Randomised Communication Complexity

$x = x_1x_2x_3 \ldots x_n$

Bob has a bit string $y \in Y$

Alice has a bit string $x \in X$

$y = y_1y_2y_3 \ldots y_n$

Bob has a random bit string

Alice has a random bit string

- r_a and r_b are private, independent and have arbitrary length
- Equivalently they could each have a private coin they can flip
- Each bit Alice sends may now also depend on r_a (and Bob’s on r_b)
- Alice and Bob still want to compute $z = f(x,y)$
 but now they are allowed to make occasional mistakes

Protocol Trees for Randomised CC

- We say that protocol P has error 1/3 if
 $\Pr(P(x,y) = f(x,y)) \geq 2/3$
- Here $P(x,y)$ is the value that Alice and Bob decide on for $f(x,y)$
- We can repeat the protocol a constant number of times
 to reduce the error to any constant $0 < \epsilon < 1/2$

Protocol Trees for Randomised CC

- The cost of a protocol on a particular (x,y) and r_a,r_b
 is the number of bits sent
- The (overall) cost of a protocol is the maximum cost
 on any (x,y) and r_a,r_b
The bit sent dictates the path taken.

Each node v has a function a_v or b_v which dictates who sends a bit (and what to send).

The protocol ends when a leaf node is reached (which gives $P(x,y)$).

P has error $1/3$ if $\Pr(P(x,y) = f(x,y)) \geq 2/3$.

A path tells us the bits sent, so the height of the tree is the cost of the protocol.

For a given f we want to find the tree with the smallest height (the P which uses the fewest bits).
Randomised Communication Complexity

\[x = x_1 x_2 x_3 \cdots x_n \quad R \]

\[y = y_1 y_2 y_3 \cdots y_n \quad P \]

- The randomised communication complexity of \(f, R(f) \) is the minimum cost of any protocol \(P \), which computes \(f \) with error 1/3
- We will be interested in proving upper and lower bounds on \(R(f) \)
- The deterministic communication complexity of \(f \) for a given \(f \)
- Note that \(R(f) \leq D(f) \)

Sometimes \(R(f) \ll D(f) \)

Equality again

\[x = x_1 x_2 x_3 \cdots x_n \]

\[y = y_1 y_2 y_3 \cdots y_n \]

- Let \(p \) be the smallest prime between \(3n^2 \) and \(6n^2 \)
 (for any \(m \geq 1 \), there is always at least one prime between \(m \) and \(2m \))
- Let \(p \) be the smallest prime between \(3n^2 \) and \(6n^2 \)
- Using \(r_a \), Alice picks a random number, \(r \) between 0 and \(p - 1 \)
 which she sends to Bob in \(O(\log n) \) bits
 - Alice computes and sends
 - Bob computes and sends
 - They conclude that \(x = y \) if \(P_x(r) = P_y(r) \)

Equality again

\[3n^2 \leq p \leq 6n^2 \quad (p \text{ is prime}) \quad 0 \leq r \leq p - 1 \quad (r \text{ is random}) \]

\[P_x(r) = \sum_{i=1}^{n} x_i r^i \mod p \quad P_y(r) = \sum_{i=1}^{n} y_i r^i \mod p \]

- What is the probability that the protocol is correct?
- Assume that \(x = y \), then \(P_x(r) = P_y(r) \) for all \(r \)
 \(\ldots \) so \(P \) is always correct if \(x = y \)

Equality again

\[3n^2 \leq p \leq 6n^2 \quad (p \text{ is prime}) \quad 0 \leq r \leq p - 1 \quad (r \text{ is random}) \]

\[P_x(r) = \sum_{i=1}^{n} x_i r^i \mod p \quad P_y(r) = \sum_{i=1}^{n} y_i r^i \mod p \]

- What is the probability that the protocol is correct?
- Assume instead that \(x \neq y \), consider \(P(r) = P_x(r) - P_y(r) \mod p \)
 observe that \(P(r) = 0 \) if \(P_x(r) = P_y(r) \)

\[P \text{ is a polynomial (in } r \text{) of degree } n \]
 with coefficients \(c_i = (x_i - y_i) \)
 \[P(r) = \sum_{i=1}^{n} (x_i - y_i) r^i \mod p \]
 so \(P(r) = 0 \) for at most \(n \)
 different \(r \) values

\[P(r) = \sum_{i=1}^{n} c_i r^i \mod p \]

So \(\Pr(P_x(r) = P_y(r)) \leq \frac{1}{p} \leq \frac{1}{6n^2} \leq \frac{1}{2} \)
Equality again
\[x = x_1 x_2 x_3 \ldots x_n \quad \text{and} \quad y = y_1 y_2 y_3 \ldots y_n \]

- So we can solve the Equality problem with error 1/3 using only \(O(\log n) \) bits.
- In fact we proved we could obtain error probability 1/n (with no extra bits).
- Further, we never get false-negative results.
- We can use this protocol as a basis for a GreaterThan protocol using binary search.

The Disjointness problem
\[x = x_1 x_2 x_3 \ldots x_n \quad \text{and} \quad y = y_1 y_2 y_3 \ldots y_n \]

- Alice and Bob want to compute \(\text{Dis}(x, y) \)
 \[\text{Dis}(x, y) = 1 \text{ if there is no index, } i, \text{ such that } x_i = y_i = 1 \]
 \(\text{and} \text{Dis}(x, y) = 0 \text{ otherwise} \)
- So \(\text{Dis}(0110, 0001) = 1, \text{Dis}(0110, 0011) = 0 \text{ and Dis}(0110, 0100) = 0 \)
- For Disjointness, we saw that \(n \leq D(\text{Dis}) \leq n + 1 \)
 \(\text{i.e. there is no protocol which always takes less than } n \text{ bits} \)
- Can we do better using randomisation?

The InnerProduct problem
\[x = x_1 x_2 x_3 \ldots x_n \quad \text{and} \quad y = y_1 y_2 y_3 \ldots y_n \]

- Alice and Bob want to compute \(\text{IP}(x, y) \)
 \[\text{IP}(x, y) = \sum_{i=1}^{n} (x_i \cdot y_i) \mod 2 \]
- IP(0110, 0001) = (0 \cdot 0) + (1 \cdot 0) + (1 \cdot 1) + (0 \cdot 1) \mod 2 = 1 \mod 2
- For InnerProduct, it is also known that
 \(n \leq D(\text{IP}) = R(\text{IP}) \leq n + 1 \)
 \(\text{ (it's also tricky) } \)

How much better can we do randomised?

Theorem Any randomised protocol which uses \(h \)-bits (in the worst case) can be simulated deterministically using \(2^h \cdot O(h) \) bits.

- As \(D(\text{EQ}) \geq n \), we have that \(R(\text{EQ}) \in \Omega(\log n) \)
 \(\text{i.e. the } O(\log n) \text{ bit randomised protocol for EQ is the best possible} \)

Key Idea Alice and Bob compute the probability \(p_\ell \) that \(P_\ell \) reaches leaf \(\ell \)
(only for inputs \(x,y \))

- They do this for each 1 leaf and sum the probabilities which gives \(\Pr(P_\ell(x, y) = 1) \)
- Alice and Bob cannot compute \(p_\ell \) by themselves because they only know their own inputs...
Simulating a randomised protocol

- Let P_r be a randomised protocol which uses h bits

Key Idea

Alice and Bob compute the probability p_ℓ that P_r reaches leaf ℓ (for inputs x,y)

- Alice computes the probability p_ℓ^A
 This is the probability that she will respond to Bob according to the path to ℓ

With probability p_ℓ^A Alice does not cause the protocol to leave the path to ℓ

- Alice can compute p_ℓ^A for each ℓ from x and r_a

How many bits were sent?

- Alice sent $\leq 2^h$ values of p_ℓ to Bob

How many bits in each p_ℓ?

Yikes! probabilities are real numbers

Maybe infinity bits!

- By the magic of rounding we can get away with $O(h)$ bits per p_ℓ

Simulating a randomised protocol

- Let P_r be a randomised protocol which uses h bits

How much better can we do randomised?

- We have proven that, an h-bit randomised protocol can be simulated deterministically using $2^h \cdot O(h)$ bits
- We can deduce from this that, $D(f) \leq 2^{R(f)} \cdot O(R(f))$

Theorem

For any f, $R(f) \in \Omega(\log D(f))$

- As $D(EQ) \geq n$, we have that $R(EQ) \in \Omega(\log n)$
 i.e. the $O(\log n)$ bit randomised protocol for EQ is the best possible
- More generally if $D(f) \geq n$, then the best randomised protocol for f
 communicates $O(\log n)$ bits

Conclusions

- The Disjointness problem requires $\geq n$ bits even randomised
- The InnerProduct problem requires $\geq n$ bits even randomised
 all in the worst case over any input

- Protocols for the Equality problem require
 $\Theta(n)$ bits deterministically
 $\Theta(\log n)$ bits with private randomness

Theorem

For any f, $R(f) \in \Omega(\log D(f))$