Pattern matching part three
Hamming distance

Benjamin Sach

Advanced Algorithms – COMS31900
2014/2015

Pattern matching with mismatches

Input: A text string T (length n) and a pattern string P (length m)

T 0 0 0 0 0 0 n n n n n n
P 0 1 2 3 4 5 6 7 8 9 10 11

This is alignment i

Ham(i) = 3

Goal: For every alignment i, output Ham(i), the Hamming distance between P and $T[i..i+m-1]$

The Hamming distance is the number of mismatches

i.e. the number of distinct j such that $P[j] \neq T[i+j]$

A naive algorithm for this problem takes $O(nm)$ time

... but we can do better

Exact pattern matching

Input: A text string T (length n) and a pattern string P (length m)

T 0 1 2 3 4 5 6 7 8 9 10 11
P 0 2 4 6 8 10 12

Goal: Find all the locations where P matches in T

P matches at location i if $P[j] = T[i+j]$ for all $0 \leq j < m$

- A naive algorithm takes $O(nm)$ time
- Many $O(n)$ time algorithms are known (for example the KMP algorithm)

It’s a small alphabet after all

Imagine that the alphabet contains only a small number of different symbols, which we will consider individually...

T 0 1 2 3 4 5 6 7 8 9 10 11
P 0 1 1 1 1 1 1

Replace all d symbols with 1 and everything else with 0

We denote these new strings T_d and P_d and consider...

$T_d \otimes P_d[i] = \sum_{j=0}^{n-k} P_d[j] \times T_d[i+j]$ 1 n

This is the exactly number of matching i at the i-th alignment.

How can we work out $(T_d \otimes P_d)$ quickly?

Last year on COMS21103...

Let A and B be $(n-1)$ degree polynomials which can be expressed as...

$A(x) = \sum_{i=0}^{n-1} a_i x^i$ and $B(x) = \sum_{i=0}^{n-1} b_i x^i$

$A[i] = a_i \leftrightarrow P_d[i]$ (or be seen as arrays of length n) $B[i] = b_i \leftrightarrow T_d[i+m-i]$ 0

The polynomial $C = A \times B$ can be expressed as...

$C(x) = \sum_{i=0}^{2n-1} c_i x^i$ where $c_i = \sum_{j=0}^{n-1} P_d[j] T_d[i+j]$ 1 n

By the magic of the FFT we can compute C (i.e. every c_i in $O(n \log n)$ time.

Hint 3 Let $A = P_d$ (padded with zeros) and $B = T_d$ (reversed)... now C contains $(T_d \otimes P_d)$
Count all matches involving infrequent symbols.

Let \(\Sigma \) denote the set of alphabet symbols and \(|\Sigma| \) be its size.

Algorithm Summary

Construct \(T_x \) and \(P_x \) for each symbol \(x \) in \(\Sigma \) \((O(n|\Sigma|) \text{ time})\).

Compute \((T_x \odot P_x) \) for each symbol \(x \) in \(\Sigma \) \((O(n|\Sigma| \text{ log } m) \text{ time})\).

For every \(i \), compute,

\[
\text{Ham}(i) = n - \sum_{\sigma \in \Sigma} (T_x \odot P_x)[i] \quad (O(n|\Sigma|) \text{ time})
\]

This takes \(O(n|\Sigma| \text{ log } m) \) total time and \(O(n) \) space.

However, \(|\Sigma| \) could be as big as \(m \)...

...in which case, this is worse than the naive method!

Coping with a large alphabet

We will now see an algorithm which runs in \(O(\sqrt{m} \text{ log } m) \) time regardless of the alphabet size.

Definition: An alphabet symbol is frequent if it occurs at least \(\sqrt{m} \) times in \(P \).

Definition: An alphabet symbol is infrequent if it occurs fewer than \(\sqrt{m} \) times in \(P \).

Key Idea: Our algorithm will have two main stages:

- **Stage 1** will count all the matches involving frequent symbols (at each alignment of \(P \) and \(T \)).
- **Stage 2** will count all the matches involving infrequent symbols (at each alignment of \(P \) and \(T \)).

The total number of matches is the sum of the matches from Stage 1 and Stage 2.

The infrequent/frequent symbols trick

Definition: A symbol is infrequent if it occurs fewer than \(\sqrt{m} \) times in \(P \).

Definition: A symbol is frequent if it occurs at least \(\sqrt{m} \) times in \(P \).

Every symbol is either frequent or infrequent.

Stage 2: Count all matches involving infrequent symbols.

Construct an array \(A \) of length \((n - m + 1) \) which initially contains all zeros.

Make a single pass through \(T \)...

For each character \(T[k] \), where \(0 \leq k < n \)

- If \(T[k] \) is infrequent:

 - For all \(j \) such that \(T[k] = P[j] \),
 - Increase \(A[k-j] \) by one (except when \(k-j < 0 \)).

Stage 2: Count all matches involving infrequent symbols.

Construct an array \(A \) of length \((n - m + 1) \) which initially contains all zeros.

Make a single pass through \(T \)...

For each character \(T[k] \), where \(0 \leq k < n \)

- If \(T[k] \) is infrequent:

 - For all \(j \) such that \(T[k] = P[j] \),
 - Increase \(A[k-j] \) by one (except when \(k-j < 0 \)).
The infrequent/frequent symbols trick

Definition: A symbol is **infrequent** if it occurs fewer than \sqrt{m} times in P.

<table>
<thead>
<tr>
<th>T</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>c</td>
<td>d</td>
<td>c</td>
<td>d</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stage 2: Count all matches involving **infrequent** symbols.

Construct an array A of length $(n - m + 1)$, which initially contains all zeros.

- $O(\sqrt{m})$ time
- Make a single pass through T...
- For each character $T[k]$, where $0 \leq k < n$
 - If $T[k]$ is infrequent...
 - For all j such that $T[k] = P[j]$
 - Increase $A[k - j]$ by one (except when $(k - j) < 0$)

Pattern matching with mismatches: putting it all together

Algorithm summary

- Stage 0: Classify each symbol as frequent or infrequent: $O(m \log m)$ time
- Stage 1: Count all matches involving frequent symbols: $O(n \sqrt{m \log m})$ time
- Stage 2: Count all matches involving infrequent symbols: $O(n \sqrt{m})$ time

- at any alignment i the number of mismatches is just m minus the total number of matches

Overall, we obtain a time complexity of $O(n \sqrt{m \log m})$.

Conclusion

Input: A text string T (length n) and a pattern string P (length m)

```
T  X X X X X X X X X
P  a b c d c d c d c
```

Ham$(8) = 3$

Goal: For every alignment i, output

Ham(i), the Hamming distance between P and $T[i..i + m - 1]$

The Hamming distance is the number of mismatches

A naive algorithm for this problem takes $O(nm)$ time

We have seen two alternative algorithms:

- One algorithm takes $O(nm \log m)$ time (where $|\Sigma|$ is the alphabet size)
- The other algorithm takes $O(n \sqrt{m \log m})$ time (regardless of the alphabet size)