Minimum Spanning Trees
via Disjoint Sets

Benjamin Sach
Minimum Spanning Trees
via Disjoint Sets

Benjamin Sach
In this lecture we will see an efficient data structure for maintaining a collection of disjoint sets.

We will then see how this data structure can be used to efficiently implement **Kruskal’s algorithm** which finds a minimum spanning tree in an undirected graph.
In this lecture we will see an efficient data structure for maintaining a collection of disjoint sets.

We will then see how this data structure can be used to efficiently implement **Kruskal’s algorithm** which finds a minimum spanning tree in an undirected graph.
Disjoint set data structures

We will be interested in a data structure which
stores a collection of disjoint sets

The elements of the sets are the numbers \(\{1, 2, \ldots, n\} \)

The following operations are supported:

- **MAKESET**\((x)\) - make a new set containing only \(x\)

 \(x\) cannot be a member of any existing set

- **UNION**\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

- **FINDSET**\((x)\) - returns the identity of the set containing \(x\)

 the identity of a set is any unique identifier of the set.

All we require from **FINDSET** is that
\[\text{FINDSET}(x) = \text{FINDSET}(y) \]

if and only \(x\) and \(y\) are currently in the same set
Example

\textbf{\textsc{MakeSet}}(x) - make a new set containing only \(x \) (which is not already in a set)
\textbf{\textsc{Union}}(x, y) - merge the sets containing \(x \) and \(y \) into a single set
\textbf{\textsc{FindSet}}(x) - returns the \textit{identity} of the set containing \(x \)
Example

\text{\textsc{makeSet}}(x) - make a new set containing only \(x\) (which is not already in a set)

\text{\textsc{union}}(x, y) - merge the sets containing \(x\) and \(y\) into a single set

\text{\textsc{findSet}}(x) - returns the \textit{identity} of the set containing \(x\)

\textit{Let } n = 16 \textit{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}
Example

\textbf{MakeSet}(x) - make a new set containing only } x \text{ (which is not already in a set)}
\textbf{Union}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}
\textbf{FindSet}(x) - returns the \textit{identity} of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\textbf{MakeSet}(3)
Example

\text{MAKESET}(x) - make a new set containing only } x \text{ (which is not already in a set)}

\text{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}

\text{FINDSET}(x) - returns the } identity \text{ of the set containing } x

Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\text{MAKESET}(3)

\{3\}
Example

\(\text{MAKESET}(x) \) - make a new set containing only \(x \) (which is not already in a set)

\(\text{UNION}(x, y) \) - merge the sets containing \(x \) and \(y \) into a single set

\(\text{FINDSET}(x) \) - returns the *identity* of the set containing \(x \)

Let \(n = 16 \) so that the elements of the sets are the numbers \(\{1, 2, \ldots, 16\} \)

\[\{3\} \]
Example

\textbf{MAKESET}(x) - make a new set containing only } x \text{ (which is not already in a set)}

\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\textbf{MAKESET}(7)

\{3\}
Example

MAKESET(*x*) - make a new set containing only *x* (which is not already in a set)

UNION(*x*, *y*) - merge the sets containing *x* and *y* into a single set

FINDSET(*x*) - returns the *identity* of the set containing *x*

Let $n = 16$ *so that the elements of the sets are the numbers* \{1, 2, ..., 16\}

MAKESET(7)

\[
\{3\} \quad \{7\}
\]
Example

\textsc{MakeSet}(x) - make a new set containing only } x \text{ (which is not already in a set)

\textsc{Union}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set

\textsc{FindSet}(x) - returns the } identity \text{ of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\begin{align*}
\{3\} & \quad \{7\}
\end{align*}
Example

\textbf{MAKESET}(x) - make a new set containing only } x \text{ (which is not already in a set)

\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set

\textbf{FINDSET}(x) - returns the } \textit{identity} \text{ of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\textbf{MAKESET}(4)

\{3\} \quad \{7\}
Example

MAKESET(\(x\)) - make a new set containing only \(x\) (which is not already in a set)

UNION(\(x, y\)) - merge the sets containing \(x\) and \(y\) into a single set

FINDSET(\(x\)) - returns the identity of the set containing \(x\)

\[n = 16\] so that the elements of the sets are the numbers \(\{1, 2, \ldots, 16\}\)

MAKESET(4)

\[
\{3\} \quad \{7\} \quad \{4\}
\]
Example

\text{MAKESET}(x) - \text{make a new set containing only } x \text{ (which is not already in a set)}

\text{UNION}(x, y) - \text{merge the sets containing } x \text{ and } y \text{ into a single set}

\text{FINDSET}(x) - \text{returns the } \textit{identity} \text{ of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\{3\} \quad \{7\} \quad \{4\}
Example

MAKE_SET(x) - make a new set containing only x (which is not already in a set)

UNION(x, y) - merge the sets containing x and y into a single set

FIND_SET(x) - returns the *identity* of the set containing x

Let $n = 16$ so that the elements of the sets are the numbers \{1, 2, \ldots, 16\}

UNION(3, 7)

\[
\{3\} \quad \{7\} \quad \{4\}
\]
Example

MAKESET(*x*) - make a new set containing only *x* (which is not already in a set)

UNION(*x*, *y*) - merge the sets containing *x* and *y* into a single set

FINDSET(*x*) - returns the *identity* of the set containing *x*

Let \(n = 16 \) so that the elements of the sets are the numbers \{1, 2, \ldots, 16\}

\[
\text{UNION}(3, 7)
\]

\[
\begin{align*}
\{3\} & \quad \{7\} & \quad \{4\} \\
\end{align*}
\]
Example

\textbf{MAKESET}(x) - make a new set containing only \(x\) (which is not already in a set)

\textbf{UNION}(x, y) - merge the sets containing \(x\) and \(y\) into a single set

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing \(x\)

Let \(n = 16\) so that the elements of the sets are the numbers \(\{1, 2, \ldots, 16\}\)

\textbf{UNION}(3, 7)

\[
\{3, 7\} \quad \{4\}
\]
Example

MAKESET(x) - make a new set containing only x (which is not already in a set)

UNION(x, y) - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let $n = 16$ so that the elements of the sets are the numbers \{1, 2, \ldots, 16\}

\[
\begin{align*}
\{3, 7\} & \quad \{4\}
\end{align*}
\]
Example

\textbf{MAKESET}(x) - make a new set containing only }x (which is not already in a set)

\textbf{UNION}(x, y) - merge the sets containing }x and }y into a single set

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing }x

\textit{Let }$n = 16$ \textit{so that the elements of the sets are the numbers }$\{1, 2, \ldots, 16\}$

\textbf{MAKESET}(5)

\{3, 7\} \quad \{4\}
Example

\textbf{MAKESET}(x) - make a new set containing only } x \text{ (which is not already in a set)}

\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}

\textbf{FINDSET}(x) - returns the identity of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\textbf{MAKESET}(5)

\{5\} \quad \{3, 7\} \quad \{4\}
Example

MAKESET\((x)\) - make a new set containing only \(x\) (which is not already in a set)

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

FINDSET\((x)\) - returns the *identity* of the set containing \(x\)

Let \(n = 16\) *so that the elements of the sets are the numbers* \(\{1, 2, \ldots, 16\}\)

MAKESET\((5)\) \hspace{1cm} **MAKESET**\((9)\)

\[
\{5\} \hspace{2cm} \{3, 7\} \hspace{2cm} \{4\}
\]
Example

MAKESET(x) - make a new set containing only x (which is not already in a set)

UNION(x, y) - merge the sets containing x and y into a single set

FINDSET(x) - returns the identity of the set containing x

Let \(n = 16 \) so that the elements of the sets are the numbers \(\{1, 2, \ldots, 16\} \)

\[
\text{MAKESET}(5) \quad \text{MAKESET}(9)
\]

\[
\{5\} \quad \{9\} \quad \{3, 7\} \quad \{4\}
\]
Example

\textbf{MAKESET}(x) - make a new set containing only x (which is not already in a set)
\textbf{UNION}(x, y) - merge the sets containing x and y into a single set
\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing x

\underline{Let $n = 16$ so that the elements of the sets are the numbers $\{1, 2, \ldots, 16\}$}

\textbf{MAKESET}(5) \quad \textbf{MAKESET}(9) \quad \textbf{MAKESET}(2)

$\{5\} \quad \{9\} \quad \{3, 7\} \quad \{4\}$
Example

\textbf{MAKESET}(x) - make a new set containing only \(x\) (which is not already in a set)
\textbf{UNION}(x, y) - merge the sets containing \(x\) and \(y\) into a single set
\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing \(x\)

\textit{Let } \(n = 16\) \textit{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\textbf{MAKESET}(5) \quad \textbf{MAKESET}(9) \quad \textbf{MAKESET}(2)

\{5\} \quad \{9\} \quad \{3, 7\} \quad \{2\} \quad \{4\}
Example

\textbf{MAKESET}(x) - make a new set containing only x (which is not already in a set)

\textbf{UNION}(x, y) - merge the sets containing x and y into a single set

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing x

\textit{Let $n = 16$ so that the elements of the sets are the numbers $\{1, 2, \ldots, 16\}$}

\textbf{MAKESET}(5) \textbf{MAKESET}(9) \textbf{MAKESET}(2) \textbf{MAKESET}(11)

\{5\} \{9\} \{3, 7\} \{2\} \{4\}
Example

\textsc{makeSet}(x) - make a new set containing only } x \text{ (which is not already in a set)}

\textsc{union}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}

\textsc{findSet}(x) - returns the } identity \text{ of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\textsc{makeSet}(5) \quad \textsc{makeSet}(9) \quad \textsc{makeSet}(2) \quad \textsc{makeSet}(11)

\{5\} \quad \{9\} \quad \{3, 7\} \quad \{2\} \quad \{4\} \quad \{11\}
Example

\textbf{MAKESET}(x) - make a new set containing only } x \text{ } (which is not already in a set)

\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}

\textbf{FINDSET}(x) - returns the } identity \text{ of the set containing } x

Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\textbf{MAKESET}(5) \textbf{ MAKESET}(9) \textbf{ MAKESET}(2) \textbf{ MAKESET}(11) \textbf{ MAKESET}(16)

\{5\} \textbf{ } \{9\} \textbf{ } \{3, 7\} \textbf{ } \{2\} \textbf{ } \{4\} \textbf{ } \{11\}
Example

\texttt{MAKESET}(x) - make a new set containing only } x \texttt{ (which is not already in a set)

\texttt{UNION}(x, y) - merge the sets containing } x \texttt{ and } y \texttt{ into a single set

\texttt{FINDSET}(x) - returns the \emph{identity} of the set containing } x

\textit{Let } n = 16 \textit{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\texttt{MAKESET}(5) \texttt{ MAKESET}(9) \texttt{ MAKESET}(2) \texttt{ MAKESET}(11) \texttt{ MAKESET}(16)

\{5\} \quad \{9\} \quad \{3, 7\} \quad \{2\} \quad \{4\} \quad \{11\} \quad \{16\}
Example

\textbf{MAKESET}(x) - make a new set containing only x (which is not already in a set)

\textbf{UNION}(x, y) - merge the sets containing x and y into a single set

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing x

\textit{Let } $n = 16 \textit{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}$

\begin{align*}
\{5\} & \quad \{9\} & \quad \{3, 7\} & \quad \{2\} & \quad \{4\} & \quad \{11\} & \quad \{16\}
\end{align*}
Example

MAKESET(x) - make a new set containing only x (which is not already in a set)

UNION(x, y) - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let $n = 16$ so that the elements of the sets are the numbers $\{1, 2, \ldots, 16\}$

UNION(4, 9)

\[
\begin{align*}
\{5\} & \quad \{9\} & \quad \{3, 7\} & \quad \{2\} & \quad \{4\} & \quad \{11\} & \quad \{16\}
\end{align*}
\]
Example

MAKESET(x) - make a new set containing only x (which is not already in a set)

UNION(x, y) - merge the sets containing x and y into a single set

FINDSET(x) - returns the identity of the set containing x

Let \(n = 16 \) so that the elements of the sets are the numbers \{1, 2, \ldots, 16\}

\[\text{UNION}(4, 9) \]

\[
\begin{align*}
\{5\} & \quad \{9\} & \quad \{3, 7\} & \quad \{2\} & \quad \{4\} & \quad \{11\} & \quad \{16\} \\
\text{merge these} & & & & & &
\end{align*}
\]
Example

\textbf{MAKESET}(x) - make a new set containing only } x (which is not already in a set)
\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}
\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\textbf{UNION}(4, 9)

\{5\} \quad \{4, 9\} \quad \{3, 7\} \quad \{2\} \quad \{11\} \quad \{16\}
Example

\textbf{MAKESET}(x) - make a new set containing only } x \text{ (which is not already in a set)}

\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\{5\} \quad \{4, 9\} \quad \{3, 7\} \quad \{2\} \quad \{11\} \quad \{16\}
Example

\textbf{MAKESET}(x) - make a new set containing only } x \text{ (which is not already in a set)}

\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\textbf{UNION}(2, 16)

\{5\} \quad \{4, 9\} \quad \{3, 7\} \quad \{2\} \quad \{11\} \quad \{16\}
Example

MAKESET(x) - make a new set containing only x (which is not already in a set)

UNION(x, y) - merge the sets containing x and y into a single set

FINDSET(x) - returns the identity of the set containing x

Let $n = 16$ so that the elements of the sets are the numbers \{1, 2, \ldots, 16\}

UNION(2, 16)

\[
\{5\} \quad \{4, 9\} \quad \{3, 7\} \quad \{2\} \quad \{11\} \quad \{16\}
\]

merge these
Example

\textbf{MAKE\textsc{Set}(x)} - make a new set containing only x (which is not already in a set)

\textbf{UNION(x, y)} - merge the sets containing x and y into a single set

\textbf{FIND\textsc{Set}(x)} - returns the \textit{identity} of the set containing x

\textit{Let} $n = 16$ \textit{so that the elements of the sets are the numbers} \{1, 2, \ldots, 16\}

\textbf{UNION(2, 16)}

\{5\} \quad \{4, 9\} \quad \{3, 7\} \quad \{2, 16\} \quad \{11\}
Example

\textbf{MAKESET}(x) - make a new set containing only } x \text{ (which is not already in a set)}
\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}
\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing } x

\textit{Let } n = 16 \textit{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\{5\} \quad \{4, 9\} \quad \{3, 7\} \quad \{2, 16\} \quad \{11\}
Example

\textbf{MAKESET}(x) - make a new set containing only } x \text{ (which is not already in a set)}

\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\textbf{UNION}(7, 2)

\{5\} \quad \{4, 9\} \quad \{3, 7\} \quad \{2, 16\} \quad \{11\}
Example

MAKESET(\(x\)) - make a new set containing only \(x\) (which is not already in a set)

UNION(\(x, y\)) - merge the sets containing \(x\) and \(y\) into a single set

FINDSET(\(x\)) - returns the *identity* of the set containing \(x\)

Let \(n = 16\) *so that the elements of the sets are the numbers* \{1, 2, \ldots, 16\}

\[
\text{UNION}(7, 2)
\]

\{5\} \quad \{4, 9\} \quad \{3, 7\} \quad \{2, 16\} \quad \{11\}

merge these
Example

MAKESET(\(x\)) - make a new set containing only \(x\) (which is not already in a set)

UNION(\(x, y\)) - merge the sets containing \(x\) and \(y\) into a single set

FINDSET(\(x\)) - returns the *identity* of the set containing \(x\)

Let \(n = 16\) so that the elements of the sets are the numbers \(\{1, 2, \ldots, 16\}\)

\[\text{UNION}(7, 2)\]

\[
\begin{align*}
\{5\} & \quad \{4, 9\} & \quad \{2, 3, 7, 16\} & \quad \{11\}
\end{align*}
\]
Example

\textbf{MAKESET}(x) - make a new set containing only } x \text{ (which is not already in a set)}

\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\{5\} \quad \{4, 9\} \quad \{2, 3, 7, 16\} \quad \{11\}
Example

\textbf{MAKESET}(x) - make a new set containing only } x \text{ (which is not already in a set)}

\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}

\textbf{FINDSET}(x) - returns the } identity \text{ of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots , 16\}

\textbf{UNION}(3, 5)

\{5\} \quad \{4, 9\} \quad \{2, 3, 7, 16\} \quad \{11\}
Example

MAKESET\((x)\) - make a new set containing only \(x\) (which is not already in a set)

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

FINDSET\((x)\) - returns the *identity* of the set containing \(x\)

Let \(n = 16\) so that the elements of the sets are the numbers \(\{1, 2, \ldots, 16\}\)

UNION\((3, 5)\)

\[
\{5\} \quad \{4, 9\} \quad \{2, 3, 7, 16\} \quad \{11\}
\]

merge these
Example

\text{MAKESET}(x)\ - \text{make a new set containing only } x \text{ (which is not already in a set)}

\text{UNION}(x, y)\ - \text{merge the sets containing } x \text{ and } y \text{ into a single set}

\text{FINDSET}(x)\ - \text{returns the identity of the set containing } x

\text{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\text{UNION}(3, 5)

\{4, 9\} \quad \{2, 3, 5, 7, 16\} \quad \{11\}
Example

\textbf{MAKESET}(x) - make a new set containing only \textit{x} (which is not already in a set)

\textbf{UNION}(x, y) - merge the sets containing \textit{x} and \textit{y} into a single set

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing \textit{x}

Let \(n = 16 \) so that the elements of the sets are the numbers \{1, 2, \ldots, 16\}

\{4, 9\} \quad \{2, 3, 5, 7, 16\} \quad \{11\}
Example

\text{MAKESET}(x)\ - \text{ make a new set containing only } x \ (\text{which is not already in a set})

\text{UNION}(x, y)\ - \text{ merge the sets containing } x \text{ and } y \text{ into a single set}

\text{FINDSET}(x)\ - \text{ returns the } \text{identity} \text{ of the set containing } x

Let \(n = 16 \) so that the elements of the sets are the numbers \(\{1, 2, \ldots, 16\} \)

\text{FINDSET}(2) \text{ returns } 3

\{4, 9\} \quad \{2, 3, 5, 7, 16\} \quad \{11\}
Example

MAKESET(*x***)** - make a new set containing only ***x*** (which is not already in a set)

UNION(*x*** , ***y***)** - merge the sets containing ***x*** and ***y*** into a single set

FINDSET(*x***)** - returns the *identity* of the set containing ***x***

Let $n = 16$ so that the elements of the sets are the numbers $\{1, 2, \ldots, 16\}$

- ***FINDSET(2)*** returns 3
- ***FINDSET(5)*** returns 3

$\{4, 9\} \quad \{2, 3, 5, 7, 16\} \quad \{11\}$
Example

\textbf{MAKESET}(x) - make a new set containing only } x \text{ (which is not already in a set)}

\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\textbf{FINDSET}(2) \text{ returns } 3

\textbf{FINDSET}(5) \text{ returns } 3

\textbf{FINDSET}(16) \text{ returns } 3

\{4, 9\} \quad \{2, 3, 5, 7, 16\} \quad \{11\}
Example

\textsc{MakeSet}(x) \ - \ make \ a \ new \ set \ containing \ only \ x \ (which \ is \ not \ already \ in \ a \ set)\\
\textsc{Union}(x, y) \ - \ merge \ the \ sets \ containing \ x \ and \ y \ into \ a \ single \ set\\
\textsc{FindSet}(x) \ - \ returns \ the \ identity \ of \ the \ set \ containing \ x\\

Let \(n = 16 \) so that the elements of the sets are the numbers \{1, 2, \ldots, 16\}\\

\textsc{FindSet}(2) \ returns \ 3\\
\textsc{FindSet}(5) \ returns \ 3\\
\textsc{FindSet}(16) \ returns \ 3\\

\{4, 9\} \quad \{2, 3, 5, 7, 16\} \quad \{11\}\\

\textsc{FindSet}(4) \ returns \ 9
Example

MAKESET(*x*) - make a new set containing only *x* (which is not already in a set)

UNION(*x*, *y*) - merge the sets containing *x* and *y* into a single set

FINDSET(*x*) - returns the *identity* of the set containing *x*

Let \(n = 16 \) so that the elements of the sets are the numbers \{1, 2, \ldots, 16\}

FINDSET(2) returns 3

FINDSET(5) returns 3

FINDSET(16) returns 3

\{4, 9\} \{2, 3, 5, 7, 16\} \{11\}

FINDSET(4) returns 9

FINDSET(9) returns 9
Example

\textbf{MAKESET}(x) - make a new set containing only } x \text{ (which is not already in a set)}

\textbf{UNION}(x, y) - merge the sets containing } x \text{ and } y \text{ into a single set}

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing } x

\textit{Let } n = 16 \text{ so that the elements of the sets are the numbers } \{1, 2, \ldots, 16\}

\textit{FINDSET}(2) \text{ returns 3}

\textit{FINDSET}(5) \text{ returns 3}

\textit{FINDSET}(16) \text{ returns 3}

\{4, 9\} \quad \{2, 3, 5, 7, 16\} \quad \{11\}

\textit{FINDSET}(4) \text{ returns 9}

\textit{FINDSET}(9) \text{ returns 9}

\textit{In our data structure, the identity will be an element of the set}
Reverse Trees

The data structure we will discuss stores each set as a reverse tree:
Reverse Trees

The data structure we will discuss stores each set as a reverse tree:

```
<table>
<thead>
<tr>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
```

This reverse tree stores the set \(\{1, 3, 4, 5, 8, 9, 12\}\)
Reverse Trees

The data structure we will discuss stores each set as a reverse tree:

This reverse tree stores the set \(\{1, 3, 4, 5, 8, 9, 12\} \)

Each node stores an element from the set
Reverse Trees

The data structure we will discuss stores each set as a reverse tree:

This reverse tree stores the set \(\{1, 3, 4, 5, 8, 9, 12\} \)

Each node stores an element from the set

The identity of a set is element at the root (here 3)
Reverse Trees

The data structure we will discuss stores each set as a reverse tree:

![Reverse Tree Diagram]

This reverse tree stores the set \(\{1, 3, 4, 5, 8, 9, 12\} \)

Each node stores an element from the set

The identity of a set is element at the root (here 3)
The data structure we will discuss stores each set as a reverse tree:

```
3
/   \
1  8  9
   /  \\  /
  4  5  12
```

This reverse tree stores the set \{1, 3, 4, 5, 8, 9, 12\}

Each node stores an element from the set

The identity of a set is element at the root (here 3)
Reverse Trees

The data structure we will discuss stores each set as a reverse tree:

This reverse tree stores the set \(\{1, 3, 4, 5, 8, 9, 12\} \)

Each node stores an element from the set

The identity of a set is element at the root (here 3)

In a reverse tree, each element stores a pointer to its parent but no pointers to its children
Reverse Trees

The data structure we will discuss stores each set as a reverse tree:

![Reverse Tree Diagram]

This reverse tree stores the set \(\{1, 3, 4, 5, 8, 9, 12\}\)

Each node stores an element from the set

The **identity** of a set is element at the root (here 3)

In a reverse tree, each element stores a pointer to its parent

- **no limit on the number of children each node can have**
Reverse Forests

The data structure consists of a forest of reverse trees, one for each set

Each node stores an element from the set

The identity of a set is element at the root
How are these trees stored?

{1, 3, 4, 5, 8, 9, 12}

{2, 7}

{15}

{6, 10, 14}
How are these trees stored?

The elements are stored in an array of length \(n \):
How are these trees stored?

The elements are stored in an array of length n:
How are these trees stored?

The elements are stored in an array of length n:
How are these trees stored?

The elements are stored in an array of length n:
How are these trees stored?

The elements are stored in an array of length n:
How are these trees stored?

The elements are stored in an array of length n:

$A = \{1, 3, 4, 5, 8, 9, 12\}$
$\{2, 7\}$
$\{15\}$
$\{6, 10, 14\}$
How are these trees stored?

The elements are stored in an array of length \(n \):
How are these trees stored?

The elements are stored in an array of length \(n \):
How are these trees stored?

{1, 3, 4, 5, 8, 9, 12} {2, 7} {15} {6, 10, 14}

The elements are stored in an array of length n:

$A_{12} \rightarrow A_{2} \rightarrow A_{15} \rightarrow A_{14} \rightarrow A_{10}$
How are these trees stored?

The elements are stored in an array of length n:

This allows us to find any element x in $O(1)$ time (x is stored in $A[x]$)
The FINDSET operation

\[\text{FINDSET}(x) \] - returns the identity of the set containing \(x \)

Step 1: Find the node storing element \(x \)

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

Step 3: Output the element at the root
The FINDSET operation

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,
follow the pointer to the parent of the current node

Step 3: Output the element at the root
The \text{FINDSET} operation

\text{FINDSET}(x) - returns the \textit{identity} of the set containing \(x\)

\begin{itemize}
 \item \textbf{Step 1:} Find the node storing element \(x\)
 \item \textbf{Step 2:} Until you are at the root, follow the pointer to the parent of the current node
 \item \textbf{Step 3:} Output the element at the root
\end{itemize}
The **FINDSET** operation

FINDSET(*x*) - returns the *identity* of the set containing *x*

Step 1: Find the node storing element *x*

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

Step 3: Output the element at the root
The `FINDSET` operation

\[\text{FINDSET}(x) \] - returns the identity of the set containing \(x \)

Step 1: Find the node storing element \(x \)

Step 2: Until you are at the root, follow the pointer to the parent of the current node

Step 3: Output the element at the root
The \textbf{FINDSET} operation

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing \(x\)

\textbf{Step 1:} Find the node storing element \(x\)

\textbf{Step 2:} Until you are at the root, follow the pointer to the parent of the current node

\textbf{Step 3:} Output the element at the root
The **FINDSET** operation

\[\text{FINDSET}(x) \] returns the *identity* of the set containing \(x \)

Step 1: Find the node storing element \(x \)

Step 2: Until you are at the root, follow the pointer to the parent of the current node

Step 3: Output the element at the root
The FINDSET operation

\(\text{FINDSET}(x) \) - returns the *identity* of the set containing \(x \)

Step 1: Find the node storing element \(x \)

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

Step 3: Output the element at the root
The **FINDSET** operation

\[\text{FINDSET}(x) \] - returns the *identity* of the set containing \(x \)

\[
\begin{align*}
\text{FINDSET}(5) & \text{ returns 3} \\
\{1, 3, 4, 5, 8, 9, 12\} & \{2, 7\} & \{15\} & \{6, 10, 14\}
\end{align*}
\]

Step 1: Find the node storing element \(x \)

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

Step 3: Output the element at the root
The FINDSET operation

\[
\text{FINDSET}(x) \text{ - returns the identity of the set containing } x
\]

Step 1: Find the node storing element \(x \)

Step 2: Until you are at the root, follow the pointer to the parent of the current node

Step 3: Output the element at the root
The **FINDSET** operation

FINDSET\((x) \) - returns the *identity* of the set containing \(x \)

Step 1: Find the node storing element \(x \)

Step 2: Until you are at the root, follow the pointer to the parent of the current node

Step 3: Output the element at the root
The \textsc{FindSet} operation

\textbf{FindSet}(x) - returns the identity of the set containing \(x\)

\begin{figure}
\centering
\includegraphics[width=\textwidth]{findset_diagram}
\caption{FindSet(1)}
\end{figure}

\begin{itemize}
\item \textbf{Step 1}: Find the node storing element \(x\)
\item \textbf{Step 2}: Until you are at the root,
\begin{itemize}
\item follow the pointer to the parent of the current node
\end{itemize}
\item \textbf{Step 3}: Output the element at the root
\end{itemize}
The FINDSET operation

$\text{FINDSET}(x)$ - returns the identity of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root, follow the pointer to the parent of the current node

Step 3: Output the element at the root
The FINDSET operation

\[\text{FINDSET}(x) \] - returns the \textit{identity} of the set containing \(x \)

\textbf{Step 1:} Find the node storing element \(x \)

\textbf{Step 2:} Until you are at the root, follow the pointer to the parent of the current node

\textbf{Step 3:} Output the element at the root
The \textsc{FindSet} operation

\textsc{FindSet}(x) - returns the \textit{identity} of the set containing \(x \)

\textbf{Step 1:} Find the node storing element \(x \)

\textbf{Step 2:} Until you are at the root,

\hspace{1cm} follow the pointer to the parent of the current node

\textbf{Step 3:} Output the element at the root
The **FINDSET** operation

\[\text{FINDSET}(x) \] - returns the *identity* of the set containing \(x \)

Step 1: Find the node storing element \(x \)

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

Step 3: Output the element at the root

\(\{1, 3, 4, 5, 8, 9, 12\} \)

\(\{2, 7\} \)

\(\{15\} \)

\(\{6, 10, 14\} \)
The FINDSET operation

\text{FINDSET}(x) - \text{returns the identity of the set containing } x

\begin{itemize}
 \item \textbf{Step 1:} Find the node storing element x
 \item \textbf{Step 2:} Until you are at the root,
 follow the pointer to the parent of the current node
 \item \textbf{Step 3:} Output the element at the root
\end{itemize}
The **FINDSET** operation

FINDSET(\(x\)) - returns the *identity* of the set containing \(x\)

Step 1: Find the node storing element \(x\)

Step 2: Until you are at the root,
follow the pointer to the parent of the current node

Step 3: Output the element at the root
The **FINDSET** operation

FINDSET(\(x\)) - returns the *identity* of the set containing \(x\)

Step 1: Find the node storing element \(x\)

Step 2: Until you are at the root,
follow the pointer to the parent of the current node

Step 3: Output the element at the root
The **FINDSET** operation

FINDSET(*x*) - returns the *identity* of the set containing *x*

Step 1: Find the node storing element *x*

Step 2: Until you are at the root, follow the pointer to the parent of the current node

Step 3: Output the element at the root

FINDSET(*15*) returns **15**
The **FINDSET** operation

FINDSET(*x*) - returns the *identity* of the set containing *x*

Step 1: Find the node storing element *x*

Step 2: Until you are at the root, follow the pointer to the parent of the current node

Step 3: Output the element at the root
The \textbf{FINDSET} operation

\textbf{FINDSET}(x) - returns the \textit{identity} of the set containing \textit{x}

\begin{itemize}
 \item \textbf{Step 1:} Find the node storing element \textit{x}
 \item \textbf{Step 2:} Until you are at the root, follow the pointer to the parent of the current node
 \item \textbf{Step 3:} Output the element at the root
\end{itemize}

What is the worst-case time complexity of this operation?
The FINDSET operation

\text{FINDSET}(x) - \text{returns the identity of the set containing } x

\begin{itemize}
 \item \textbf{Step 1:} Find the node storing element \textit{x}
 \item \textbf{Step 2:} Until you are at the root, follow the pointer to the parent of the current node
 \item \textbf{Step 3:} Output the element at the root
\end{itemize}

What is the worst-case time complexity of this operation?
The FINDSET operation

\(\text{FINDSET}(x) \) - returns the \textit{identity} of the set containing \(x \)

\[\{1, 3, 4, 5, 8, 9, 12\} \quad \{2, 7\} \quad \{15\} \quad \{6, 10, 14\} \]

Step 1: Find the node storing element \(x \)

Step 2: Until you are at the root, follow the pointer to the parent of the current node

Step 3: Output the element at the root

What is the worst-case time complexity of this operation?
The FINDSET operation

FINDSET\((x)\) - returns the identity of the set containing \(x\)

Step 1: Find the node storing element \(x\)
\(O(1)\) time because \(x\) is stored in \(A[x]\)

Step 2: Until you are at the root, follow the pointer to the parent of the current node
\(O(h)\) time

Step 3: Output the element at the root

What is the worst-case time complexity of this operation?
The **FINDSET** operation

FINDSET\((x) \) - returns the *identity* of the set containing \(x \)

Step 1: Find the node storing element \(x \)

Step 2: Until you are at the root, follow the pointer to the parent of the current node

Step 3: Output the element at the root

What is the worst-case time complexity of this operation?

\[O(1) \text{ time because } x \text{ is stored in } A[x] \]

\[O(h) \text{ time} \]

\(h \) is the height of the tallest tree
The FINDSET operation

\[\text{FINDSET}(x) \] - returns the *identity* of the set containing \(x \)

Step 1: Find the node storing element \(x \)

Step 2: Until you are at the root, follow the pointer to the parent of the current node

Step 3: Output the element at the root

What is the worst-case time complexity of this operation?
The **FINDSET** operation

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root, follow the pointer to the parent of the current node

Step 3: Output the element at the root

The overall worst-case time complexity is $O(h)$
The FINDSET operation

\(\text{FINDSET}(x) \) - returns the identity of the set containing \(x \)

Step 1: Find the node storing element \(x \)

Step 2: Until you are at the root, follow the pointer to the parent of the current node

Step 3: Output the element at the root

The overall worst-case time complexity is \(O(h) \)
The **MAKESET** operation

MAKESET(x) - make a new set containing only x (which is not already in a set)

Step 1: Make a new tree containing x as the root
The MakeSet operation

\text{MakeSet}(x) - \text{make a new set containing only } x \text{ (which is not already in a set)}

\begin{itemize}
 \item \{1, 3, 4, 5, 8, 9, 12\}
 \item \{2, 7\}
 \item \{15\}
 \item \{6, 10, 14\}
\end{itemize}

\textbf{Step 1:} Make a new tree containing } x \text{ as the root
The \texttt{MAKESET} operation

\texttt{MAKESET}(x) - make a new set containing only \textit{x} (which is not already in a set)

\begin{itemize}
 \item \texttt{MAKESET}(11)
\end{itemize}

\begin{itemize}
 \item \texttt{MAKESET}(11) \rightarrow \{11\}
\end{itemize}

\begin{itemize}
 \item \texttt{MAKESET}(11) \rightarrow \{2, 7\} \texttt{MAKESET}(11) \rightarrow \{11\} \texttt{MAKESET}(11) \rightarrow \{15\} \texttt{MAKESET}(11) \rightarrow \{6, 10, 14\}
\end{itemize}

\textbf{Step 1:} Make a new tree containing \textit{x} as the root
The `MAKESET` operation

```
MAKESET(x) - make a new set containing only x (which is not already in a set)
```

Step 1: Make a new tree containing \(x \) as the root

(\textit{that's it})
The **MAKESET** operation

MAKESET(*x*) - make a new set containing only *x* (which is not already in a set)

Step 1: Make a new tree containing *x* as the root

(that's it)

What is the worst-case time complexity of this operation?
The **MAKESET** operation

MAKESET \((x)\) - make a new set containing only \(x\) (which is not already in a set)

![Tree diagram]

\{1, 3, 4, 5, 8, 9, 12\}
\{2, 7\}
\{11\}
\{15\}
\{6, 10, 14\}

\(O(1)\) time
Step 1: Make a new tree containing \(x\) as the root
(that's it)

because \(x\) should be stored in \(A[x]\)

What is the worst-case time complexity of this operation?
The \textsc{MakeSet} operation

\textsc{MakeSet}(x) - make a new set containing only x (which is not already in a set)

\begin{itemize}
 \item \textsc{Step 1}: Make a new tree containing x as the root
 \item \texttt{O(1)} time (that's it)
\end{itemize}

because x should be stored in $A[x]$

\begin{itemize}
 \item \textit{What is the worst-case time complexity of this operation?}
 \item The overall worst-case time complexity is \texttt{O(1)}
\end{itemize}
The MAKE\textsc{Set} operation

\textbf{MAKE\textsc{Set}(x)} - make a new set containing only x (which is not already in a set)

\begin{itemize}
 \item \{1, 3, 4, 5, 8, 9, 12\}
 \item \{2, 7\} \{11\} \{15\} \{6, 10, 14\}
\end{itemize}

\textbf{Step 1:} Make a new tree containing x as the root (that's it)

because x should be stored in $A[x]$

What is the worst-case time complexity of this operation?
The **UNION** operation

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

\[
\{1, 3, 4, 5, 8, 9, 12\} \quad \{2, 7\} \quad \{15\} \quad \{6, 10, 14\}
\]

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)

Step 3: Make \(r_x\) a child of \(r_y\) (*which merges the two trees*)
The **UNION** operation

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

![Tree Diagram]

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)

Step 3: Make \(r_x\) a child of \(r_y\) *(which merges the two trees)*
The **UNION** operation

UNION(x, y) - merge the sets containing x and y into a single set

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

Step 3: Make r_x a child of r_y (*which merges the two trees*)
The UNION operation

UNION(*x, y*) - merge the sets containing *x* and *y* into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing *x*

Step 2: Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing *y*

Step 3: Make \(r_x \) a child of \(r_y \) *(which merges the two trees)*
The \textit{UNION} operation

\textbf{UNION}(x, y) - merge the sets containing \textit{x} and \textit{y} into a single set

\begin{itemize}
 \item \textbf{Step 1:} Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing \textit{x}
 \item \textbf{Step 2:} Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing \textit{y}
 \item \textbf{Step 3:} Make \(r_x \) a child of \(r_y \) (\textit{which merges the two trees})
\end{itemize}
The **UNION** operation

UNION \((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

\[
\{1, 3, 4, 5, 8, 9, 12\}
\]

\[
\{2, 7\}
\]

\[
\{15\}
\]

\[
\{6, 10, 14\}
\]

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)

Step 3: Make \(r_x\) a child of \(r_y\) (*which merges the two trees*)
The UNION operation

UNION(x, y) - merge the sets containing x and y into a single set

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

Step 3: Make r_x a child of r_y (which merges the two trees)
The **UNION** operation

UNION(*x, y*) - merge the sets containing *x* and *y* into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing *x*

Step 2: Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing *y*

Step 3: Make \(r_x \) a child of \(r_y \) (which merges the two trees)
The **UNION** operation

UNION(x, y) - merge the sets containing x and y into a single set

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

Step 3: Make r_x a child of r_y (*which merges the two trees*)
The \textbf{UNION} operation

\textbf{UNION}(x, y) - merge the sets containing \textit{x} and \textit{y} into a single set

\begin{itemize}
 \item \textbf{Step 1:} Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing \textit{x}
 \item \textbf{Step 2:} Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing \textit{y}
 \item \textbf{Step 3:} Make r_x a child of r_y (\textit{which merges the two trees})
\end{itemize}
The **UNION** operation

UNION(x, y) - merge the sets containing x and y into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing x

Step 2: Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing y

Step 3: Make \(r_x \) a child of \(r_y \) (which merges the two trees)
The **UNION** operation

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

\[
\{1, 3, 4, 5, 8, 9, 12\}
\]

\[
\{2, 7, 15\}
\]

\[
\{6, 10, 14\}
\]

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)

Step 3: Make \(r_x\) a child of \(r_y\) (which merges the two trees)
The UNION operation

UNION(x, y) - merge the sets containing x and y into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing x

Step 2: Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing y

Step 3: Make \(r_x \) a child of \(r_y \) (which merges the two trees)
The UNION operation

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)

Step 3: Make \(r_x\) a child of \(r_y\) (which merges the two trees)
The **UNION** operation

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

Step 1: Compute \(r_x = FINDSET(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = FINDSET(y)\) - the root of the tree containing \(y\)

Step 3: Make \(r_x\) a child of \(r_y\) (which merges the two trees)

What is the worst-case time complexity of this operation?
The **UNION** operation

UNION(x, y) - merge the sets containing x and y into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing x

Step 2: Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing y

Step 3: Make \(r_x \) a child of \(r_y \) *(which merges the two trees)*

What is the worst-case time complexity of this operation?
The UNION operation

UNION(x, y) - merge the sets containing x and y into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing x

Step 2: Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing y

Step 3: Make \(r_x \) a child of \(r_y \) (which merges the two trees)

What is the worst-case time complexity of this operation?

\(O(h) \) time
The **UNION** operation

UNION(x, y) - merge the sets containing x and y into a single set

![Diagram showing trees and sets

1. **Step 1**: Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing x
2. **Step 2**: Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing y
3. **Step 3**: Make \(r_x \) a child of \(r_y \) (which merges the two trees)

What is the worst-case time complexity of this operation?
The UNION operation

\textbf{UNION}(x, y) - merge the sets containing \textit{x} and \textit{y} into a single set

\begin{itemize}
 \item \textbf{Step 1}: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \textit{x}
 \item \textbf{Step 2}: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \textit{y}
 \item \textbf{Step 3}: Make \(r_x\) a child of \(r_y\) (which merges the two trees)
\end{itemize}

What is the worst-case time complexity of this operation?

It's \(O(h)\) again.
How high does the sycamore grow?

Unfortunately, every **UNION** operation could increase h by one…

Consider the following sets:

{1} {2} {3} {4} {5} …
How high does the sycamore grow?

Unfortunately, every UNION operation could increase h by one...

Consider the following sets:

Now perform UNION(1, 2)
How high does the sycamore grow?

Unfortunately, every **UNION** operation could increase \(h \) by one...

Consider the following sets:

Now perform **UNION(1, 2)**
How high does the sycamore grow?

Unfortunately, every \texttt{UNION} operation could increase h by one…

Consider the following sets:
How high does the sycamore grow?

Unfortunately, every \textsc{union} operation could increase h by one…

Consider the following sets:

Now perform \textsc{union}(1, 3)
How high does the sycamore grow?

Unfortunately, every UNION operation could increase h by one...

Consider the following sets:

Now perform $\text{UNION}(1, 3)$
How high does the sycamore grow?

Unfortunately, every \texttt{UNION} operation could increase h by one...

Consider the following sets:
How high does the sycamore grow?

Unfortunately, every \texttt{UNION} operation could increase h by one...

Consider the following sets:

\begin{align*}
{1, 2, 3} & \quad {4} & \quad {5} \\
\end{align*}

Now perform \texttt{UNION}(1, 4)
How high does the sycamore grow?

Unfortunately, every **UNION** operation could increase h by one…

Consider the following sets:

$$\{1, 2, 3, 4\} \quad \{5\}$$

Now perform **UNION**$(1, 4)$
How high does the sycamore grow?

Unfortunately, every **UNION** operation could increase h by one...

Consider the following sets:

\{1, 2, 3, 4\} \quad \{5\}
How high does the sycamore grow?

Unfortunately, every \texttt{UNION} operation could increase h by one...

Consider the following sets:

\begin{equation*}
\{1, 2, 3, 4\} \quad \{5\}
\end{equation*}

Now perform \texttt{UNION}(1, 5)
How high does the sycamore grow?

Unfortunately, every \texttt{UNION} operation could increase h by one...

Consider the following sets:

$$\{1, 2, 3, 4, 5\}$$

Now perform \texttt{UNION}(1, 5)
How high does the sycamore grow?

Unfortunately, every \texttt{UNION} operation could increase \(h \) by one…

Consider the following sets:

\[
\{1, 2, 3, 4, 5, \ldots\}
\]

Now perform \texttt{UNION}(1, 5)…

So in the worst case the height of the tallest tree is \(n \)
How high does the sycamore grow?

Unfortunately, every \textit{UNION} operation could increase h by one...

Consider the following sets:

$$\{1, 2, 3, 4, 5, \ldots\}$$
How high does the sycamore grow?

Unfortunately, every UNION operation could increase h by one…

Consider the following sets:

$$\{1, 2, 3, 4, 5, \ldots\}$$

In the worst case the height of the tallest tree is n.
How high does the sycamore grow?

Unfortunately, every UNION operation could increase h by one...

Consider the following sets:

$\{1, 2, 3, 4, 5, \ldots\}$

In the worst case the height of the tallest tree is n

so UNION and FIND run in $O(n)$ time
How high does the sycamore grow?

Unfortunately, every \texttt{UNION} operation could increase h by one…

Consider the following sets:

\{1, 2, 3, 4, 5, \ldots\}

Can we improve this?

In the worst case the height of the tallest tree is n
so \texttt{UNION} and \texttt{FIND} run in $O(n)$ time
What's bad about the UNION operation?

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

\[
\begin{array}{c}
1 & \rightarrow & 2 & \rightarrow & 3 & \rightarrow & 4 \\
\{1, 2, 3, 4\} & \rightarrow & 5 & \{5\}
\end{array}
\]

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)

Step 3: Make \(r_x\) a child of \(r_y\) (which merges the two trees)
What’s bad about the UNION operation?

UNION(*x, y*) - merge the sets containing *x* and *y* into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing *x*

Step 2: Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing *y*

Step 3: Make \(r_x \) a child of \(r_y \) *(which merges the two trees)*

When we performed **UNION**(1, 5), we made a \(r_x \) the child of \(r_y \)
What's bad about the UNION operation?

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)

Step 3: Make \(r_x\) a child of \(r_y\) *(which merges the two trees)*

When we performed **UNION**(1, 5), we made a \(r_x\) the child of \(r_y\) this increases the height by one
What's bad about the UNION operation?

\textbf{UNION}(x, y) - merge the sets containing \textcolor{blue}{x} and \textcolor{red}{y} into a single set

\begin{itemize}
 \item \textcolor{blue}{r}_x \quad \textcolor{red}{r}_y
\end{itemize}

When we performed \textbf{UNION}(1, 5),
we made a \textcolor{blue}{r}_x the child of \textcolor{red}{r}_y
this increases the height by one

If instead we made \textcolor{red}{r}_y the child of \textcolor{blue}{r}_x…

\textbf{Step 1}: Compute \(\textcolor{blue}{r}_x = \textsc{FindSet}(x) \) - the root of the tree containing \textcolor{blue}{x}

\textbf{Step 2}: Compute \(\textcolor{red}{r}_y = \textsc{FindSet}(y) \) - the root of the tree containing \textcolor{red}{y}

\textbf{Step 3}: Make \textcolor{blue}{r}_x a child of \textcolor{red}{r}_y \textit{(which merges the two trees)}
What's bad about the UNION operation?

UNION(x, y) - merge the sets containing x and y into a single set

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

Step 3: Make r_x a child of r_y *(which merges the two trees)*

When we performed **UNION**(1, 5), we made a r_x the child of r_y
this increases the height by one

If instead we made r_y the child of r_x...

\{1, 2, 3, 4, 5\}
What's bad about the UNION operation?

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

\[
\begin{align*}
 r_x & \rightarrow 4 \\
 r_y & \rightarrow 5
\end{align*}
\]

\{1, 2, 3, 4, 5\}

When we performed **UNION**(1, 5),
we made a \(r_x\) the child of \(r_y\)
this increases the height by one
If instead we made \(r_y\) the child of \(r_x\)...
the height is unchanged

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)

Step 3: Make \(r_x\) a child of \(r_y\) *(which merges the two trees)*
What's bad about the **UNION** operation?

UNION(x, y) - merge the sets containing x and y into a single set

1. Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x
2. Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y
3. Make r_x a child of r_y (which merges the two trees)

When we performed **UNION**(1, 5),
we made a r_x the child of r_y
this increases the height by one
If instead we made r_y the child of r_x . . .
the height is unchanged

How can we generalise this?
What’s bad about the \textsc{Union} operation?

\textsc{Union}(x, y) - merge the sets containing x and y into a single set

When we performed \textsc{Union}(1, 5),
we made a r_x the child of r_y
this increases the height by one
If instead we made r_y the child of r_x…
the height is unchanged

How can we generalise this?

\textbf{Step 1:} Compute $r_x = \text{FindSet}(x)$ - the root of the tree containing x

\textbf{Step 2:} Compute $r_y = \text{FindSet}(y)$ - the root of the tree containing y

\textbf{Step 3:} Make r_x a child of r_y \textit{(which merges the two trees)}

\textbf{Key Idea} always make the shorter tree the child of the taller tree
An improved UNION operation

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)

Step 3: If \(h(x) \leq h(y)\) make \(r_x\) a child of \(r_y\)

Else make \(r_y\) a child of \(r_x\)
An improved UNION operation

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

1. **Step 1:** Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)
2. **Step 2:** Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)
3. **Step 3:** If \(h(x) \leq h(y)\) make \(r_x\) a child of \(r_y\)
 - Else make \(r_y\) a child of \(r_x\)

Let \(h(x)\) be the height of the tree containing \(x\) (and \(h(y)\) for \(y\))
An improved UNION operation

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)

Step 3: If \(h(x) \leq h(y)\) make \(r_x\) a child of \(r_y\)

Else make \(r_y\) a child of \(r_x\)

Let \(h(x)\) be the height of the tree containing \(x\) (and \(h(y)\) for \(y\))
An improved UNION operation

$\text{UNION}(x, y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leq h(y)$ make r_x a child of r_y

Else make r_y a child of r_x
An improved UNION operation

\textsc{Union}(x, y) - merge the sets containing \(x\) and \(y\) into a single set

\begin{align*}
\text{Step 1:} & \quad \text{Compute } r_x = \text{FindSet}(x) - \text{the root of the tree containing } x \\
\text{Step 2:} & \quad \text{Compute } r_y = \text{FindSet}(y) - \text{the root of the tree containing } y \\
\text{Step 3:} & \quad \text{If } h(x) \leq h(y) \text{ make } r_x \text{ a child of } r_y \\
& \quad \text{Else make } r_y \text{ a child of } r_x
\end{align*}

Let \(h(x)\) be the height of the tree containing \(x\) (and \(h(y)\) for \(y\))

\[\text{Union}(8, 14)\]
An improved UNION operation

UNION(*x, y*) - merge the sets containing *x* and *y* into a single set

![Tree Diagram]

Let *h(x)* be the height of the tree containing *x* (and *h(y)* for *y*)

Step 1: Compute *r_x* = **FINDSET**(*x*) - the root of the tree containing *x*

Step 2: Compute *r_y* = **FINDSET**(*y*) - the root of the tree containing *y*

Step 3: If *h(x) ≤ h(y)* make *r_x* a child of *r_y*

Else make *r_y* a child of *r_x*
An improved UNION operation

UNION(*x, y*) - merge the sets containing *x* and *y* into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing *x*

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing *y*

Step 3: If \(h(x) \leq h(y)\) make \(r_x\) a child of \(r_y\)

Else make \(r_y\) a child of \(r_x\)

Let \(h(x)\) be the height of the tree containing *x* (and \(h(y)\) for *y*)
An improved UNION operation

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

Let \(h(x)\) be the height of the tree containing \(x\) (and \(h(y)\) for \(y\))

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)

Step 3: If \(h(x) \leq h(y)\) make \(r_x\) a child of \(r_y\)

Else make \(r_y\) a child of \(r_x\)
An improved UNION operation

UNION(\(x, y\)) - merge the sets containing \(x\) and \(y\) into a single set

\[
\begin{align*}
\text{Step 1:} & \quad \text{Compute } r_x = \text{FINDSET}(x) \quad \text{- the root of the tree containing } x \\
\text{Step 2:} & \quad \text{Compute } r_y = \text{FINDSET}(y) \quad \text{- the root of the tree containing } y \\
\text{Step 3:} & \quad \text{If } h(x) \leq h(y) \text{ make } r_x \text{ a child of } r_y \\
& \quad \text{Else make } r_y \text{ a child of } r_x
\end{align*}
\]

Let \(h(x)\) be the height of the tree containing \(x\) (and \(h(y)\) for \(y\))
An improved UNION operation

UNION\((x, y)\) - merge the sets containing \(x\) and \(y\) into a single set

Let \(h(x)\) be the height of the tree containing \(x\) (and \(h(y)\) for \(y\))

Step 1: Compute \(r_x = \text{FINDSET}(x)\) - the root of the tree containing \(x\)

Step 2: Compute \(r_y = \text{FINDSET}(y)\) - the root of the tree containing \(y\)

Step 3: If \(h(x) \leq h(y)\) make \(r_x\) a child of \(r_y\)

Else make \(r_y\) a child of \(r_x\)
An improved UNION operation

UNION\((x, y) \) - merge the sets containing \(x \) and \(y \) into a single set

Step 1: Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing \(x \)

Step 2: Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing \(y \)

Step 3: If \(h(x) \leq h(y) \) make \(r_x \) a child of \(r_y \)

Else make \(r_y \) a child of \(r_x \)
An improved UNION operation

$\text{UNION}(x, y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leq h(y)$ make r_x a child of r_y

Else make r_y a child of r_x

Let $h(x)$ be the height of the tree containing x (and $h(y)$ for y)
An improved UNION operation

\textbf{UNION}(x, y) - merge the sets containing \(x \) and \(y \) into a single set

\begin{itemize}
 \item \textbf{Step 1:} Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing \(x \)
 \item \textbf{Step 2:} Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing \(y \)
 \item \textbf{Step 3:} If \(h(x) \leq h(y) \) make \(r_x \) a child of \(r_y \)
 \hspace{1cm} Else make \(r_y \) a child of \(r_x \)
\end{itemize}

Let \(h(x) \) be the height of the tree containing \(x \) (and \(h(y) \) for \(y \))

\textbf{UNION}(8, 14)
An improved UNION operation

$\text{UNION}(x, y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leq h(y)$ make r_x a child of r_y

Else make r_y a child of r_x

Let $h(x)$ be the height of the tree containing x (and $h(y)$ for y)
An improved **UNION** operation

UNION(x, y) - merge the sets containing x and y into a single set

Let $h(x)$ be the height of the tree containing x (and $h(y)$ for y)

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leq h(y)$ make r_x a child of r_y

 Else make r_y a child of r_x
An improved UNION operation

UNION(x, y) - merge the sets containing x and y into a single set

Let \(h(x) \) be the height of the tree containing x (and \(h(y) \) for y)

Step 1: Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing x

Step 2: Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing y

Step 3: If \(h(x) \leq h(y) \) make \(r_x \) a child of \(r_y \)

Else make \(r_y \) a child of \(r_x \)
An improved `UNION` operation

`UNION(x, y)` - merge the sets containing `x` and `y` into a single set

Let `h(x)` be the height of the tree containing `x` (and `h(y)` for `y`)

Step 1: Compute `r_x = FINDSET(x)` - the root of the tree containing `x`

Step 2: Compute `r_y = FINDSET(y)` - the root of the tree containing `y`

Step 3: If `h(x) ≤ h(y)` make `r_x` a child of `r_y`

Else make `r_y` a child of `r_x`
An improved UNION operation

UNION(x, y) - merge the sets containing x and y into a single set

Step 1:
Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2:
Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

Step 3:
If $h(x) \leq h(y)$ make r_x a child of r_y
Else make r_y a child of r_x

Let $h(x)$ be the height of the tree containing x (and $h(y)$ for y)
An improved UNION operation

UNION*(x, y) - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute \(r_x = \text{FINDSET}(x) \) - the root of the tree containing x

Step 2: Compute \(r_y = \text{FINDSET}(y) \) - the root of the tree containing y

Step 3: If \(h(x) \leq h(y) \) make \(r_x \) a child of \(r_y \)

Else make \(r_y \) a child of \(r_x \)

This still takes \(O(h) \) time
An improved UNION operation

$\text{UNION}(x, y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leq h(y)$ make r_x a child of r_y

Else make r_y a child of r_x

This still takes $O(h)$ time . . . but the height only increases when $h(x) = h(y)$
Now big is h now?
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that any tree of height h contains at least 2^h nodes
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that any tree of height h contains at least 2^h nodes

Proof by induction on tree height i,
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that any tree of height h contains at least 2^h nodes

Proof by induction on tree height i,

Base Case ($i = 0$) Any tree of height 0 represents a single element set (so contains $2^0 = 1$ node)
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that any tree of height h contains at least 2^h nodes

Proof by induction on tree height i,

Base Case ($i = 0$) Any tree of height 0 represents a single element set
 (so contains $2^i = 1$ node)

Inductive Step
 Assume every tree of height $(i - 1)$ contains at least 2^{i-1} nodes
Now big is \(h \) now?

Claim The height, \(h \), of the tallest tree is \(O(\log n) \)

We begin by proving that any tree of height \(h \) contains at least \(2^h \) nodes.

Proof by induction on tree height \(i \),

- **Base Case** \((i = 0)\) Any tree of height 0 represents a single element set (so contains \(2^i = 1 \) node).

- **Inductive Step**

 Assume every tree of height \((i - 1)\) contains at least \(2^{i-1} \) nodes.

 A tree of height \(i \) is only created when two trees of height \((i - 1)\) merge (as we previously observed).
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that any tree of height h contains at least 2^h nodes

Proof by induction on tree height i,

Base Case ($i = 0$) Any tree of height 0 represents a single element set

(so contains $2^i = 1$ node)

Inductive Step

Assume every tree of height $(i - 1)$ contains at least 2^{i-1} nodes

A tree of height i is only created when two trees of height $(i - 1)$ merge

(as we previously observed)

Therefore, a tree of height i contains at least $2 \cdot 2^{i-1} = 2^i$ nodes
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

So we have that any tree of height h contains at least 2^h nodes.
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

So we have that any tree of height h contains at least 2^h nodes

Assume that there is a tree with height $h \geq \log_2 n + 1$
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

So we have that any tree of height h contains at least 2^h nodes

Assume that there is a tree with height $h \geq \log_2 n + 1$

This tree contains at least $2^{\log_2 n + 1} > n$ nodes
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

So we have that any tree of height h contains at least 2^h nodes

Assume that there is a tree with height $h \geq \log_2 n + 1$

This tree contains at least $2^{\log_2 n + 1} > n$ nodes

and each node contains a distinct element
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

So we have that any tree of height h contains at least 2^h nodes

Assume that there is a tree with height $h \geq \log_2 n + 1$

This tree contains at least $2^{\log_2 n + 1} > n$ nodes

and each node contains a distinct element

Which is a contradiction because the elements are members of the set

$$\{1, 2, 3, 4, \ldots, n\}$$
Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

So we have that any tree of height h contains at least 2^h nodes.

Assume that there is a tree with height $h \geq \log_2 n + 1$

This tree contains at least $2^{\log_2 n + 1} > n$ nodes

and each node contains a distinct element

Which is a contradiction because the elements are members of the set

$$\{1, 2, 3, 4, \ldots, n\}$$

So as h is $O(\log n)$,

the operations **UNION** and **FINDSET** run in $O(\log n)$ time.
Disjoint Set Summary

We have seen a data structure which
stores a collection of disjoint sets

The elements of the sets are the numbers \(\{1, 2, \ldots, n\} \)

The following operations are supported:

- **MAKESET**\((x) \) - make a new set containing only \(x \)
 - \(x \) cannot be a member of any existing set

- **UNION**\((x, y) \) - merge the sets containing \(x \) and \(y \) into a single set

- **FINDSET**\((x) \) - returns the identity of the set containing \(x \)
 - the identity of a set is any unique identifier of the set.

The operations **UNION** and **FINDSET** take \(O(\log n) \) time.

The operation **MAKESET** runs in \(O(1) \) time.
Minimum Spanning Trees

In a connected, undirected graph G, a spanning tree is a subgraph T such that

Every vertex $v \in V$ is in T
and T is a tree (it contains no cycles)
Minimum Spanning Trees

In a connected, undirected graph G, a spanning tree is a subgraph T such that

- Every vertex $v \in V$ is in T
- and T is a tree (it contains no cycles)

This graph is an example of a spanning tree.
In a connected, undirected graph G, a *spanning tree* is a subgraph T such that

- Every vertex $v \in V$ is in T.
- T is a tree (it contains no cycles).

The weight of a spanning tree is the sum of the weights of its edges.
In a connected, undirected graph G, a **spanning tree** is a subgraph T such that

- Every vertex $v \in V$ is in T
- and T is a tree (*it contains no cycles*)

The weight of a spanning tree is the sum of the weights of its edges.

For the given graph, a spanning tree with weight 23 is shown.
Minimum Spanning Trees

In a connected, undirected graph G, a spanning tree is a subgraph T such that

- Every vertex $v \in V$ is in T
- and T is a tree (it contains no cycles)

The weight of a spanning tree is the sum of the weights of its edges.

T is a minimum spanning tree if no other spanning tree has a lower weight.
Minimum Spanning Trees

In a connected, undirected graph G, a spanning tree is a subgraph T such that

1. Every vertex $v \in V$ is in T.
2. T is a tree (it contains no cycles).

The weight of a spanning tree is the sum of the weights of its edges.

T is a minimum spanning tree if no other spanning tree has a lower weight.

Example:

- A spanning tree with weight 23 (not a minimum spanning tree).
- The weight of a spanning tree is the sum of the weights of its edges.
Minimum Spanning Trees

In a connected, undirected graph G, a *spanning tree* is a subgraph T such that

- Every vertex $v \in V$ is in T and T is a tree (it contains no cycles)
- The weight of a spanning tree is the sum of the weights of its edges

a minimum spanning tree with weight 13

T is a minimum spanning tree if no other spanning tree has a lower weight
Kruskal's algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in a connected, undirected graph... using a disjoint set data structure where the elements are from \{1, 2, 3, \ldots, |V|\}

Step 1: For each \(v \in V \), \texttt{MAKESET}(v)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in an connected, undirected graph...

using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), MAKESET(\(v \))

Step 2: Sort the edges in order of increasing weight
Kruskal's algorithm

Kruskal's algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E \) (in order)

\[\text{If } \text{FINDSET}(u) \neq \text{FINDSET}(v) \text{ then } \]

\[\text{UNION}(u, v) \text{ and add } (u, v) \text{ to } T \]
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in a connected, undirected graph... using a disjoint set data structure where the elements are from \{1, 2, 3, \ldots, |V|\}

Step 1: For each \(v \in V \), MAKESET(\(v \))

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E \) (in order)

If FINDSET(\(u \)) \(\neq \) FINDSET(\(v \)) then

UNION(\(u, v \)) and add (\(u, v \)) to \(T \)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in a connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E \) (in order)

If \(\text{FINDSET}(u) \neq \text{FINDSET}(v) \) then

\(\text{UNION}(u, v) \) and add \((u, v) \) to \(T \)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in a connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \texttt{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)

If \(\texttt{FINDSET}(u) \neq \texttt{FINDSET}(v) \) then

\[\texttt{UNION}(u, v) \text{ and add } (u, v) \text{ to } T \]
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in a connected, undirected graph... using a disjoint set data structure where the elements are from \{1, 2, 3, \ldots, |V|\}

Step 1: For each \(v \in V \), MAKESET\((v)\)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)
If FINDSET\((u) \neq FINDSET(v)\) then UNION\((u, v)\) and add \((u, v)\) to \(T\)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in an connected, undirected graph...

using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), MAKESET\((v)\)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)

If \(\text{FINDSET}(u) \neq \text{FINDSET}(v)\) then

\[\text{UNION}(u, v)\]

and add \((u, v)\) to \(T\)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from $\{1, 2, 3, \ldots, |V|\}$

Step 1: For each $v \in V$, `MAKESET(v)`

Step 2: Sort the edges in order of increasing weight

Step 3: For each $(u,v) \in E$ (in order)
If `FINDSET(u) \neq FINDSET(v)` then
`UNION(u,v)` and add (u,v) to T
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in an connected, undirected graph using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E \) (in order)
If \(\text{FINDSET}(u) \neq \text{FINDSET}(v) \) then
\text{UNION}(u, v) and add \((u, v) \) to \(T \)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \texttt{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)
If \(\texttt{FINDSET}(u) \neq \texttt{FINDSET}(v) \) then \(\texttt{UNION}(u, v) \) and add \((u, v)\) to \(T \)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)

If \(\text{FINDSET}(u) \neq \text{FINDSET}(v) \) then

\(\text{UNION}(u, v) \) and add \((u, v)\) to \(T \)
Kruskal’s algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), `MAKESET(v)`

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E \) (in order)

If `FINDSET(u) \neq FINDSET(v)` then

\[\text{UNION}(u, v) \text{ and add } (u, v) \text{ to } T \]
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in a connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)

If \(\text{FINDSET}(u) \neq \text{FINDSET}(v) \) then

\[\text{UNION}(u, v) \] and add \((u, v)\) to \(T \)
Kruskal's algorithm

Kruskal's algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from \{1, 2, 3, \ldots, |V|\}

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)
If \text{FINDSET}(u) \neq \text{FINDSET}(v) then
\text{UNION}(u, v) and add \((u, v)\) to \(T\)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), MAKESET(\(v \))

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E \) (in order)

If FINDSET(\(u \)) \neq FINDSET(\(v \)) then

UNION(\(u, v \)) and add \((u, v) \) to \(T \)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in a connected, undirected graph using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E \) (in order)

If \(\text{FINDSET}(u) \neq \text{FINDSET}(v) \) then

\(\text{UNION}(u, v) \) and add \((u, v) \) to \(T \)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in a connected, undirected graph... using a disjoint set data structure where the elements are from \{1, 2, 3, \ldots, |V|\}

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) \(\text{in order}\)

If \(\text{FINDSET}(u) \neq \text{FINDSET}(v)\) then

\(\text{UNION}(u, v)\) and add \((u, v)\) to \(T\)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E \) (in order)
If \(\text{FINDSET}(u) \neq \text{FINDSET}(v) \) then
\[\text{UNION}(u, v) \] and add \((u, v) \) to \(T \)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E \) (in order)

If \(\text{FINDSET}(u) \neq \text{FINDSET}(v) \) then

\[\text{UNION}(u, v) \text{ and add } (u, v) \text{ to } T \]
Kruskal’s algorithm finds a minimum spanning tree in a connected, undirected graph... using a disjoint set data structure where the elements are from \{1, 2, 3, \ldots, |V|\}

\textbf{Step 1:} For each \(v \in V\), \text{MAKESET}(v)

\textbf{Step 2:} Sort the edges in order of increasing weight

\textbf{Step 3:} For each \((u, v) \in E\) (in order)

 If \text{FINDSET}(u) \neq \text{FINDSET}(v)\) then

 \text{UNION}(u, v) and add \((u, v)\) to \(T\)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), MAKESET(\(v \))

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E \) (in order)

If FINDSET(\(u \)) \(\neq \) FINDSET(\(v \)) then

UNION(\(u, v \)) and add \((u, v) \) to \(T \)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in a connected, undirected graph . . .

using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\}\)

Step 1: For each \(v \in V\), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)

If \(\text{FINDSET}(u) \neq \text{FINDSET}(v)\) then

\(\text{UNION}(u, v)\) and add \((u, v)\) to \(T\)
Kruskal's algorithm finds a minimum spanning tree in a connected, undirected graph using a disjoint set data structure where the elements are from \{1, 2, 3, \ldots, |V|\}.

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)
If \text{FINDSET}(u) \neq \text{FINDSET}(v)\) then
\text{UNION}(u, v) and add \((u, v)\) to \(T\)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in a connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E \) (in order)
If \(\text{FINDSET}(u) \neq \text{FINDSET}(v) \) then
\[\text{UNION}(u, v) \text{ and add } (u, v) \text{ to } T \]
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from \{1, 2, 3, \ldots, |V|\}

Step 1: For each \(v \in V\), MAKESET(\(v\))

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)
If \(\text{FINDSET}(u) \neq \text{FINDSET}(v)\) then \(\text{UNION}(u, v)\) and add \((u, v)\) to \(T\)
Kruskal's algorithm

Kruskal's algorithm finds a minimum spanning tree in a connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \texttt{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)
If \texttt{FINDSET}(u) \neq \texttt{FINDSET}(v) then
\texttt{UNION}(u, v) and add \((u, v)\) to \(T\)
Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree in a connected, undirected graph... using a disjoint set data structure where the elements are from \{1, 2, 3, \ldots, |V|\}

Step 1: For each \(v \in V \), **MAKESET**(\(v \))

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)

If **FINDSET**(\(u \)) \(\neq \) **FINDSET**(\(v \)) then

UNION(\(u, v \)) and add \((u, v)\) to \(T \)

If we implement the operations as we have seen, they run in \(O(\log |V|) \) time
Kruskal’s algorithm

Kruskal's algorithm finds a minimum spanning tree in a connected, undirected graph... using a disjoint set data structure where the elements are from \(\{1, 2, 3, \ldots, |V|\} \)

Step 1: For each \(v \in V \), \text{MAKESET}(v)

Step 2: Sort the edges in order of increasing weight

Step 3: For each \((u, v) \in E\) (in order)

If \text{FINDSET}(u) \neq \text{FINDSET}(v)\) then

\text{UNION}(u, v) \text{ and add } (u, v) \text{ to } T

If we implement the operations as we have seen, they run in \(O(\log |V|) \) time

Therefore the overall running time becomes \(O(|E| \log |V|) \)
Correctness Sketch

Let K be the spanning tree outputted by Kruskal

(here we have omitted the proof that Kruskal always outputs a spanning tree)
Correctness Sketch

Let K be the spanning tree outputted by Kruskal

(*here we have omitted the proof that Kruskal always outputs a spanning tree*)

Let M be any minimum spanning tree such that $M \neq K$
Correctness Sketch

Let K be the spanning tree outputted by Kruskal
\[(\text{here we have omitted the proof that Kruskal always outputs a spanning tree})\]

Let M be any minimum spanning tree such that $M \neq K$

K must contain at least one edge not in M
Correctness Sketch

Let K be the spanning tree outputted by Kruskal

(here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

K must contain at least one edge not in M

(because every spanning tree contains $|V| - 1$ edges)
Correctness Sketch

Let K be the spanning tree outputted by Kruskal

\textit{(here we have omitted the proof that Kruskal always outputs a spanning tree)}

Let M be any minimum spanning tree such that $M \neq K$

K must contain at least one edge not in M

\textit{(because every spanning tree contains $|V| - 1$ edges)}

We will argue that there is another minimum spanning tree, M_2

\textit{with one more edge in common with T}
Correctness Sketch

Let K be the spanning tree outputted by Kruskal

(here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

K must contain at least one edge not in M

(because every spanning tree contains $|V| - 1$ edges)

We will argue that there is another minimum spanning tree, M_2

with one more edge in common with T

The proof that K is a minimum spanning tree then follows from repeatedly applying this argument
Correctness Sketch

Let K be the spanning tree outputted by Kruskal

(here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

K must contain at least one edge not in M

(because every spanning tree contains $|V| - 1$ edges)

We will argue that there is another minimum spanning tree, M_2

with one more edge in common with T

The proof that K is a minimum spanning tree then follows from

repeatedly applying this argument

E.g. If there is a minimum spanning tree with 7 edges in common with K
Correctness Sketch

Let K be the spanning tree outputted by Kruskal

(here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

K must contain at least one edge not in M

(because every spanning tree contains $|V| - 1$ edges)

We will argue that there is another minimum spanning tree, M_2

with one more edge in common with T

The proof that K is a minimum spanning tree then follows from repeatedly applying this argument

E.g. If there is a minimum spanning tree with 7 edges in common with K

then there is a minimum spanning tree with 8 edges in common with K
Correctness Sketch

Let K be the spanning tree outputted by Kruskal

(here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

K must contain at least one edge not in M

(because every spanning tree contains $|V| - 1$ edges)

We will argue that there is another minimum spanning tree, M_2

with one more edge in common with T

The proof that K is a minimum spanning tree then follows from repeatedly applying this argument

E.g. If there is a minimum spanning tree with 7 edges in common with K

then there is a minimum spanning tree with 8 edges in common with K

so there is a minimum spanning tree with 9 edges in common with K...
How do we make M_2?

Let K be the spanning tree outputted by Kruskal
and M be any minimum spanning tree such that $M \neq K$
How do we make M_2?

Let K be the spanning tree outputted by Kruskal
and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M
How do we make M_2?

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$.

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M.

If we were to add e to M, we would introduce a cycle.
How do we make M_2?

Let K be the spanning tree outputted by Kruskal
and M be any minimum spanning tree such that $M \neq K$.

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M.

If we were to add e to M we would introduce a cycle.

because M is a spanning tree.
How do we make M_2?

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$.

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M.

If we were to add e to M we would introduce a cycle.

because M is a spanning tree

There must be an edge f in this potential cycle which is not in K.
How do we make M_2?

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$.

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M.

If we were to add e to M we would introduce a cycle. *because M is a spanning tree*.

There must be an edge f in this potential cycle which is not in K. *because K is a tree, so contains no cycles*.
How do we make M_2?

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$.

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M.

If we were to add e to M we would introduce a cycle.

because M is a spanning tree.

There must be an edge f in this potential cycle which is not in K.

because K is a tree, so contains no cycles.

Further, Kruskal’s algorithm must have considered e before f.
How do we make M_2?

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$.

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M.

If we were to add e to M we would introduce a cycle.

because M is a spanning tree

There must be an edge f in this potential cycle which is not in K.

because K is a tree, so contains no cycles

Further, Kruskal's algorithm must have considered e before f.

otherwise f would be in K.
How do we make M_2?

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

If we were to add e to M we would introduce a cycle. *because M is a spanning tree*

There must be an edge f in this potential cycle which is not in K *because K is a tree, so contains no cycles*

Further, Kruskal’s algorithm must have considered e before f *otherwise f would be in $K*

As Kruskal considers edges in weight order, the weight of e is at most the weight of f
How do we make M_2?

Let K be the spanning tree outputted by Kruskal
and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

If we were to add e to M we would introduce a cycle.

because M is a spanning tree

There must be an edge f in this potential cycle which is not in K

because K is a tree, so contains no cycles

Further, Kruskal’s algorithm must have considered e before f

otherwise f would be in K

As Kruskal considers edges in weight order,
the weight of e is at most the weight of f

Let M_2 be M with e added and f removed
How do we make M_2?

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$.

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M.
How do we make M_2?

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

Let M_2 be M with e added and f removed
How do we make M_2?

Let K be the spanning tree outputted by Kruskal
and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

Let M_2 be M with e added and f removed

the weight of e is at most the weight of f . . .
How do we make M_2?

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$.

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M.

Let M_2 be M with e added and f removed.

The weight of e is at most the weight of f... so M_2 is also a minimum spanning tree.
How do we make M_2?

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$.

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M.

Let M_2 be M with e added and f removed.

The weight of e is at most the weight of f.

So M_2 is also a minimum spanning tree.

e is in K but f is not in K. . .
How do we make M_2?

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$.

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M.

Let M_2 be M with e added and f removed.

the weight of e is at most the weight of f.

so M_2 is also a minimum spanning tree.

e is in K but f is not in K.

so M_2 has one more edge in common with T.

How do we make M_2?

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$.

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M.

Let M_2 be M with e added and f removed.

The weight of e is at most the weight of f.

So M_2 is also a minimum spanning tree.

e is in K but f is not in K.

So M_2 has one more edge in common with T.

As we said before, the proof that K is a minimum spanning tree then follows from repeatedly applying this argument.
Summary

We first saw a **data structure** which stores a collection of disjoint sets

The elements of the sets are the numbers \(\{1, 2, \ldots, n\} \)

The operations **UNION** and **FINDSET** run in \(O(\log n) \) time

and the operation **MAKESET** runs in \(O(1) \) time.

We then revisited Kruskal’s algorithm

which finds a minimum spanning tree in a connected, undirected graph

and runs in \(O(|E| \log |V|) \) time

when implemented using the above data structure

Prims algorithm for finding a minimum spanning tree in a connected, undirected graph

also runs in \(O(|E| \log |V|) \) time

when the priority queue is implemented using a binary heap