m})$ time

Stage 2: Count all matches involving infrequent symbols. - $O(n \sqrt{m \log m})$ time

At any alignment i
the number of mismatches is just m minus the total number of matches

Overall, we obtain a time complexity of $O(n \sqrt{m \log m})$.
(by changing the definition of frequent to be at least $\sqrt{m \log m}$ occurrences.)
Conclusion

Input: A text string T (length n) and a pattern string P (length m)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Goal: For every alignment i, output $\text{Ham}(i)$, the Hamming distance between P and $T[i \ldots i + m - 1]$ (the Hamming distance is the number of mismatches)

A naive algorithm for this problem takes $O(nm)$ time

We have seen two alternative algorithms:

- One algorithm takes $O(n|\Sigma| \log m)$ time (where $|\Sigma|$ is the alphabet size)
- The other algorithm takes $O(n\sqrt{m \log m})$ time (regardless of the alphabet size)