Hashing part one
Chaining, true randomness and universal hashing

Benjamin Sach
(based on slides by Markus Jalsenius)
Dictionaries

In a **dictionary** data structure we store \((key, value)\)-pairs such that for any \(key\) there is at most one pair \((key, value)\) in the dictionary.

Often we want to perform the following three operations:

\[
\begin{align*}
\text{add}(x, v) & \quad \text{Add the the pair } (x, v). \\
\text{lookup}(x) & \quad \text{Return } v \text{ if } (x, v) \text{ is in dictionary, or } \text{NULL} \text{ otherwise.} \\
\text{delete}(x) & \quad \text{Remove pair } (x, v) \text{ (assuming } (x, v) \text{ is in dictionary).}
\end{align*}
\]
Dictionaries

In a **dictionary** data structure we store \((key, value)\)-pairs such that for any \(key\) there is at most one pair \((key, value)\) in the dictionary.

Often we want to perform the following three operations:

- \(\text{add}(x, v)\) Add the pair \((x, v)\).
- \(\text{lookup}(x)\) Return \(v\) if \((x, v)\) is in dictionary, or \text{NULL}\) otherwise.
- \(\text{delete}(x)\) Remove pair \((x, v)\) (assuming \((x, v)\) is in dictionary).

There are many data structures that will do this job, e.g.:

- Linked lists
- Binary search trees
- \((2,3)\)-trees
- Red-black trees
- Skip lists
- van Emde Boas trees (later in this course)
Dictionaries

In a dictionary data structure we store \((key, value)\)-pairs such that for any \(key\) there is at most one pair \((key, value)\) in the dictionary.

Often we want to perform the following three operations:

- \(\text{add}(x, v)\) Add the the pair \((x, v)\).
- \(\text{lookup}(x)\) Return \(v\) if \((x, v)\) is in dictionary, or \text{NULL}\) otherwise.
- \(\text{delete}(x)\) Remove pair \((x, v)\) (assuming \((x, v)\) is in dictionary).

There are many data structures that will do this job, e.g.:

- Linked lists
- Binary search trees
- \((2,3)\)-trees
- Red-black trees
- Skip lists
- van Emde Boas trees (later in this course)

these data structures all support extra operations beyond the three above
Dictionaries

In a dictionary data structure we store \((key, value)\)-pairs such that for any \(key\) there is at most one pair \((key, value)\) in the dictionary.

Often we want to perform the following three operations:

\[
\begin{align*}
\text{add}(x, v) & \quad \text{Add the the pair } (x, v). \\
\text{lookup}(x) & \quad \text{Return } v \text{ if } (x, v) \text{ is in dictionary, or } \text{NULL} \text{ otherwise.} \\
\text{delete}(x) & \quad \text{Remove pair } (x, v) \text{ (assuming } (x, v) \text{ is in dictionary).}
\end{align*}
\]

There are many data structures that will do this job, e.g.:

- Linked lists
- Binary search trees
- (2,3)-trees
- Red-black trees
- Skip lists
- van Emde Boas trees (later in this course)

these data structures all support extra operations beyond the three above

but none of them take \(O(1)\) worst case time for all operations...
Dictionaries

In a **dictionary** data structure we store \((key, value)\)-pairs

such that for any \(key\) there is at most one pair \((key, value)\) in the dictionary.

Often we want to perform the following three operations:

- \(\text{add}(x, v)\) Add the pair \((x, v)\).
- \(\text{lookup}(x)\) Return \(v\) if \((x, v)\) is in dictionary, or \text{NULL} otherwise.
- \(\text{delete}(x)\) Remove pair \((x, v)\) (assuming \((x, v)\) is in dictionary).

There are many data structures that will do this job, e.g.:

- Linked lists
- Binary search trees
- \((2,3)\)-trees
- Red-black trees
- Skip lists
- van Emde Boas trees (later in this course)

these data structures all support extra operations beyond the three above

but none of them take \(O(1)\) worst case time for all operations...

so *maybe* there is room for improvement?
Hash tables

We want to store n elements from the universe, U in a dictionary.

*Typically $u = |U|$ is much, much larger than n."

Universe U containing u keys.
We want to store n elements from the universe, U in a dictionary.

Typically $u = |U|$ is much, much larger than n.
Hash tables

We want to store n elements from the universe, U in a dictionary.

Typically $u = |U|$ is much, much larger than n.

Universe U containing u keys.

Array T of size m.

T is called a hash table.
Hash tables

We want to store n elements from the universe, U, in a dictionary.

Typically $u = |U|$ is much, much larger than n.

Array T of size m.

A hash function $h : U \rightarrow [m]$ maps a key to a position in T.

We write $[m]$ to denote the set $\{0, \ldots, m - 1\}$.

Universe U containing u keys.
Hash tables

We want to store n elements from the universe, U in a dictionary.

Typically $u = |U|$ is much, much larger than n.

Universe U containing u keys.

Array T of size m.

T is called a hash table.

A hash function $h : U \rightarrow [m]$ maps a key to a position in T.

We write $[m]$ to denote the set $\{0, \ldots, m - 1\}$.
Hash tables

We want to store \(n \) elements from the universe, \(U \) in a dictionary.

\[
Typically \ u = |U| \text{ is much, much larger than } n.
\]

Universe \(U \) containing \(u \) keys.

Array \(T \) of size \(m \).

\(T \) is called a hash table.

A hash function \(h : U \rightarrow [m] \) maps a key to a position in \(T \).

We write \([m]\) to denote the set \(\{0, \ldots, m - 1\} \).

We want to avoid collisions, i.e. \(h(x) = h(y) \) for \(x \neq y \).
Hash tables

We want to store n elements from the universe, U in a dictionary.

Typically $u = |U|$ is much, much larger than n.

A hash function $h : U \to [m]$ maps a key to a position in T.

We write $[m]$ to denote the set $\{0, \ldots, m - 1\}$.

We want to avoid collisions, i.e. $h(x) = h(y)$ for $x \neq y$.
Time complexity

We cannot avoid collisions entirely since \(u \gg m \);

\textit{some keys from the universe are bound to be mapped to the same position.}

(remember \(u \) is the size of the universe and \(m \) is the size of the table)

By building a hash table with chaining, we get the following time complexities:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Worst case time</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>add((x, v))</td>
<td>(O(1))</td>
<td>Simply add item to the list link if necessary.</td>
</tr>
<tr>
<td>lookup((x))</td>
<td>(O(\text{length of chain containing } x))</td>
<td>We might have to search through the whole list containing (x).</td>
</tr>
<tr>
<td>delete((x))</td>
<td>(O(\text{length of chain containing } x))</td>
<td>Only (O(1)) to perform the actual delete. . . but you have to find (x) first</td>
</tr>
</tbody>
</table>
Time complexity

We cannot avoid collisions entirely since $u \gg m$;

\textit{some keys from the universe are bound to be mapped to the same position.}

(remember u is the size of the universe and m is the size of the table)

By building a hash table with chaining, we get the following time complexities:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Worst case time</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{add}(x, v)$</td>
<td>$O(1)$</td>
<td>Simply add item to the list link if necessary.</td>
</tr>
<tr>
<td>$\text{lookup}(x)$</td>
<td>$O(\text{length of chain containing } x)$</td>
<td>We might have to search through the whole list containing x.</td>
</tr>
<tr>
<td>$\text{delete}(x)$</td>
<td>$O(\text{length of chain containing } x)$</td>
<td>Only $O(1)$ to perform the actual delete. . . but you have to find x first</td>
</tr>
</tbody>
</table>

\textit{So how long are these chains?}
True randomness

Theorem

Consider any n fixed inputs to the hash table *(which has size m)*, i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from the set of all functions $U \rightarrow [m]$.

The expected run-time per operation is $O(1 + \frac{n}{m})$, or simply $O(1)$ if $m \geq n$.
Theorem

Consider any n fixed inputs to the hash table (which has size m), i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from the set of all functions $U \rightarrow [m]$.

The expected run-time per operation is $O(1 + \frac{n}{m})$, or simply $O(1)$ if $m \geq n$.

Proof

True randomness

Theorem
Consider any n fixed inputs to the hash table (which has size m), i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from the set of all functions $U \rightarrow [m]$.

The expected run-time per operation is $O(1 + \frac{n}{m})$, or simply $O(1)$ if $m \geq n$.

Proof
Let x, y be two distinct keys from U.
True randomness

Theorem

Consider any n fixed inputs to the hash table (which has size m), i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from the set of all functions $U \rightarrow [m]$.

The expected run-time per operation is $O(1 + \frac{n}{m})$, or simply $O(1)$ if $m \geq n$.

Proof

Let x, y be two distinct keys from U.

Let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.
THEOREM

Consider any \(n \) fixed inputs to the hash table \((\text{which has size } m) \),

i.e. any sequence of \(n \) add/lookup/delete operations.

Pick \(h \) uniformly at random from the set of all functions \(U \rightarrow [m] \).

The expected run-time per operation is \(O(1 + \frac{n}{m}) \), or simply \(O(1) \) if \(m \geq n \).

PROOF

Let \(x, y \) be two distinct keys from \(U \).

Let indicator r.v. \(I_{x,y} \) be 1 iff \(h(x) = h(y) \).
True randomness

Theorem

Consider any \(n \) fixed inputs to the hash table (which has size \(m \)), i.e. any sequence of \(n \) add/lookup/delete operations.

Pick \(h \) uniformly at random from the set of all functions \(U \rightarrow [m] \).

The expected run-time per operation is \(O(1 + \frac{n}{m}) \), or simply \(O(1) \) if \(m \geq n \).

Proof

Let \(x, y \) be two distinct keys from \(U \).

Let indicator r.v. \(I_{x,y} \) be 1 iff \(h(x) = h(y) \).

we have that, \(\Pr (h(x) = h(y)) = \frac{1}{m} \)
Theorem

Consider any n fixed inputs to the hash table (which has size m), i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from the set of all functions $U \rightarrow [m]$.

The expected run-time per operation is $O(1 + \frac{n}{m})$, or simply $O(1)$ if $m \geq n$.

Proof

Let x, y be two distinct keys from U. Iff means if and only if.

Let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.

we have that, $\Pr (h(x) = h(y)) = \frac{1}{m}$

this is because $h(x)$ and $h(y)$ are chosen uniformly and independently from $[m]$.
True randomness

Theorem

Consider any n fixed inputs to the hash table (which has size m), i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from the set of all functions $U \to [m]$.

The expected run-time per operation is $O(1 + \frac{n}{m})$, or simply $O(1)$ if $m \geq n$.

Proof

Let x, y be two distinct keys from U. iff means if and only if.

Let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.

we have that, $\Pr(h(x) = h(y)) = \frac{1}{m}$

this is because $h(x)$ and $h(y)$ are chosen uniformly and independently from $[m]$.

Therefore, $\mathbb{E}(I_{x,y}) = \Pr(I_{x,y} = 1) = \Pr(h(x) = h(y)) = \frac{1}{m}$.
Theorem

Consider any \(n \) fixed inputs to the hash table (which has size \(m \)), i.e. any sequence of \(n \) add/lookup/delete operations.

Pick \(h \) uniformly at random from the set of all functions \(U \rightarrow [m] \).

The expected run-time per operation is \(O(1 + \frac{n}{m}) \), or simply \(O(1) \) if \(m \geq n \).

Proof

Let \(x, y \) be two distinct keys from \(U \).

Let indicator r.v. \(I_{x,y} \) be 1 iff \(h(x) = h(y) \).

we have that, \(\Pr(h(x) = h(y)) = \frac{1}{m} \)

this is because \(h(x) \) and \(h(y) \) are chosen uniformly and independently from \([m]\).

Therefore, \(\mathbb{E}(I_{x,y}) = \Pr(I_{x,y} = 1) = \Pr(h(x) = h(y)) = \frac{1}{m} \).

We have that, \(\mathbb{E}(I_{x,y}) = \frac{1}{m} \).
Theorem

Consider any \(n \) fixed inputs to the hash table (which has size \(m \)), i.e. any sequence of \(n \) add/lookup/delete operations.

Pick \(h \) uniformly at random from the set of all functions \(U \rightarrow [m] \).

The expected run-time per operation is \(O(1 + \frac{n}{m}) \), or simply \(O(1) \) if \(m \geq n \).

Proof

Let \(x, y \) be two distinct keys from \(U \).

Let indicator r.v. \(I_{x,y} \) be 1 iff \(h(x) = h(y) \).

We have that, \(\mathbb{E}(I_{x,y}) = \frac{1}{m} \).
Theorem

Consider any n fixed inputs to the hash table (which has size m), i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from the set of all functions $U \rightarrow [m]$.

The expected run-time per operation is $O(1 + \frac{n}{m})$, or simply $O(1)$ if $m \geq n$.

Proof

Let x, y be two distinct keys from U.

Let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.

We have that, $\mathbb{E}(I_{x,y}) = \frac{1}{m}$.
True randomness

THEOREM

Consider any n fixed inputs to the hash table *(which has size m)*.

\[\text{i.e. any sequence of } n \text{ add/lookup/delete operations.}\]

Pick h uniformly at random from the set of all functions $U \to [m]$. The expected run-time per operation is $O(1 + \frac{n}{m})$, or simply $O(1)$ if $m \geq n$.

PROOF

Let x, y be two distinct keys from U. Let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$. We have that, $\mathbb{E}(I_{x,y}) = \frac{1}{m}$. iff means *if and only if*.
True randomness

Theorem

Consider any \(n \) fixed inputs to the hash table (which has size \(m \)), i.e. any sequence of \(n \) add/lookup/delete operations.

Pick \(h \) uniformly at random from the set of all functions \(U \rightarrow [m] \).

The expected run-time per operation is \(O(1 + \frac{n}{m}) \), or simply \(O(1) \) if \(m \geq n \).

Proof

Let \(x, y \) be two distinct keys from \(U \).

Let indicator r.v. \(I_{x,y} \) be 1 iff \(h(x) = h(y) \).

We have that, \(\mathbb{E}(I_{x,y}) = \frac{1}{m} \).
THEOREM

Consider any n fixed inputs to the hash table (which has size m), i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from the set of all functions $U \rightarrow [m]$.

The expected run-time per operation is $O(1 + \frac{n}{m})$, or simply $O(1)$ if $m \geq n$.

PROOF

Let x, y be two distinct keys from U. Iff means if and only if.

Let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.

We have that, $\mathbb{E}(I_{x,y}) = \frac{1}{m}$.

Let N_x be the number of keys stored in T that are hashed to $h(x)$.
True randomness

Theorem

Consider any \(n \) fixed inputs to the hash table (which has size \(m \)).

i.e. any sequence of \(n \) add/lookup/delete operations.

Pick \(h \) uniformly at random from the set of all functions \(U \rightarrow [m] \).

The expected run-time per operation is \(O(1 + \frac{n}{m}) \), or simply \(O(1) \) if \(m \geq n \).

Proof

Let \(x, y \) be two distinct keys from \(U \).

Let indicator r.v. \(I_{x,y} \) be 1 iff \(h(x) = h(y) \).

We have that, \(\mathbb{E}(I_{x,y}) = \frac{1}{m} \).

Let \(N_x \) be the number of keys stored in \(T \) that are hashed to \(h(x) \).

so, in the worst case it takes \(N_x \) time to look up \(x \) in \(T \).
THEOREM

Consider any \(n \) fixed inputs to the hash table (which has size \(m \)), i.e. any sequence of \(n \) add/lookup/delete operations.

Pick \(h \) uniformly at random from the set of all functions \(U \rightarrow [m] \).

The expected run-time per operation is \(O(1 + \frac{n}{m}) \), or simply \(O(1) \) if \(m \geq n \).

PROOF

Let \(x, y \) be two distinct keys from \(U \).

iff means if and only if.

Let indicator r.v. \(I_{x,y} \) be 1 iff \(h(x) = h(y) \).

We have that, \(\mathbb{E}(I_{x,y}) = \frac{1}{m} \).

Let \(N_x \) be the number of keys stored in \(T \) that are hashed to \(h(x) \)

so, in the worst case it takes \(N_x \) time to look up \(x \) in \(T \).

Observe that \(N_x = \sum_{y \in T} I_{x,y} \) the keys in \(T \)
Theorem

Consider any \(n \) fixed inputs to the hash table (which has size \(m \)), i.e. any sequence of \(n \) add/lookup/delete operations.

Pick \(h \) uniformly at random from the set of all functions \(U \rightarrow [m] \).

The expected run-time per operation is \(O(1 + \frac{n}{m}) \), or simply \(O(1) \) if \(m \geq n \).

Proof

Let \(x, y \) be two distinct keys from \(U \).

Let indicator r.v. \(I_{x,y} \) be 1 iff \(h(x) = h(y) \).

We have that, \(\mathbb{E}(I_{x,y}) = \frac{1}{m} \).

Let \(N_x \) be the number of keys stored in \(T \) that are hashed to \(h(x) \)

so, in the worst case it takes \(N_x \) time to look up \(x \) in \(T \).

Observe that \(N_x = \sum_{y \in T} I_{x,y} \) the keys in \(T \)

Finally, we have that \(\mathbb{E}(N_x) = \sum_{y \in T} \mathbb{E}(I_{x,y}) = \mathbb{E}\left(\sum_{y \in T} I_{x,y} \right) = n \cdot \frac{1}{m} = \frac{n}{m} \) linearity of expectation.
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truly random) hash function?
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truely random) hash function?

For each key in U we need to specify an arbitrary position in T,
this is a number in $[m]$, so requires $\log_2 m$ bits.
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truely random) hash function?

For each key in U we need to specify an arbitrary position in T, this is a number in $[m]$, so requires $\log_2 m$ bits.

So in total we need $u \log_2 m$ bits, which is a ridiculous amount of space!
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truely random) hash function?

For each key in U we need to specify an arbitrary position in T,

this is a number in $[m]$, so requires $\log_2 m$ bits.

So in total we need $u \log_2 m$ bits, which is a ridiculous amount of space!

(in particular, it's much bigger than the table :s)
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truely random) hash function?

For each key in U we need to specify an arbitrary position in T,

this is a number in $[m]$, so requires $\log_2 m$ bits.

So in total we need $u \log_2 m$ bits, which is a ridiculous amount of space!

(in particular, it's much bigger than the table :s)

Why not pick the hash function as we go?
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T,

this is a number in $[m]$, so requires $\log_2 m$ bits.

So in total we need $u \log_2 m$ bits, which is a ridiculous amount of space!

(in particular, it's much bigger than the table :s)

Why not pick the hash function as we go?

Couldn’t we generate $h(x)$ when we first see x?
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T,
this is a number in $[m]$, so requires $\log_2 m$ bits.

So in total we need $u \log_2 m$ bits, which is a ridiculous amount of space!

(in particular, it's much bigger than the table :s)

Why not pick the hash function as we go?

Couldn’t we generate $h(x)$ when we first see x?

Wouldn’t we only use $n \log_2 m$ bits? (one per key we actually store)
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truely random) hash function?

For each key in U we need to specify an arbitrary position in T,
this is a number in $[m]$, so requires $\log_2 m$ bits.

So in total we need $u \log_2 m$ bits, which is a ridiculous amount of space!

* (in particular, it's much bigger than the table :s)

Why not pick the hash function as we go?

Couldn’t we generate $h(x)$ when we first see x?

Wouldn’t we only use $n \log_2 m$ bits? (one per key we actually store)

The problem with this approach is recalling $h(x)$ the next time we see x
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T, this is a number in $[m]$, so requires $\log_2 m$ bits.

So in total we need $u \log_2 m$ bits, which is a ridiculous amount of space! *(in particular, it's much bigger than the table :s)*

Why not pick the hash function as we go?

Couldn’t we generate $h(x)$ when we first see x?

Wouldn’t we only use $n \log_2 m$ bits? *(one per key we actually store)*

The problem with this approach is recalling $h(x)$ the next time we see x.

Essentially we’d need to build a dictionary to solve the dictionary problem!
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truly random) hash function?

For each key in U we need to specify an arbitrary position in T,

this is a number in $[m]$, so requires $\log_2 m$ bits.

So in total we need $u \log_2 m$ bits, which is a ridiculous amount of space!

(in particular, it’s much bigger than the table :s)

Why not pick the hash function as we go?

Couldn’t we generate $h(x)$ when we first see x?

Wouldn’t we only use $n \log_2 m$ bits? (one per key we actually store)

The problem with this approach is recalling $h(x)$ the next time we see $x

Essentially we’d need to build a dictionary to solve the dictionary problem!

This has become rather cyclic... let’s try something else!
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truely random) hash function?

For each key in U we need to specify an arbitrary position in T, this is a number in $[m]$, so requires $\log_2 m$ bits.

So in total we need $u \log_2 m$ bits, which is a ridiculous amount of space!

(in particular, it's much bigger than the table :))
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truely random) hash function?

For each key in U we need to specify an arbitrary position in T,

this is a number in $[m]$, so requires $\log_2 m$ bits.

So in total we need $u \log_2 m$ bits, which is a ridiculous amount of space!

(in particular, it's much bigger than the table :s)

Instead, we define a set, or *family of hash functions*: $H = \{h_1, h_2, \ldots \}$.
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truely random) hash function?

For each key in U we need to specify an arbitrary position in T, this is a number in $[m]$, so requires $\log_2 m$ bits.

So in total we need $u \log_2 m$ bits, which is a ridiculous amount of space!

(in particular, it's much bigger than the table :s)

Instead, we define a set, or *family of hash functions*: $H = \{h_1, h_2, \ldots \}$.

As part of initialising the hash table,

we choose the hash function h from H randomly.
Specifying the hash function

Problem: how do we specify an *arbitrary* (e.g. a truely random) hash function?

For each key in U we need to specify an arbitrary position in T, this is a number in $[m]$, so requires $\log_2 m$ bits.

So in total we need $u \log_2 m$ bits, which is a ridiculous amount of space!

(in particular, it's much bigger than the table :s)

Instead, we define a set, or *family of hash functions*: $H = \{h_1, h_2, \ldots \}$.

As part of initialising the hash table,

we choose the hash function h from H randomly.

How should we specify the hash functions in H and how do we pick one at random?
Weakly universal hashing

A set \(H \) of hash functions is **weakly universal** if for any two distinct keys \(x, y \in U \),

\[
\Pr (h(x) = h(y)) \leq \frac{1}{m}
\]

where \(h \) is chosen uniformly at random from \(H \).
Weakly universal hashing

A set H of hash functions is **weakly universal** if for any two distinct keys $x, y \in U$,

$$\Pr (h(x) = h(y)) \leq \frac{1}{m}$$

where h is chosen uniformly at random from H.

Observe

The randomness here comes from the fact that h is picked randomly.
Weakly universal hashing

A set H of hash functions is **weakly universal** if for any two distinct keys $x, y \in U$,

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is chosen uniformly at random from H.

Observe

The randomness here comes from the fact that h is picked randomly.

Theorem

Consider any n fixed inputs to the hash table (which has size m), i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from a weakly universal set H of hash functions.

The expected run-time per operation is $O(1)$ if $m \geq n$.
Weakly universal hashing

A set H of hash functions is **weakly universal** if for any two distinct keys $x, y \in U$,

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is chosen uniformly at random from H.

Observe

The randomness here comes from the fact that h is picked randomly.

Theorem

Consider any n fixed inputs to the hash table (which has size m), i.e. any sequence of n add/lookup/delete operations.

Pick h uniformly at random from a weakly universal set H of hash functions.

The expected run-time per operation is $O(1)$ if $m \geq n$.

Proof

The proof we used for true randomness works here too (which is nice).
Constructing a weakly universal family of hash functions

- Suppose $U = [u]$, i.e. the keys in the universe are integers 0 to $u - 1$.
- Let p be any prime bigger than u.
- For $a, b \in [p]$, let

$$h_{a,b}(x) = (ax + b \mod p) \mod m,$$

$$H_{p,m} = \{ h_{a,b} \mid a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\} \}.$$
Constructing a weakly universal family of hash functions

- Suppose $U = [u]$, i.e. the keys in the universe are integers 0 to $u - 1$.
- Let p be any prime bigger than u.
- For $a, b \in [p]$, let

$$h_{a,b}(x) = (ax + b \mod p) \mod m,$$

$$H_{p,m} = \{h_{a,b} \mid a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\}\}.$$

Theorem

$H_{p,m}$ is a weakly universal set of hash functions.
Constructing a weakly universal family of hash functions

- Suppose $U = [u]$, i.e. the keys in the universe are integers 0 to $u - 1$.
- Let p be any prime bigger than u.
- For $a, b \in [p]$, let

$$h_{a,b}(x) = (ax + b \mod p) \mod m,$$

$$H_{p,m} = \{ h_{a,b} \mid a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\} \}.$$

Theorem

$H_{p,m}$ is a weakly universal set of hash functions.

Proof

Constructing a weakly universal family of hash functions

- Suppose \(U = [u] \), i.e.
the keys in the universe are integers 0 to \(u - 1 \).
- Let \(p \) be any prime bigger than \(u \).
- For \(a, b \in [p] \), let
\[
 h_{a,b}(x) = (ax + b \mod p) \mod m,
\]
\[
 H_{p,m} = \{ h_{a,b} \mid a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\} \}.
\]

Theorem

\(H_{p,m} \) is a weakly universal set of hash functions.

Proof

Observe

- \(ax + b \) is a linear transformation which “spreads the keys” over \(p \) values when
 taken modulo \(p \). This does not cause any collisions.
- Only when taken modulo \(m \) do we get collisions.
True randomness vs. weakly universal hashing

For both,

true randomness

\[h \text{ is picked uniformly from the set of all possible hash functions} \]

and **weakly universal hashing**

\[h \text{ is picked uniformly from a weakly universal set of hash functions} \]

we have seen that when \(m \geq n \),

the expected lookup time in the hash table is \(O(1) \).
True randomness vs. weakly universal hashing

For both,

true randomness

\(h \) is picked uniformly from the set of all possible hash functions

and **weakly universal hashing**

\(h \) is picked uniformly from a weakly universal set of hash functions

we have seen that when \(m \geq n \),
the expected lookup time in the hash table is \(O(1) \).

Since constructing a weakly universal set of hash functions seems much easier
than obtaining true randomness, this is all good news!
True randomness vs. weakly universal hashing

For both,

true randomness

(h is picked uniformly from the set of all possible hash functions)

and **weakly universal hashing**

(h is picked uniformly from a weakly universal set of hash functions)

we have seen that when \(m \geq n \),

the expected lookup time in the hash table is \(O(1) \).

Since constructing a weakly universal set of hash functions seems much easier than obtaining true randomness, this is all good news!

isn’t it?
True randomness vs. weakly universal hashing

For both,

true randomness

(h is picked uniformly from the set of all possible hash functions)

and **weakly universal hashing**

(h is picked uniformly from a weakly universal set of hash functions)

we have seen that when $m \geq n$,

the expected lookup time in the hash table is $O(1)$.

Since constructing a weakly universal set of hash functions seems much easier than obtaining true randomness, this is all good news! isn’t it?

What about the length of the longest chain? (the longest linked list)
True randomness vs. weakly universal hashing

For both,

true randomness

(h is picked uniformly from the set of all possible hash functions)

and **weakly universal hashing**

(h is picked uniformly from a weakly universal set of hash functions)

we have seen that when $m \geq n$,

the expected lookup time in the hash table is $O(1)$.

Since constructing a weakly universal set of hash functions seems much easier than obtaining true randomness, this is all good news!

isn’t it?

What about the length of the *longest* chain? (the longest linked list)

If it is very long, some lookups could take a very long time...
Longest chain – true randomness

Lemma

If h is selected uniformly at random from all functions $U \rightarrow [m]$ then, over m fixed inputs,

$$\Pr(\text{any chain has length } \geq 3 \log m) \leq \frac{1}{m}.$$
If h is selected uniformly at random from all functions $U \rightarrow [m]$ then, over m fixed inputs,

$$\Pr (\text{any chain has length } \geq 3 \log m) \leq \frac{1}{m}.$$
Lemma

If h is selected uniformly at random from all functions $U \to [m]$ then, over m fixed inputs,

$$\Pr(\text{any chain has length } \geq 3 \log m) \leq \frac{1}{m}.$$

Observe

In this lemma we insert m keys, i.e. $n = m$.
Longest chain – true randomness

Lemma

If h is selected uniformly at random from all functions $U \rightarrow [m]$ then, over m fixed inputs,

$$\Pr(\text{any chain has length } \geq 3 \log m) \leq \frac{1}{m}.$$

Observe

In this lemma we insert m keys, i.e. $n = m$.

Proof

The problem is equivalent to showing that if we randomly throw m balls into m bins, the probability of having a bin with at least $3 \log m$ balls is at most $\frac{1}{m}$.

[Diagram showing the random distribution of balls into bins]
Let X_1 be the number of balls in the first bin.
Proof (continued…)

Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit)
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit)

the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.
Proof continued...

Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit)

the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit)

the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit) the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit)

the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$
\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.
$$
Let \(X_1 \) be the number of balls in the first bin.

Choose any \(k \) of the \(m \) balls (we’ll pick \(k \) in a bit)

the probability at all of these \(k \) balls go into the first bin is \(\frac{1}{m^k} \).

So, the union bound gives us

\[
\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.
\]

Number of subsets of size \(k \).
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit)

the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit) the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit) the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit)

the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit)
the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit)

the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit)

the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$

By using the union bound again, we have that
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit) the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$

By using the union bound again, we have that

$$\Pr(\text{at least one bin receives at least } k \text{ balls}) \leq m \cdot \Pr(X_1 \geq k) \leq \frac{m}{k!}.$$
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit)

the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$

By using the union bound again, we have that

$$\Pr(\text{at least one bin receives at least } k \text{ balls}) \leq m \cdot \Pr(X_1 \geq k) \leq \frac{m}{k!}.$$

Now we set $k = 3 \log m$ and observe that $\frac{m}{k!} \leq \frac{1}{m}$ for $m \geq 2$,
and we are done.
Let X_1 be the number of balls in the first bin.

Choose any k of the m balls (we’ll pick k in a bit)

the probability at all of these k balls go into the first bin is $\frac{1}{m^k}$.

So, the union bound gives us

$$\Pr(X_1 \geq k) \leq \binom{m}{k} \cdot \frac{1}{m^k} \leq \frac{1}{k!}.$$

By using the union bound again, we have that

$$\Pr(\text{at least one bin receives at least } k \text{ balls}) \leq m \cdot \Pr(X_1 \geq k) \leq \frac{m}{k!}.$$

Now we set $k = 3 \log m$ and observe that $\frac{m}{k!} \leq \frac{1}{m}$ for $m \geq 2$, and we are done.

As an exercise, prove $k! \geq 2^{k-1}$. Hint: $k! \geq 2^{k-1}$.

We have assumed log is in base 2.
Longest chain – true randomness

Lemma

If h is selected uniformly at random from all functions $U \rightarrow [m]$ then, over m fixed inputs,

$$\Pr(\text{any chain has length } \geq 3 \log m) \leq \frac{1}{m}.$$

Observe

In this lemma we insert m keys, i.e. $n = m$.

Proof

The problem is equivalent to showing that if we randomly throw m balls into m bins, the probability of having a bin with at least $3 \log m$ balls is at most $\frac{1}{m}$.

![Diagram showing balls being distributed into bins, with a few bins containing at least $3 \log m$ balls.](image)
Longest chain – weakly universal hashing

The conclusion from previous slides is that with true randomness, the longest chain is very short (at most $3 \log m$) with high probability.
Longest chain – weakly universal hashing

The conclusion from previous slides is that with true randomness, the longest chain is very short (at most $3 \log m$) with high probability.

Lemma

If h is picked uniformly at random from a weakly universal set of hash functions then, over m fixed inputs,

$$
\Pr \left(\text{any chain has length } \geq 1 + \sqrt{2m} \right) \leq \frac{1}{2}.
$$
Longest chain – weakly universal hashing

The conclusion from previous slides is that with true randomness, the longest chain is very short (at most $3 \log m$) with high probability.

Lemma

If h is picked uniformly at random from a weakly universal set of hash functions then, over m fixed inputs,

$$\Pr \left(\text{any chain has length } \geq 1 + \sqrt{2m} \right) \leq \frac{1}{2}.$$

Observe

This rubbish upper bound of $\frac{1}{2}$ does not necessarily rule out the possibility that the tightest upper bound is indeed very small. However, the upper bound of $\frac{1}{2}$ is in fact tight!
Longest chain – weakly universal hashing

Proof

- For any two keys \(x, y \), let indicator r.v. \(I_{x,y} \) be 1 iff \(h(x) = h(y) \).
Longest chain – weakly universal hashing

Proof

- For any two keys x, y, let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.
- Let r.v. C be the total number of collisions: $C = \sum_{x,y \in T, x < y} I_{x,y}$.
For any two keys x, y, let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.

Let r.v. C be the total number of collisions: $C = \sum_{x,y \in T, x < y} I_{x,y}$.

Using linearity of expectation and $\mathbb{E}(I_{x,y}) = \frac{1}{m}$ (h is weakly universal),

$$
\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) = \binom{m}{2} \cdot \frac{1}{m} \leq \frac{m}{2}.
$$
Longest chain – weakly universal hashing

Proof

- For any two keys x, y, let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.
- Let r.v. C be the total number of collisions: $C = \sum_{x,y \in T, x < y} I_{x,y}$.
- Using linearity of expectation and $\mathbb{E}(I_{x,y}) = \frac{1}{m}$ (h is weakly universal),
 $\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) = \left(\binom{m}{2} \right) \cdot \frac{1}{m} \leq \frac{m}{2}$.
- by Markov’s inequality, $\Pr(C \geq m) \leq \frac{\mathbb{E}(C)}{m} \leq \frac{1}{2}$.
Longest chain – weakly universal hashing

Proof

- For any two keys \(x, y \), let indicator r.v. \(I_{x,y} \) be 1 iff \(h(x) = h(y) \).

- Let r.v. \(C \) be the total number of collisions: \(C = \sum_{x,y \in T, x<y} I_{x,y} \).

- Using linearity of expectation and \(\mathbb{E}(I_{x,y}) = \frac{1}{m} \) (\(h \) is weakly universal),

\[
\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x<y} I_{x,y} \right) = \sum_{x,y \in T, x<y} \mathbb{E}(I_{x,y}) = \binom{m}{2} \cdot \frac{1}{m} \leq \frac{m}{2}.
\]

- by Markov’s inequality, \(\Pr(C \geq m) \leq \frac{\mathbb{E}(C)}{m} \leq \frac{1}{2} \).

- Let r.v. \(L \) be the length of the longest chain. Then \(C \geq \binom{L}{2} \).
Longest chain – weakly universal hashing

Proof

- For any two keys x, y, let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.
- Let r.v. C be the total number of collisions: $C = \sum_{x, y \in T, x < y} I_{x,y}$.
- Using linearity of expectation and $\mathbb{E}(I_{x,y}) = \frac{1}{m}$ (h is weakly universal),
 \[
 \mathbb{E}(C) = \mathbb{E}\left(\sum_{x, y \in T, x < y} I_{x,y} \right) = \sum_{x, y \in T, x < y} \mathbb{E}(I_{x,y}) = \binom{m}{2} \cdot \frac{1}{m} \leq \frac{m}{2}.
 \]
- by Markov’s inequality, $\Pr(C \geq m) \leq \frac{\mathbb{E}(C)}{m} \leq \frac{1}{2}$.
- Let r.v. L be the length of the longest chain. Then $C \geq \binom{L}{2}$.

This is because a chain of length L causes $\binom{L}{2}$ collisions!
Longest chain – weakly universal hashing

Proof

- For any two keys x, y, let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.
- Let r.v. C be the total number of collisions: $C = \sum_{x,y \in T, x < y} I_{x,y}$.
- Using linearity of expectation and $\mathbb{E}(I_{x,y}) = \frac{1}{m}$ (h is weakly universal),

$$
\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) = \binom{m}{2} \cdot \frac{1}{m} \leq \frac{m}{2}.
$$

- by Markov’s inequality, $\Pr(C \geq m) \leq \frac{\mathbb{E}(C)}{m} \leq \frac{1}{2}$.
- Let r.v. L be the length of the longest chain. Then $C \geq \binom{L}{2}$.
Longest chain – weakly universal hashing

Proof

- For any two keys x, y, let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.

- Let r.v. C be the total number of collisions: $C = \sum_{x,y \in T, x < y} I_{x,y}$.

- Using linearity of expectation and $\mathbb{E}(I_{x,y}) = \frac{1}{m}$ (h is weakly universal),

$$\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) = \binom{m}{2} \cdot \frac{1}{m} \leq \frac{m}{2}.$$

- by Markov’s inequality, $\Pr(C \geq m) \leq \frac{\mathbb{E}(C)}{m} \leq \frac{1}{2}$.

- Let r.v. L be the length of the longest chain. Then $C \geq \binom{L}{2}$.

- Now, $\Pr\left(\frac{(L-1)^2}{2} \geq m \right) \leq \Pr\left(\binom{L}{2} \geq m \right) \leq \Pr(C \geq m) \leq \frac{1}{2}.$
For any two keys x, y, let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.

Let r.v. C be the total number of collisions: $C = \sum_{x,y \in T, x < y} I_{x,y}$.

Using linearity of expectation and $\mathbb{E}(I_{x,y}) = \frac{1}{m}$ (h is weakly universal),

$$\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} \mathbb{E}(I_{x,y}) = \left(\frac{m}{2} \right) \cdot \frac{1}{m} \leq \frac{m}{2}.$$

by Markov’s inequality, $\Pr(C \geq m) \leq \frac{\mathbb{E}(C)}{m} \leq \frac{1}{2}$.

Let r.v. L be the length of the longest chain. Then $C \geq \left(\frac{L}{2} \right)$.

Now, $\Pr\left(\frac{(L-1)^2}{2} \geq m \right) \leq \Pr\left(\left(\frac{L}{2} \right) \geq m \right) \leq \Pr(C \geq m) \leq \frac{1}{2}.$

this is because $\left(\frac{L}{2} \right) = \frac{L!}{2!(L-2)!} = \frac{L \cdot (L-1)}{2} \geq \frac{(L-1)^2}{2}$
Proof

- For any two keys x, y, let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.
- Let r.v. C be the total number of collisions: $C = \sum_{x,y \in T, x<y} I_{x,y}$.
- Using linearity of expectation and $\mathbb{E}(I_{x,y}) = \frac{1}{m}$ (h is weakly universal),
 \[
 \mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x<y} I_{x,y} \right) = \sum_{x,y \in T, x<y} \mathbb{E}(I_{x,y}) = \binom{m}{2} \cdot \frac{1}{m} \leq \frac{m}{2}.
 \]
- by Markov’s inequality, $\Pr(C \geq m) \leq \frac{\mathbb{E}(C)}{m} \leq \frac{1}{2}$.
- Let r.v. L be the length of the longest chain. Then $C \geq \binom{L}{2}$.
- Now, $\Pr\left(\frac{(L-1)^2}{2} \geq m \right) \leq \Pr\left(\frac{L}{2} \geq m \right) \leq \Pr(C \geq m) \leq \frac{1}{2}$.
Longest chain – weakly universal hashing

Proof

- For any two keys x, y, let indicator r.v. $I_{x,y}$ be 1 iff $h(x) = h(y)$.
- Let r.v. C be the total number of collisions: $C = \sum_{x,y \in T, x<y} I_{x,y}$.
- Using linearity of expectation and $E(I_{x,y}) = \frac{1}{m}$ (h is weakly universal),
 \[
 E(C) = E\left(\sum_{x,y \in T, x<y} I_{x,y} \right) = \sum_{x,y \in T, x<y} E(I_{x,y}) = \binom{m}{2} \cdot \frac{1}{m} \leq \frac{m}{2}.
 \]
- by Markov’s inequality, $\Pr(C \geq m) \leq \frac{E(C)}{m} \leq \frac{1}{2}$.
- Let r.v. L be the length of the longest chain. Then $C \geq \binom{L}{2}$.
- Now, $\Pr\left(\frac{(L-1)^2}{2} \geq m \right) \leq \Pr\left(\binom{L}{2} \geq m \right) \leq \Pr(C \geq m) \leq \frac{1}{2}$.

Longest chain – weakly universal hashing

Proof

- For any two keys \(x, y \), let indicator r.v. \(I_{x,y} \) be 1 iff \(h(x) = h(y) \).
- Let r.v. \(C \) be the total number of collisions: \(C = \sum_{x,y \in T, x<y} I_{x,y} \).
- Using linearity of expectation and \(\mathbb{E}(I_{x,y}) = \frac{1}{m} \) (\(h \) is weakly universal),
 \[
 \mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in T, x<y} I_{x,y} \right) = \sum_{x,y \in T, x<y} \mathbb{E}(I_{x,y}) = m \cdot \frac{1}{m} \leq \frac{m}{2}.
 \]
- By Markov’s inequality, \(\Pr(C \geq m) \leq \frac{\mathbb{E}(C)}{m} \leq \frac{1}{2} \).
- Let r.v. \(L \) be the length of the longest chain. Then \(C \geq \binom{L}{2} \).
- Now, \(\Pr\left(\frac{(L-1)^2}{2} \geq m \right) \leq \Pr\left(\binom{L}{2} \geq m \right) \leq \Pr(C \geq m) \leq \frac{1}{2} \).

By rearranging, we have that \(\Pr\left(L \geq 1 + \sqrt{2m}\right) \leq \frac{1}{2} \), and we are done.
Conclusions

For both,

true randomness
$(h \text{ is picked uniformly from the set of all possible hash functions})$

and **weakly universal hashing**
$(h \text{ is picked uniformly from a weakly universal set of hash functions})$

we have seen that when $m \geq n$,

the expected lookup time in a hash table with chaining is $O(1)$.

Lemma

If h is selected uniformly at random from all functions $U \to [m]$ then,

$$\Pr \left(\text{any chain has length } \geq 3 \log m \right) \leq \frac{1}{m}.$$

Lemma

If h is picked uniformly at random from a weakly universal set of hash functions,

$$\Pr \left(\text{any chain has length } \geq 1 + \sqrt{2m} \right) \leq \frac{1}{2}.$$

(both Lemmas hold for m any fixed inputs)