The FKS hashing scheme:

Theorem

- A hash function maps a key x to position $h(x)$.
- A set H of hash functions is weakly universal if for any two keys $x, y \in U$ (with $x \neq y$),
 $$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$
 where h is picked uniformly at random from H.

Using weakly universal hashing:

- For any n operations, the expected run-time is $O(1)$ per operation.
- But this doesn’t tell us much about the worst-case behaviour.

Static Perfect Hashing

A static dictionary stores (key, value) pairs and supports:
- add(key, value), lookup(key) (which returns value) and delete(key)
- Every lookup takes $\mathcal{O}(1)$ worst-case time,
- Uses $\mathcal{O}(n)$ space,
- Can be built in $\mathcal{O}(n)$ expected time.

The construction is based on weakly universal hashing (with an $\mathcal{O}(1)$ time hash function).

Perfect hashing - a first attempt

1. Insert everything into a hash table of size $m = n$
2. Check for collisions
3. Repeat if necessary

How many collisions do we get on average?

- Number of collisions $n m / 2$
- Linearity of expectation $\frac{1}{m}$
- Definition of expectation $\frac{n^2}{2}$

where indicator random variable $I_{x,y} = 1$ iff $h(x) = h(y)$.

Perfect hashing - a second attempt

- A set H of hash functions is weakly universal if for any two keys $x, y \in U$ (with $x \neq y$),
 $$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$
 where h is picked uniformly at random from H

Using weakly universal hashing:

- For any n operations, the expected run-time is $O(1)$ per operation.
- But this doesn’t tell us much about the worst-case behaviour.

Dictionaries and Hashing recap

- A dynamic dictionary stores (key, value) pairs and supports:
 - add(key, value), lookup(key) (which returns value) and delete(key)

Expected construction time

1. Insert everything into a hash table of size $m = n^2$
2. Check for collisions
3. Repeat if there was a collision

How many times do we repeat on average?

The expected number of collisions $E(C) \leq \frac{1}{2}$

The probability of at least one collision $\Pr(C \geq 1) \leq \frac{1}{2}$

- i.e. at least as good as tossing a heads on a fair coin
 $$E(1_{\text{heads}}) \leq \frac{1}{2}$$

The probability of zero collisions is at least $\frac{1}{2}$

- $E(1_{\text{heads}}) \geq \frac{1}{2}$

... and then the look-up time is always $O(1)$

(because any $h_i(x)$ can be computed in $O(1)$ time)
Perfect Hashing

Expected construction time

1. Insert everything into a hash table, T, of size n using a weakly universal hash function, h

2. Check for collisions

3. Repeat if there are more than n collisions

The expected number of collisions: $E(C) = \binom{n}{2}$

The probability of at least n collisions: $P(C \geq n) = \frac{1}{2}$

The probability of at most n collisions is at least $\frac{1}{2}$

...but the look-up time could be rubbish (lots of collisions)

Perfect hashing - attempt three

1. Compute $i = h(x)$ (the key)
2. Compute $j = h_j(x)$
3. The item is in $T_j[i]$

Let n_j be the number of items in T_j.

Perfect Hashing - Space usage

- Insert everything into a hash table, T, of size n using a weakly universal hash function, h.
- Immediately repeat if either
 a) T has more than n collisions
 b) some T_j has a collision

The overall expected construction time is therefore:

$$E(\text{construction time}) = E\left(\text{construction time of } T + \sum_j \text{construction time of } T_j\right)$$

$$= E(\text{construction time of } T) + \sum_j E(\text{construction time of } T_j)$$

$$= O(n) + \sum_j O(n_j^2) = O(n) + O\left(\sum_j n_j^2\right) = O(n)$$
Perfect Hashing - Summary

Step 1: Insert everything into a hash table, T, of size n
using a weakly universal (w.u.) hash function, h

Step 2: The n_i items in $T[i]$ are inserted into another hash table T_i
of size n_i^2 using w.u hash function h_i

(Step 3) Immediately repeat if either
a) T has more than n collisions
b) some T_i has a collision

THEOREM
The FKS hashing scheme:
• Has no collisions
• Every lookup takes $O(1)$ worst-case time,
•Uses $O(n)$ space,
• Can be built in $O(n)$ expected time.

In fact this scheme can be made dynamic
with $O(1)$ expected time inserts and deletes
but occasionally the inserts take $\Theta(n)$ time.