Advanced Algorithms – COMS31900

2014/2015

Hashing part two
Static Perfect Hashing

Benjamin Sach
Dictionaries and Hashing recap

- **A dynamic dictionary** stores *(key, value)*-pairs and supports:

 \[
 \text{add}(key, value), \text{lookup}(key) \text{ (which returns value)} \text{ and delete}(key)
 \]

Universe \(U \) of \(u \) keys.

Hash table \(T \) of size \(m \geq n \).

Collisions were fixed by **chaining** (building linked lists).

A **hash function** maps a key \(x \) to position \(h(x) \)

- i.e \([h(x)] = (key, value)\).

\(n \) arbitrary operations arrive online, one at a time.
Dictionaries and Hashing recap

- A **dynamic dictionary** stores \((key, value)\)-pairs and supports:

 - `add(key, value)`, `lookup(key)` (which returns `value`) and `delete(key)`

Universe \(U\) of \(u\) keys.

Hash table \(T\) of size \(m \geq n\).

Collisions were fixed by **chaining** (building linked lists)

A **hash function** maps a key \(x\) to position \(h(x)\)

- i.e \(T[h(x)] = (key, value)\).

\(n\) arbitrary operations arrive online, one at a time.

A set \(H\) of hash functions is **weakly universal** if for any two keys \(x, y \in U\) (with \(x \neq y\)),

\[
\Pr \left(h(x) = h(y) \right) \leq \frac{1}{m}
\]

\((h\) is picked uniformly at random from \(H\))
Dictionaries and Hashing recap

- A **dynamic dictionary** stores \((key, value)\)-pairs and supports:

 \[
 \text{add}(key, value), \text{lookup}(key) \text{ (which returns value) and delete}(key)
 \]

Universe \(U\) of \(u\) keys.

Hash table \(T\) of size \(m \geq n\).

Collisions were fixed by **chaining** (building linked lists)

A **hash function** maps a key \(x\) to position \(h(x)\)

- i.e \(T[h(x)] = (key, value)\).

\(n\) arbitrary operations arrive online, one at a time.

A set \(H\) of hash functions is **weakly universal** if for any two keys \(x, y \in U\) (with \(x \neq y\)),

\[
\Pr(h(x) = h(y)) \leq \frac{1}{m}
\]

\((h\ \text{is picked uniformly at random from } H)\)

Using weakly universal hashing:

For any \(n\) operations, the expected run-time is \(O(1)\) per operation.
A dynamic dictionary stores \((key, value) \)-pairs and supports:

- \(\text{add}(key, value) \)
- \(\text{lookup}(key) \) (which returns \(value \))
- \(\text{delete}(key) \)

Universe \(U \) of \(u \) keys.

Hash table \(T \) of size \(m \geq n \).

Collisions were fixed by chaining (building linked lists).

A hash function maps a key \(x \) to position \(h(x) \) - i.e \(T[h(x)] = (key, value) \).

\(n \) arbitrary operations arrive online, one at a time.

A set \(H \) of hash functions is weakly universal if for any two keys \(x, y \in U \) (with \(x \neq y \)),

\[
\Pr \left(h(x) = h(y) \right) \leq \frac{1}{m}
\]

\((h \text{ is picked uniformly at random from } H)\)

Using weakly universal hashing:

For any \(n \) operations, the expected run-time is \(O(1) \) per operation.

But this doesn’t tell us much about the worst-case behaviour.
A static dictionary stores \((key, value)\)-pairs and supports:

- \(\text{lookup}(key)\) (which returns \(value\)) - no inserts or deletes are allowed

We are given \(n\) different \((key, value)\)-pairs and want to pick a good \(h\).
Static Dictionaries and Perfect hashing

- A static dictionary stores \((key, value)\)-pairs and supports:

 \[\text{lookup}(key) \text{ (which returns value)} \] - no inserts or deletes are allowed

Universe \(U\) of \(u\) keys.

Hash table \(T\) of size \(m \geq n\).

Collisions were fixed by chaining (building linked lists)

A hash function maps a key \(x\) to position \(h(x)\)
- i.e \(T[h(x)] = (key, value)\).

we are given \(n\) different \((key, value)\)-pairs and want to pick a good \(h\)

Theorem

The FKS hashing scheme:
- Has no collisions
- Every lookup takes \(O(1)\) worst-case time,
- Uses \(O(n)\) space,
- Can be built in \(O(n)\) expected time.
A **static dictionary** stores \((key, value)\)-pairs and supports:

- **lookup** \((key)\) (which returns \(value\)) - no inserts or deletes are allowed

Hash table \(T\) of size \(m \geq n\).

A *hash function* maps a key \(x\) to position \(h(x)\) - i.e \(T[h(x)] = (key, value)\).

we are given \(n\) different \((key, value)\)-pairs and want to pick a **good** \(h\)

THEOREM

The FKS hashing scheme:
- Has no collisions
- Every **lookup** takes \(O(1)\) worst-case time,
- Uses \(O(n)\) space,
- Can be built in \(O(n)\) expected time.

The rest of this lecture is devoted to the FKS scheme
A static dictionary stores \((key, value)\)-pairs and supports:

- **lookup(key)** (which returns value) - no inserts or deletes are allowed

The FKS hashing scheme:

- Has no collisions
- Every lookup takes \(O(1)\) worst-case time,
- Uses \(O(n)\) space,
- Can be built in \(O(n)\) expected time.

The rest of this lecture is devoted to the FKS scheme.

The construction is based on weak universal hashing.
A static dictionary stores \((key, value)\)-pairs and supports:

- \(\text{lookup}(key)\) (which returns value) - no inserts or deletes are allowed

We are given \(n\) different \((key, value)\)-pairs and want to pick a good \(h\)

Theorem

The FKS hashing scheme:
- Has no collisions
- Every \(\text{lookup}\) takes \(O(1)\) worst-case time,
- Uses \(O(n)\) space,
- Can be built in \(O(n)\) expected time.

The rest of this lecture is devoted to the FKS scheme.

The construction is based on weak universal hashing (with an \(O(1)\) time hash function).
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr (h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Perfect hashing - a first attempt
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr (h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$

using a weakly universal hash function

(where any $h(x)$ can be computed in $O(1)$ time)
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr (h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$
using a weakly universal hash function

Step 2: Check for collisions
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$

using a weakly universal hash function

Step 2: Check for collisions

Step 3: Profit!
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if necessary*
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr (h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if necessary*

How many collisions do we get on average?
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if necessary

How many collisions do we get on average?

$$\mathbb{E}(C) = \mathbb{E}(\sum_{x, y \in T, x < y} I_{x, y})$$

where indicator random variable $I_{x, y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: Repeat if necessary.

How many collisions do we get on average?

The expected number of collisions, $E(C)$, can be calculated as

$$E(C) = E\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} E(I_{x,y})$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Linearity of Expectation

Let Y_1, Y_2, \ldots, Y_k be k random variables. Then

$$\mathbb{E}\left(\sum_{i=1}^{k} Y_i\right) = \sum_{i=1}^{k} \mathbb{E}(Y_i)$$

The number of collisions

$$\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y}\right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y})$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: *Repeat if necessary.*

How many collisions do we get on average?

The number of collisions can be calculated as:

$$\mathbb{E}(C) = \mathbb{E} \left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y})$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

\[
\Pr(h(x) = h(y)) \leq \frac{1}{m}
\]

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: Repeat if necessary.

How many collisions do we get on average?

The expected number of collisions can be calculated as follows:

\[
\mathbb{E}(C) = \mathbb{E}\left(\sum_{x, y \in T, x < y} I_{x, y} \right) = \sum_{x, y \in T, x < y} \mathbb{E}(I_{x, y}) \leq \sum_{x, y \in T, x < y} \frac{1}{m}
\]

where $I_{x, y} = 1$ iff $h(x) = h(y)$. The linearity of expectation is used to simplify the expectation calculation.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr \left(h(x) = h(y) \right) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if necessary*

How many collisions do we get on average?

number of collisions

$$E(C) = E \left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} E(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

By the definition of expectation...

$$\mathbb{E}(I_{x,y}) = 1 \cdot \Pr(I_{x,y} = 1) + 0 \cdot \Pr(I_{x,y} = 0) \leq \frac{1}{m}$$

number of collisions

linearity of expectation

$$\mathbb{E}(C) = \mathbb{E} \left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U \ (x \neq y)$,

$$\Pr (h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if necessary*

How many collisions do we get on average?

\[
\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m}
\]

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.

Perfect hashing - a first attempt

The perfect hashing approach is a method for generating hash functions such that there are no collisions among the keys. This is achieved by using a set of hash functions that are weakly universal, ensuring that the probability of any two keys colliding is very low. The process involves inserting all keys into a hash table of size $m = n$ using a weakly universal hash function. Then, it checks for collisions and repeats if necessary to ensure a collision-free hash table.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: *Repeat if necessary*.

How many collisions do we get on average?

The expected number of collisions is given by:

$$E(C) = E\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} E(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \binom{n}{2} \cdot \frac{1}{m}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.

Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U (x \neq y)$,

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if necessary*

How many collisions do we get on average?

$$\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \binom{n}{2} \frac{1}{m}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.

\[
\binom{n}{2} = \frac{n(n - 1)}{2}
\]
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: Repeat if necessary.

How many collisions do we get on average?

$$E(C) = E\left(\sum_{x, y \in T, x < y} I_{x, y} \right) = \sum_{x, y \in T, x < y} E(I_{x, y}) \leq \sum_{x, y \in T, x < y} \frac{1}{m} = \binom{n}{2} \cdot \frac{1}{m}$$

where indicator random variable $I_{x, y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a first attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: Repeat if necessary.

How many collisions do we get on average?

$$E(C) = E\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} E(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \binom{n}{2} \cdot \frac{1}{m} \leq \frac{n^2}{2m}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.

Perfect hashing - a first attempt

A set H of hash functions is weakly universal if for any two keys $x, y \in U \ (x \neq y)$,

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: Repeat if necessary.

How many collisions do we get on average?

The number of collisions is given by

$$E(C) = E\left(\sum_{x,y \in T, x<y} I_{x,y} \right) = \sum_{x,y \in T, x<y} E(I_{x,y}) \leq \sum_{x,y \in T, x<y} \frac{1}{m} = \binom{n}{2} \cdot \frac{1}{m} \leq \frac{n^2}{2m} \leq \frac{n}{2}.$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr (h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n^2$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: *Repeat if necessary*.
Perfect hashing - a second attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n^2$

using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if necessary*

How many collisions do we get on average?
Perfect hashing - a second attempt

A set \(H \) of hash functions is **weakly universal** if for any two keys \(x, y \in U \) \((x \neq y)\),

\[
\Pr\left(h(x) = h(y) \right) \leq \frac{1}{m}
\]

where \(h \) is picked uniformly at random from \(H \)

Step 1: Insert everything into a hash table of size \(m = n^2 \) using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if necessary

How many collisions do we get on average?

\[
\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \left(\frac{n}{2} \right) \cdot \frac{1}{m} \leq \frac{n^2}{2m}
\]

where indicator random variable \(I_{x,y} = 1 \iff h(x) = h(y) \).
A set H of hash functions is **weakly universal** if for any two keys $x, y \in U \ (x \neq y)$,

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H.

Step 1: Insert everything into a hash table of size $m = n^2$ using a weakly universal hash function.

Step 2: Check for collisions.

Step 3: Repeat if necessary.

How many collisions do we get on average?

$$E(C) = E\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} E(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \frac{n^2}{2} \cdot \frac{1}{m} \leq \frac{n^2}{2m} \leq \frac{1}{2}$$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Perfect hashing - a second attempt

A set \(H \) of hash functions is **weakly universal** if for any two keys \(x, y \in U \) (\(x \neq y \)),

\[
\Pr(h(x) = h(y)) \leq \frac{1}{m}
\]

where \(h \) is picked uniformly at random from \(H \).

Step 1: Insert everything into a hash table of size \(m = n^2 \) using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if necessary

How many collisions do we get on average?

\[
\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \frac{n}{2} \cdot \frac{1}{m} \leq \frac{n^2}{2m} \leq \frac{1}{2}
\]

where indicator random variable \(I_{x,y} = 1 \) iff \(h(x) = h(y) \).
Perfect hashing - a second attempt

A set H of hash functions is **weakly universal** if for any two keys $x, y \in U$ ($x \neq y$),

$$\Pr (h(x) = h(y)) \leq \frac{1}{m}$$

where h is picked uniformly at random from H

Step 1: Insert everything into a hash table of size $m = n^2$

Step 2: Check for collisions

Step 3: *Repeat if necessary*

(Except we cheated)

How many collisions do we get on average?

number of collisions

linearity of expectation

definition of expectation

$$E(C) = E\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} E(I_{x,y}) \leq \sum_{x,y \in T, x < y} \frac{1}{m} = \left(\frac{n}{2}\right) \cdot \frac{1}{m} = \frac{n^2}{2m} \leq \frac{1}{2}$$

much better!

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if there was a collision*
Expected construction time

Step 1:	Insert everything into a hash table of size $m = n^2$ using a weakly universal hash function
Step 2:	Check for collisions
Step 3:	Repeat if there was a collision

How many times do we repeat on average?
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$
 using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: $E(C) \leq \frac{1}{2}$

The probability of at least one collision: $Pr(C \geq 1) \leq \frac{1}{2}$

Markov’s inequality

If X is a non-negative r.v., then for all $a > 0$,

$$Pr(X \geq a) \leq \frac{E(X)}{a}.$$
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C') \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$

The probability of zero collisions is at least $\frac{1}{2}$
Expected construction time

Step 1: Insert everything into a hash table of size \(m = n^2 \) using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: \(\mathbb{E}(C') \leq \frac{1}{2} \)

The probability of at least one collision: \(\Pr(C \geq 1) \leq \frac{1}{2} \)

The probability of zero collisions is at least \(\frac{1}{2} \)

\textit{i.e. at least as good as tossing a heads on a fair coin}
Expected construction time

Step 1:	Insert everything into a hash table of size $m = n^2$ using a weakly universal hash function
Step 2:	Check for collisions
Step 3:	Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C') \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$

The probability of zero collisions is at least $\frac{1}{2}$

i.e. at least as good as tossing a heads on a fair coin

$\mathbb{E}(\text{runs}) \leq \mathbb{E}(\text{coin tosses to get a heads}) = 2$
Expected construction time

Step 1: Insert everything into a hash table of size \(m = n^2 \) using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: \(\mathbb{E}(C) \leq \frac{1}{2} \)

Markov’s inequality

The probability of at least one collision: \(\Pr(C \geq 1) \leq \frac{1}{2} \)

The probability of zero collisions is at least \(\frac{1}{2} \)

\(i.e. \ at \ least \ as \ good \ as \ tossing \ a \ heads \ on \ a \ fair \ coin \)

\(\mathbb{E}(\text{runs}) \leq \mathbb{E}(\text{coin tosses to get a heads}) = 2 \)

\(\mathbb{E}(\text{construction time}) = O(m) \cdot \mathbb{E}(\text{runs}) = O(m) = O(n^2) \)
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{1}{2}$

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$

The probability of zero collisions is at least $\frac{1}{2}$

i.e. at least as good as tossing a heads on a fair coin

$\mathbb{E}(\text{runs}) \leq \mathbb{E}(\text{coin tosses to get a heads}) = 2$

$\mathbb{E}(\text{construction time}) = O(m) \cdot \mathbb{E}(\text{runs}) = O(m) = O(n^2)$

... and then the look-up time is always $O(1)$
Expected construction time

Step 1: Insert everything into a hash table of size $m = n^2$
 using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if there was a collision*

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{1}{2}$
Markov’s inequality

The probability of at least one collision: $\Pr(C \geq 1) \leq \frac{1}{2}$

The probability of zero collisions is at least $\frac{1}{2}$

i.e. at least as good as tossing a heads on a fair coin

$\mathbb{E}($runs$) \leq \mathbb{E}($coin tosses to get a heads$) = 2$

$\mathbb{E}($construction time$) = O(m) \cdot \mathbb{E}($runs$) = O(m) = O(n^2)$

... and then the look-up time is always $O(1)$

(because any $h(x)$ can be computed in $O(1)$ time)
Expected construction time

Step 1: Insert everything into a hash table of size $m = n$
using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if there are more than n collisions*
Expected construction time

Step 1: Insert everything into a hash table of size $m = n$
 using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if there are more than n collisions*

This looks rubbish but it will be useful in a bit!
Expected construction time

Step 1: Insert everything into a hash table of size \(m = n \)
using a weakly universal hash function

Step 2: Check for collisions

Step 3: *Repeat if there are more than \(n \) collisions*

How many times do we repeat on average?

The expected number of collisions: \(\mathbb{E}(C) \leq \frac{n}{2} \)

The probability of at least \(n \) collisions: \(\Pr(C \geq n) \leq \frac{1}{2} \)

This looks rubbish but it will be useful in a bit!
Expected construction time

Markov’s inequality

If X is a non-negative r.v., then for all $a > 0$,

$$\Pr(X \geq a) \leq \frac{\mathbb{E}(X)}{a}.$$

The expected number of collisions: $\mathbb{E}(C) \leq \frac{n}{2}$

The probability of at least n collisions: $\Pr(C \geq n) \leq \frac{1}{2}$ (where $a = n$)

Step 1: Insert everything into a hash table of size $m = n$

Step 2: Check for collisions

Step 3: Repeat if there are more than n collisions

This looks rubbish but it will be useful in a bit!
Expected construction time

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there are more than n collisions

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{n}{2}$

The probability of at least n collisions: $\Pr(C \geq n) \leq \frac{1}{2}$
Expected construction time

Step 1: Insert everything into a hash table of size \(m = n \) using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there are more than \(n \) collisions

How many times do we repeat on average?

The expected number of collisions: \(\mathbb{E}(C) \leq \frac{n}{2} \)

The probability of at least \(n \) collisions: \(\Pr(C \geq n) \leq \frac{1}{2} \)

The probability of at most \(n \) collisions is at least \(\frac{1}{2} \)

i.e. at least as good as tossing a heads on a fair coin

\(\mathbb{E}(\text{runs}) \leq \mathbb{E}(\text{coin tosses to get a heads}) = 2 \)

\(\mathbb{E}(\text{construction time}) = O(m) \cdot \mathbb{E}(\text{runs}) = O(m) = O(n) \)

This looks rubbish but it will be useful in a bit!
Expected construction time

Step 1: Insert everything into a hash table of size $m = n$ using a weakly universal hash function

Step 2: Check for collisions

Step 3: Repeat if there are more than n collisions

How many times do we repeat on average?

The expected number of collisions: $\mathbb{E}(C) \leq \frac{n}{2}$

The probability of at least n collisions: $\text{Pr}(C \geq n) \leq \frac{1}{2}$

The probability of at most n collisions is at least $\frac{1}{2}$

i.e. at least as good as tossing a heads on a fair coin

$\mathbb{E}(\text{runs}) \leq \mathbb{E}(\text{coin tosses to get a heads}) = 2$

$\mathbb{E}(\text{construction time}) = O(m) \cdot \mathbb{E}(\text{runs}) = O(m) = O(n)$

... but the look-up time could be rubbish (lots of collisions)
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n using a weakly universal hash function, h.
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

Let n_i be the number of items in $T[i]$
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, \(T \), of size \(n \) using a weakly universal hash function, \(h \)

Let \(n_i \) be the number of items in \(T[i] \)

\[
\begin{align*}
T & \quad n_1 = 2 \\
& \quad n_5 = 2 \\
& \quad n_8 = 3
\end{align*}
\]
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

... but don't use chaining

Let n_i be the number of items in $T[i]$

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2

using another weakly universal hash function denoted h_i (there is one for each i)
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n using a weakly universal hash function, h

\[\ldots \text{but don't use chaining} \]

\[n \]

\[T \]

Let n_i be the number of items in $T[i]$

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using another weakly universal hash function denoted h_i (there is one for each i)
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

...but don't use chaining

Let n_i be the number of items in $T[i]$

Step 2: The n_i items in $T[i]$ are inserted into
another hash table T_i of size n_i^2

using another weakly universal hash function
denoted h_i (there is one for each i)

(Step 3) Immediately repeat a step if either
a) T has more than n collisions
b) some T_i has a collision
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

\ldots but don’t use chaining

Let n_i be the number of items in $T[i]$

Step 2: The n_i items in $T[i]$ are inserted into
another hash table T_i of size n_i^2

using another weakly universal hash function
denoted h_i (there is one for each i)

(Step 3) Immediately repeat a step if either
a) T has more than n collisions
b) some T_i has a collision

i.e. check (and if necessary rebuild)
each table immediately after building it
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

… but don’t use chaining

Let n_i be the number of items in $T[i]$

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2

using another weakly universal hash function denoted h_i (there is one for each i)

(Step 3) Immediately repeat a step if either

a) T has more than n collisions
b) some T_i has a collision
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n using a weakly universal hash function, h

...but don’t use chaining

Let n_i be the number of items in $T[i]$

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2

using another weakly universal hash function denoted h_i (there is one for each i)

(Step 3) *Immediately repeat a step if either*

a) T has more than n collisions
b) some T_i has a collision

The look-up time is always $O(1)$

1. Compute $i = h(x)$ (x is the key)
2. Compute $j = h_i(x)$
3. The item is in $T_i[j]$
Perfect hashing - attempt three

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal hash function, h

... but don't use chaining

Let n_i be the number of items in $T[i]$

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using another weakly universal hash function denoted h_i (there is one for each i)

(Step 3) Immediately repeat a step if either

a) T has more than n collisions
b) some T_i has a collision

The look-up time is always $O(1)$

1. Compute $i = h(x)$ (x is the key)
2. Compute $j = h_i(x)$
3. The item is in $T_i[j]$

Two questions remain:

What is the expected construction time?

What is the space usage?
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i
of size n_i^2 using w.u hash function h_i

(Step 3) *Immediately repeat if either*
 a) T has more than n collisions
 b) some T_i has a collision

How much space does this use?
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
a) T has more than n collisions
b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$.
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
- a) T has more than n collisions
- b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) **Immediately repeat if either**

a) T has more than n collisions

b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

Storing h_i uses $O(1)$ space
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

Storing h_i uses $O(1)$ space

So the total space is…
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) *Immediately repeat if either*

a) T has more than n collisions
b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$.

The size of T_i is $O(n_i^2)$.

Storing h_i uses $O(1)$ space.

So the total space is...

$$O(n) + \sum_i O(n_i^2)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

Storing h_i uses $O(1)$ space.

So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O \left(\sum_i n_i^2 \right)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either

- a) T has more than n collisions
- b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$.

The size of T_i is $O(n_i^2)$.

Storing h_i uses $O(1)$ space.

So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$
Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

How much space does this use?

(Step 3)

Immediately repeat if either

a) T has more than n collisions
b) some T_i has a collision

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

So the total space is...

How big is $\sum_i n_i^2$?

Storing h_i uses $O(1)$ space)

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

The size of T is $O(n)$. The size of T_i is $O(n_i^2)$. So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$

How much space does this use?

- Storing h_i uses $O(1)$ space.
- How big is this?

There are $\binom{n_i}{2}$ collisions in $T[i]$. How big is $\sum_i n_i^2$?
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n^{2i} using w.u hash function h_i.

How much space does this use?

(Step 3) Immediately repeat if either

a) T has more than n collisions
b) some T_i has a collision

The size of T is $O(n)$.

The size of T_i is $O(n^{2i})$.

So the total space is...

$$O(n) + \sum_i O(n_i^{2i}) = O(n) + O\left(\sum_i n_i^{2i}\right)$$

How big is this?

Storing h_i uses $O(1)$ space.

How big is $\sum_i n_i^{2i}$?

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T. How big is this?
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

How much space does this use?

(Step 3) Immediately repeat if either

a) T has more than n collisions

b) some T_i has a collision

The size of T is $O(n)$.

The size of T_i is $O(n_i^2)$.

So the total space is:

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$

Storing h_i uses $O(1)$ space.

How big is this?

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T

but we know that there are at most n collisions in T...
Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

How big is $\sum_i n_i^2$?

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T

but we know that there are at most n collisions in T...

$$\sum_i \binom{n_i}{2} \leq n$$

Storing h_i uses $O(1)$ space)

So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O \left(\sum_i n_i^2 \right)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

- How much space does this use?

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_{2^i} using w.u hash function h_i.

- The size of T is $O(n)$.
- The size of T_i is $O(n_{2^i})$.

So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal (w.u.) hash function, h

How big is $\sum_i n_i^2$?

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T

but we know that there are at most n collisions in T . . .

$$\sum_i \frac{n_i^2}{4} \leq \sum_i \binom{n_i}{2} \leq n$$

The size of T is $O(n)$

The size of T_i is $O(n^{2i})$

Storing h_i uses $O(1)$ space)

So the total space is . . .

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$

how big is this?
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n^2 using w.u hash function h_i.

How much space does this use?

(Step 3) Immediately repeat if either

a) T has more than n collisions
b) some T_i has a collision

The size of T is $O(n)$.

The size of T_i is $O(n^2)$.

So the total space is...

Storing h_i uses $O(1)$ space.

How big is this?

So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

How big is $\sum_i n_i^2$?

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T.

but we know that there are at most n collisions in T...

$$\sum_i \frac{n_i^2}{4} \leq \sum_i \binom{n_i}{2} \leq n$$

Storing h_i uses $O(1)$ space.

So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

How big is $\sum_i n_i^2$?

There are $\binom{n_i}{2}$ collisions in $T[i]$ so there are $\sum_i \binom{n_i}{2}$ collisions in T

but we know that there are at most n collisions in T . . .

$$\sum_i \frac{n_i^2}{4} \leq \sum_i \binom{n_i}{2} \leq n \quad \text{or} \quad \sum_i n_i^2 \leq 4n$$

Storing h_i uses $O(1)$ space)

So the total space is . . .

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right) = O(n)$$
Perfect Hashing - Space usage

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

How much space does this use?

The size of T is $O(n)$

The size of T_i is $O(n_i^2)$

Storing h_i uses $O(1)$ space

So the total space is...

$$O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right) = O(n)$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) *Immediately repeat if either*

a) T has more than n collisions
b) some T_i has a collision
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) *Immediately repeat if either*

a) T has more than n collisions

b) some T_i has a collision

The expected construction time for T is $O(n)$

(we considered this on a previous slide)
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

The expected construction time for T is $O(n)$
 (we considered this on a previous slide)

The expected construction time for each T_i is $O(n_i^2)$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

The expected construction time for T is $O(n)$
(we considered this on a previous slide)

The expected construction time for each T_i is $O(n_i^2)$
- we insert n_i items into a table of size $m = n_i^2$
- then repeat if there was a collision
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

The expected construction time for T is $O(n)$
 (we considered this on a previous slide)

The expected construction time for each T_i is $O(n_i^2)$
 - we insert n_i items into a table of size $m = n_i^2$
 - then repeat if there was a collision
 (we also considered this on a previous slide)
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

The expected construction time for T is $O(n)$
 (we considered this on a previous slide)

The expected construction time for each T_i is $O(n_i^2)$
 - we insert n_i items into a table of size $m = n_i^2$
 - then repeat if there was a collision
 (we also considered this on a previous slide)

The overall expected construction time is therefore:

$$\mathbb{E}(\text{construction time}) = \mathbb{E} \left(\text{construction time of } T + \sum_i \text{construction time of } T_i \right)$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either
a) T has more than n collisions
b) some T_i has a collision

The expected construction time for T is $O(n)$

The expected construction time for each T_i is $O(n_i^2)$

The overall expected construction time is therefore:

$$E(\text{construction time}) = E\left(\text{construction time of } T + \sum_i \text{construction time of } T_i \right)$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

Step 3 Immediately repeat if either

a) T has more than n collisions

b) some T_i has a collision

The expected construction time for T is $O(n)$

The expected construction time for each T_i is $O(n_i^2)$

The overall expected construction time is therefore:

$$E(\text{construction time}) = E \left(\text{construction time of } T + \sum_i \text{construction time of } T_i \right)$$

$$= E(\text{construction time of } T) + \sum_i E(\text{construction time of } T_i)$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either

a) T has more than n collisions
b) some T_i has a collision

The expected construction time for T is $O(n)$.

The expected construction time for each T_i is $O(n_i^2)$.

The overall expected construction time is therefore:

$$\mathbb{E}(\text{construction time}) = \mathbb{E} \left(\text{construction time of } T + \sum_i \text{construction time of } T_i \right)$$

$$= \mathbb{E}(\text{construction time of } T) + \sum_i \mathbb{E}(\text{construction time of } T_i)$$

$$= O(n) + \sum_i O(n_i^2) = O(n) + O \left(\sum_i n_i^2 \right)$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i

(Step 3) **Immediately repeat if either**

a) T has more than n collisions

b) some T_i has a collision

The expected construction time for T is $O(n)$

The expected construction time for each T_i is $O(n_i^2)$

The overall expected construction time is therefore:

$$
\mathbb{E}(\text{construction time}) = \mathbb{E} \left(\text{construction time of } T + \sum_i \text{construction time of } T_i \right) \\
= \mathbb{E}(\text{construction time of } T) + \sum_i \mathbb{E}(\text{construction time of } T_i) \\
= O(n) + \sum_i O(n_i^2) = O(n) + O \left(\sum_i n_i^2 \right) = O(n)
$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
a) T has more than n collisions
b) some T_i has a collision

The expected construction time for T is $O(n)$

The expected construction time for each T_i is $O(n_i^2)$

The overall expected construction time is therefore:

$$E(\text{construction time}) = E\left(\text{construction time of } T + \sum_i n_i^2 \leq 4n \quad \text{of } T_i\right)$$

$$= E(\text{construction time of } T) + \sum_i E(\text{construction time of } T_i)$$

$$= O(n) + \sum_i O(n_i^2) = O(n) + O\left(\sum_i n_i^2\right) = O(n)$$
Perfect Hashing - Expected construction time

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

Step 3) *Immediately repeat if either*

- a) T has more than n collisions
- b) some T_i has a collision

The expected construction time for T is $O(n)$.

The expected construction time for each T_i is $O(n_i^2)$.

The overall expected construction time is therefore:

$$
\mathbb{E}(\text{construction time}) = \mathbb{E} \left(\text{construction time of } T + \sum_i \text{construction time of } T_i \right)
$$

$$
= \mathbb{E}(\text{construction time of } T) + \sum_i \mathbb{E}(\text{construction time of } T_i)
$$

$$
= O(n) + \sum_i O(n_i^2) = O(n) + O \left(\sum_i n_i^2 \right) = O(n)
$$
Perfect Hashing - Summary

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
 a) T has more than n collisions
 b) some T_i has a collision

Theorem
The FKS hashing scheme:
- Has no collisions
- Every lookup takes $O(1)$ worst-case time,
- Uses $O(n)$ space,
- Can be built in $O(n)$ expected time.

The look-up time is always $O(1)$
1. Compute $i = h(x)$ (x is the key)
2. Compute $j = h_i(x)$
3. The item is in $T_i[j]$
Perfect Hashing - Summary

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either

- a) T has more than n collisions
- b) some T_i has a collision

Theorem

The FKS hashing scheme:
- Has no collisions
- Every lookup takes $O(1)$ worst-case time,
- Uses $O(n)$ space,
- Can be built in $O(n)$ expected time.

The look-up time is always $O(1)$

1. Compute $i = h(x)$ (x is the key)
2. Compute $j = h_i(x)$
3. The item is in $T_i[j]$

In fact this scheme can be made dynamic with $O(1)$ expected time inserts and deletes
Perfect Hashing - Summary

Step 1: Insert everything into a hash table, T, of size n using a weakly universal (w.u.) hash function, h.

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i of size n_i^2 using w.u hash function h_i.

(Step 3) Immediately repeat if either
a) T has more than n collisions
b) some T_i has a collision

Theorem
The FKS hashing scheme:
- Has no collisions
- Every lookup takes $O(1)$ worst-case time,
- Uses $O(n)$ space,
- Can be built in $O(n)$ expected time.

The look-up time is always $O(1)$
1. Compute $i = h(x)$ (x is the key)
2. Compute $j = h_i(x)$
3. The item is in $T_i[j]$

In fact this scheme can be made dynamic
with $O(1)$ expected time inserts and deletes
but occasionally the inserts take $\Theta(n)$ time.