
Separable Approximate Optimization of Support

Vector Machines for Distributed Sensing

Sangkyun Lee, Marco Stolpe, and Katharina Morik

Fakultät für Informatik, LS VIII
Technische Universität Dortmund

44221 Dortmund, Germany
{sangkyun.lee,marco.stolpe,katharina.morik}@tu-dortmund.de

Abstract. Sensor measurements from diverse locations connected with
possibly low bandwidth communication channels pose a challenge of
resource-restricted distributed data analyses. In such settings it would be
desirable to perform learning in each location as much as possible, with-
out transferring all data to a central node. Applying the support vector
machines (SVMs) with nonlinear kernels becomes nontrivial, however.
In this paper, we present an efficient optimization scheme for training
SVMs over such sensor networks. Our framework performs optimization
independently in each node, using only the local features stored in the
respective node. We make use of multiple local kernels and explicit ap-
proximations to the feature mappings induced by them. Together they
allow us constructing a separable surrogate objective that provides an
upper bound of the primal SVM objective. A central coordination is also
designed to adjust the weights among local kernels for improved predic-
tion, while minimizing communication cost.

Keywords: distributed features, support vector machines, separable op-
timization, primal formulation, approximate feature mappings

1 Introduction

Sensor networks have been a very active research topic in recent machine learn-
ing and data mining [12, 13]. Sensors are adopted to monitor certain aspects
of objects or phenomena that we are interested in, often located in such places
hardly accessible by human beings. Various applications include monitoring man-
ufacturing processes, traffic levels, water flows and climate changes over time at
different locations, where sensors (or computing nodes embracing local sensors)
have to communicate with each other or with a central arbitrator in order to
provide useful information for decision making.

Challenges arise in sensor networks when we try to build a predictor collect-
ing information from all sensors, where sensors can afford only minimal commu-
nication due to their distance to a central station or low-power requirements.
If this is the case, we might prefer to perform learning in a distributed fashion,
where each separated part of learning relies on locally stored measurements only.

2 S. Lee, M. Stolpe, and K. Morik

Learning a global model in such cases requires an approach whose computation
can be distributed in a well-defined way, equipped with a global arbitration that
can maximize prediction performance without incurring too much information
transfer from sensors.

In this paper we suggest a variant of the support vector machines (SVMs)
using nonlinear kernels on sensor data. We define kernels that use only locally
stored features in sensors, computing explicit forms of approximations to the
feature mappings that correspond to each local kernel. For typical error functions
of SVMs, we then create a separable surrogate objective function that forms an
upper bound on the original primal SVM objective. Each separated part in the
objective is designed to use a single local kernel, and therefore can be optimized
locally at the sensors.

We also provide an additional central optimization that uses inner product
results from the sensors, without requiring an access to local kernel functions
or their approximations. The central optimization provides local kernels new
weights, that can be fed to the sensors and generate possibly improved local
solutions.

2 Separable Optimization

In this section we begin with a general description of the support vector machines
(SVMs), shaping it progressively to a form which can be optimized separately
for local features in each network node.

2.1 Support Vector Machines

We consider a given data set {(xu, yu)}mu=1 which consists of pairs of input feature
vectors xu ∈ R

p and their labels yu, where yu ∈ {−1,+1} for classification and
yu ∈ R for regression. The SVMs for 1- and 2-class classification and regression
can be formulated as an unconstrained convex minimization,

min
w∈H,ρ∈R

λ

2

(

‖w‖2H + ρ
)

+
1

m

m
∑

u=1

ℓ (〈w, φ(xu)〉, yu, ρ) (1)

where λ > 0 and ℓ is a convex loss function chosen by the task of interest as in
Table 1. For readability we ignore the intercept term of a decision plane without
loss of generality, which can be easily included by augmenting vectors w and x
and excluding it from penalization in the first objective term. We call φ : Rp →
H, for a Hilbert space H, a feature mapping induced by a positive semidefinite
kernel k, with the relation that k(x,x′) = 〈φ(x), φ(x′)〉 for all x,x′ ∈ R

p.

2.2 Multiple Localized Kernels

Now, we consider that the input features are stored in a distributed fashion
among n nodes, possibly with overlaps among them. We suppose that there are

Separable Approximate Optimization of SVMs for Distributed Sensing 3

Table 1. The loss function ℓ and the range of ρ in the canonical objective of SVMs in
the equation (1), and ℓi and ρi corresponding to the ith summand in the upper bounds
of ℓ formed in (6). For the training example indexed by u, we set z = 〈w, φ(xu)〉 and
zi = w[i]Tϕi(xu[i]). The zero range for ρ and ρi implies we ignore them in optimization.

Task ℓ(z, y, ρ) ℓi(zi, y, ρi) Range ρ, ρi
Classification (1-class) max{0, ρ− z} max {0, ρi − zi} R

Classification (2-class) max{0, 1− yz} max{0, 1− yzi} 0
Regression max{0, |y − z| − ǫ} max{0, |y − zi| − ǫ} 0

p unique features in total, denoting by Si ⊂ {1, 2, . . . , p} the subset of feature
indices stored in the ith node, and by pi := |Si| > 0 its cardinality, so that
∪ni=1Si = {1, 2, . . . , p} and

∑n

i=1 pi ≥ p. For convenience, we refer to the feature
subvector of xu stored in the ith node as xu[i] ∈ R

pi .
For each node we make use of an individual kernel which depends on only

the features stored locally in nodes. We denote the kernel for the ith node by
ki : R

pi×pi → R and its corresponding feature mapping by φi : R
pi → Hi. Then

we can construct a composite kernel k as a conic combination of local kernels,
that is,

k(x,x′) :=

n
∑

i=1

µ2
i ki(x[i],x

′[i]). (2)

(It will become clear why we use µ2
i rather than µi ≥ 0, as we progress.) The

weights for local kernels µi will be optimized, which defines our central optimiza-
tion problem to be discussed later. This setting is very similar to the multiple
kernel learning (MKL) and boosting, but our resulting framework will not be
exactly the same, as we discuss later in Section 3.

We note that using multiple kernels alone does not lead to a separable ob-
jective for SVMs. From the representer theorem [20], the optimal weight w of
SVM (1) is expressed as a linear span of the representers k(·,xv). That is,

w(·) =
m
∑

v=1

αvk(·,xv)
(2)
=

n
∑

i=1

µ2
i

m
∑

v=1

αvki(·[i],xv[i]), (3)

Replacing w into (1) results in the following objective:

min
α∈Rm

λ

2

n
∑

i=1

µ2
i

m
∑

u=1

m
∑

v=1

αuαvki(xu[i],xv[i])

+
1

m

m
∑

u=1

ℓ

(

n
∑

i=1

µ2
i

m
∑

v=1

αvki(xu[i],xv[i]), yu, ρ

)

.

We can see that all optimization variables α1, α2, . . . , αm are coupled with each
node i = 1, 2, . . . , n, therefore cannot be split over nodes. This also indicates
that we would need alternative ways to incorporate kernels rather than relying
on the representer theorem, to achieve separability.

4 S. Lee, M. Stolpe, and K. Morik

2.3 Approximating Feature Mappings

One observation of the original SVM formulation (1) is that the terms ‖w‖2 and
〈w, φ(xu)〉 will be separable over the components of w, if w and φ(xu) are in
a finite dimensional space. (The loss functions ℓ in Table 1 are not separable as
well. We will discuss them as the next step in the following section.) Motivated
by this, we introduce explicit finite-dimensional approximations to the feature
mappings φ ∈ H that correspond to kernel functions k(x,x′) = 〈φ(x), φ(x′)〉.
This step is necessary, since the explicit form of φ is unavailable in general.

For each node i, suppose that we have obtained an approximate feature
mapping ϕi : Rpi → R

di to the original mapping φi, where di ∈ (0,∞) is a
predefined (possibly small) integer, so that

〈ϕi(x[i]), ϕi(x
′[i])〉 ≈ ki(x[i],x

′[i]) = 〈φ(x[i]), φ(x′[i])〉.
When d :=

∑n

i=1 di is sufficiently large, we can consider the following d-dimen-
sional problem as a good approximation to the original problem (1):

min
w∈Rd,ρ∈R

λ

2

(

‖w‖22 + ρ
)

+
1

m

m
∑

u=1

ℓ
(

wTϕ(xu), yu, ρ
)

. (4)

Regarding the representation (3), we impose a weight µi ≥ 0 for the feature
mappings in nodes i = 1, 2, . . . , n, so that

ϕ(x) :=

µ1ϕ1(x[1])
µ2ϕ2(x[2])

...
µnϕn(x[n])

, w :=

w[1]
w[2]
...

w[n]

⇒ wTϕ(x) =
n
∑

i=1

µiw[i]Tϕi(x[i]).

Here we denote by w[i] ∈ R
di the subvector of w ∈ R

d for the node i. Again, by
x[i] ∈ R

pi we denote the attributes of x ∈ R
p stored in the node i.

In the expansion of wTϕ(x) above, we have µi but no µ2
i as in (2) or (3).

The reason is that we do not have any inner product between images of ϕi(·):
this becomes a crucial property for deriving a separable optimization problem.

There have been largely two types of approaches to find approximate feature
mappings ϕ. The first type of approaches is based on computing low-rank factor
matrices that approximate the original kernel matrices [4, 3, 6]. Although this
type allows to use any positive semidefinite kernel matrices, it requires matrix
factorization with comparably large memory footprint.

In the second type, we make use of random projections and construct ap-
proximate mappings directly [16]. These methods tend to require larger approxi-
mation dimensions than the first type [11], but they are much simpler and easier
to parallelize. In this paper we focus on the second type approximation of the
Gaussian kernels ki(x[i],x

′[i]) = exp(−γi‖x[i]−x′[i]‖22) for some γi > 0 without
loss of generality, for which the approximation is given by

ϕi(x[i]) =

√

2

di

[

cos(zT1 x[i] + e1), cos(z
T
2 x[i] + e2), . . . , cos(z

T
di
x[i] + edi

)
]T

,

(5)

Separable Approximate Optimization of SVMs for Distributed Sensing 5

for each node i, where zj ∈ R
pi and ej ∈ R are i.i.d. random samples from the

Gaussian distribution N (0, 2γiI), I is an identity matrix, and from the uniform
distribution on [0, 2π], respectively. These are derived from the Fourier transform
of the kernel function ki (for more details see [16]). Note that ϕi uses only local
features stored in the ith node, represented as a subvector x[i].

2.4 A Separable Surrogate Objective

Our final step is to make the loss functions ℓ in Table 1 separable over nodes,
using their convexity in the first and the last arguments. For this purpose we
impose

∑n
i=1 µi = 1 in addition to µi ≥ 0. Then we can derive an upper bound

for the hinge loss ℓ of 2-class classification as follows,

ℓ(wTϕ(x), y, ρ) = max{0, 1− ywTϕ(x)}

= max{0,
n
∑

i=1

µi(1− yw[i]Tϕi(x[i]))}

≤
n
∑

i=1

µiℓi
(

w[i]Tϕi(x[i]), y, ρi
)

(6)

where ℓi is listed in the second row of Table 1, and we define ρi so that ρ =
∑n

i=1 µiρi. The upper bounds for 1-class classification and regression tasks can
be derived similarly and are presented in the table as well. Summing up the
inequalities (6) over training indices u = 1, 2, . . . ,m leads to an upper bound of
the objective function in (4):

λ

2

(

‖w‖22 + ρ
)

+
1

m

m
∑

u=1

ℓ
(

wTϕ(xu), yu, ρ
)

≤
n
∑

i=1

[

λ

2

(

‖w[i]‖22 + µiρi
)

+
1

m

m
∑

u=1

µiℓi
(

w[i]Tϕi(xu[i]), yu, ρi
)

]

. (7)

The expression in the right hand side is separable in terms of nodes. Therefore,
in each node i = 1, 2, . . . , n we can solve the following separated problem,

(Local) min
w[i]∈Rdi ,ρi∈R

λ

2

(

‖w[i]‖22 + µiρi
)

+
1

m

m
∑

u=1

µiℓi
(

w[i]Tϕi(xu[i]), yu, ρi
)

.

(8)

Although it is possible to construct a global classifier by transferring all local
solutions w∗[i] and ρ∗i of (8) to a central node for i = 1, 2, . . . , n, it may not be
desirable since then the central node should know about ϕi and local features
as well. This requires O(∑n

i=1 dipi) numbers to be transferred, plus O(∑n

i=1 pi)
per test point x whose features are stored in a distributed fashion. Instead,
we let each node compute and transfer two scalars w∗[i]Tϕi(x[i]) and ρ∗i to a
central node, where weighted summations w∗Tϕ(x) =

∑n

i=1 µiw
∗[i]Tϕi(x[i])

and ρ∗ =
∑n

i=1 µiρ
∗
i can be used for global prediction. This approach reduces

the communication cost to O(n) for a test point.

6 S. Lee, M. Stolpe, and K. Morik

2.5 Minimization of Approximation Gaps

We discuss the quality of two approximations we have made, in using approxi-
mate feature mappings and an inequality due to the convexity of loss functions,
to arrive the separated local optimization (8) from the nonseparable SVM for-
mulation (1), assuming that both are using multiple localized kernels.

Approximation in Feature Mappings The first approximation has been
applied when we use approximate feature mappings in Section 2.3. In the case
of the mapping ϕi : Rpi → R

di in (5) approximating a local Gaussian kernel
ki(x[i],x

′[i]) = exp(−γi‖x[i]− x′[i]‖22), x[i] ∈ R
pi , the following result from [16]

quantifies its quality:

P

[

sup
x[i],x′[i]∈M

∣

∣ϕi(x[i])
Tϕi(x

′[i])− ki(x[i],x
′[i])
∣

∣ ≥ ǫ

]

≤ O
(

ǫ−2e
−

ǫ2di
4(pi+2)

)

,

whereM⊂ R
pi is a compact set containing all subvectors xu[i], u = 1, 2, . . . ,m.

Therefore, ϕi grants us good approximation as long as we use sufficiently large
di for its approximation dimension.

Approximation in the Convex Inequality Another approximation takes
place in (6) and (7), where we construct separable upper bounds of the nonsep-
arable loss functions ℓ in Table 1. Since the inequality is constructed using the
convex combination parametrized by µ1, µ2, . . . , µn, we can reduce the gap in
the inequality by minimizing the right hand side expression of (7) in terms of
µi’s. This defines an optimization problem in a central node,

min
µ:=(µ1,µ2,...,µn)T

1

m

m
∑

u=1

n
∑

i=1

Luiµi + Ψ(µ)

(Central) s.t.

n
∑

i=1

Luiµi ≥ ℓ

(

n
∑

i=1

Zuiµi, yu,

n
∑

i=1

µiρi

)

, u = 1, 2, . . . ,m, (9)

n
∑

i=1

µi = 1, µi ≥ 0, i = 1, 2, . . . , n.

Here we have defined
{

Zui := w[i]Tϕi(xu[i])

Lui := ℓi(Zui, yu, ρi)
, u = 1, 2, . . . ,m, i = 1, 2, . . . , n. (10)

The constants in Zui can be computed independently in local nodes and trans-
ferred to the central node.

The last term Ψ in the objective of (9) is an optional convex regularization
term. This can be chosen as Ψ(µ) = σ

2 ‖µ‖22 for some σ > 0 to produce a unique
or an evenly distributed solution, Ψ(µ) = σ′‖µ‖1 to induce elementwise sparsity

Separable Approximate Optimization of SVMs for Distributed Sensing 7

in µ (thereby selecting few local kernels important for prediction, similarly to

MKL), or Ψ(µ) = σ′′
∑G

g=1 ‖µ[g]‖2 for subvectors µ[g] to promote groupwise
sparsity (e.g. selecting few clusters of nodes, rather than individual nodes).

3 Related Works

We present two most closely related learning approaches to our framework.

3.1 Multiple Kernel Learning

The multiple kernel learning (MKL) is an extension of the support vector ma-
chines for employing multiple kernel functions, instead of a single one as in the
standard settings. The current forms and efficient learning methods for MKL
have been established in [10, 9, 1, 2]. In MKL we consider a combination of n
kernels

k(x,x′) =

n
∑

i=1

βiki(x,x
′), βi ≥ 0,

n
∑

i=1

βi = 1, (11)

and ki’s are defined on a certain subset of features. Plugging the composite ker-
nel k(x,x′) into the standard SVM formulation leads to a semi-definite program
(SDP) [10], which is much harder to solve than the standard SVMs. When ker-
nels ki are normalized, i.e. ki(x,x) = 1, it can be reduced to a quadratically
constrained quadratic program [9], which can be solved slightly more efficiently
than SDPs. Modifications to the SVM formulations lead to further improvement,
resulting in a semi-infinite linear program [19], a quadratic program [17], or a
much faster interleaved optimization using ℓp-norms [8].

The main difference of MKL to our framework is that the objective function
of MKL is not separable over nodes. For instance, the MKL formulation in [17]
solves the dual problem for fixed weights β1, β2, . . . , βn,

max
α∈Rm

− 1

2

n
∑

i=1

βi

m
∑

u=1

m
∑

v=1

αuαvki(xu,xv) +

m
∑

u=1

αu

s.t.

m
∑

u=1

αuyu = 0, 0 ≤ αu ≤ 1/(mλ), u = 1, 2, . . . ,m.

Similar to our discussion in Section 2.2, all variables αu’s in this objective are
coupled with each node i, therefore the optimization cannot be separated over
nodes. Another difference is the ways to form the convex combinations of kernels.
Comparing the convex combinations in (11) and (2), we can interpret our µi as√
βi, and we impose

∑n

i=1 µi = 1, rather than
∑n

i=1 βi = 1.

3.2 Boosting

Boosting with an additive model [5] is also quite similar to our model and MKL.
In boosting, we find a linear combination of n basis functions or weak learners

8 S. Lee, M. Stolpe, and K. Morik

of the form

h(x) =

n
∑

i=1

ζihi(w;x),

where ζi ∈ R, and hi can be set hi(w;x) = w[i]Tϕi(x[i]) to make it similar to
our setting. The optimal w∗[i] and ρ∗i can be found independently for each node
i = 1, 2, . . . , n, and the best combination of hi’s can be found by solving

min
ζ1,...,ζn

m
∑

u=1

ℓ

(

n
∑

i=1

ζihi(w
∗;xu), yu,

n
∑

i=1

ζiρ
∗
i

)

.

This resembles our central problem (9). Despite its similarity, however, the ob-
jective here does not provide an upper bound of the MKL objective as in our
formulation (7), thereby losing its connection to MKL. Also, unlike our setting
and MKL, the local problems in boosting do not depend on the weights ζi. That
is, the solutions from separated problems cannot be improved any further using
updated weight values of ζi obtained from the central optimization. Our frame-
work and MKL share the property that subproblems (separated problems in our
case, and the nonseparable problem obtained after fixing kernel weights in MKL)
are dependent on such weights, therefore we can obtain improved solutions using
adjusted weight values.

4 Algorithm

We describe our algorithm that solves the separated problem (8) at each local
node, and an additional central optimization (9) that determines the optimal
convex combination. The outline of the entire framework is presented in Algo-
rithm 1.

4.1 Local Optimization

To find the solutions of each separated local optimization problem, we use the
stochastic gradient descent (SGD) approach. In particular, we adapt the “ro-
bust” version of SGD suggested by Nemirovski and Yudin [15], for which a sim-
plified analysis [14] or a regret-based online learning analysis [21] can be found.
We sketch the robust SGD algorithm here and refer to the ASSET approach [11]
for details, which implements essentially the same idea for the standard SVMs.

To simplify our discussion, we denote the objective function of the ith sepa-
rated local problem in (8) by fi:

fi(w[i], ρi) :=
λ

2

(

‖w[i]‖22 + µiρi
)

+
1

m

m
∑

u=1

µiℓi
(

w[i]Tϕi(xu[i]), yu, ρi
)

.

Then in each iteration of the local optimization, we update the variables w[i]
and ρi as follows,

[

w[i]t+1

ρt+1
i

]

← PW

([

w[i]t

ρti

]

− ηtGt

)

, t = 1, 2, . . . , T, (12)

Separable Approximate Optimization of SVMs for Distributed Sensing 9

Algorithm 1: Separable SVM with Approximations to Local Kernels

input : A data set {(xu, yu)}mu=1, the number of iterations K (K > 1 only if
we use central optimization), positive integers T and T0, and µ0 = 1/n.

Initialize: µi ← µ0, for i = 1, 2, . . . , n;
for k = 1, 2, . . . ,K do

Transmit µi to all nodes i = 1, 2, . . . , n;
(local: in parallel)

// Solve a separated local problem in each node i, using ASSET

input : a weight µi and local measurements/labels {(xu[i], yu)}mu=1.
Initialize iterates and averages: w[i]1 ← 0, ρ1i ← 0 w̄[i]← 0, ρ̄i ← 0;
Estimate an optimization constant θi > 0;
for t = 1, 2, . . . , T do

Select a random training index ξt ∈ {1, 2, . . . ,m};
Compute a steplength ηt = θi/

√
t;

Update w[i] and ρi via (12);

end
output: averages of iterates, w̄[i] and ρ̄i, for the last (T −T0) iterations.
output: (optional) transfer Zui := w̄[i]Tϕi(xu) for u = 1, 2, . . . ,m and

ρ̄i to a central node.
(end)
(central: optional)

// Solve a central problem, using CPLEX

input : Zui and ρ̄i for u = 1, 2, . . . ,m, i = 1, 2, . . . , n.
Compute Lui := ℓi (Zui, yu, ρ̄i) for all u = 1, 2, . . . ,m, i = 1, 2, . . . , n;
Compute ρ =

∑n

i=1
µiρ̄i;

Solve an equivalent formulation (13);
output: new weights µ1, µ2, . . . , µn.

(end)

end

where PW(z) := argmin
v∈W{ 12‖z− v‖22} is an Euclidean projection of a vector

z onto a convex set W, Gt is an estimate subgradient of fi at (w[i]t, ρti), con-
structed using a training example chosen by a random index ξt ∈ {1, 2, . . . ,m},
and ηt is a steplength of the form ηt = θi/

√
t for some θi > 0. The set W guides

the optimization to avoid taking too large steps, whose formulation can derived
analytically from strong duality [18, 11].

The convergence of the robust SGD algorithm is O(c(T0/T)θi/
√
T) in terms

of objective function values in expectation, where c(·) is a simple function only
depending on the ratio T0/T [14].

4.2 Central Optimization

The central problem (9), for the loss functions ℓ in Table 1, can be formulated
as a linear program (LP) or a quadratic program (QP) depending on the choices
of the regularizer Ψ . When we consider 2-class problems with Ψ(µ) = σ

2 ‖µ‖22 for

10 S. Lee, M. Stolpe, and K. Morik

σ ≥ 0, we can write an equivalent formulation to (9) as follows,

min
µ∈Rn

1

m
1T
mLµ+

σ

2
µTµ,

s.t. (L+DyZ)µ ≥ 1m, 1T
nµ = 1, µ ≥ 0,

(13)

where the elements of the matrices L ∈ R
m×n and Z ∈ R

m×n are defined in (10),
Dy is a diagonal matrix with elements y1, y2, . . . , ym, and 1m := (1, 1, . . . , 1)T ∈
R

m. Similar formulations can be derived for 1-class and regression tasks.
The solutions of (13) can be obtained using LP solvers when σ = 0, or using

QP solvers for σ > 0. In our experiments we use σ = 0.5, since it has produced
slightly better solutions than using σ = 0. For the solution method we adopt
the IBM ILOG CPLEX Optimization Studio Academic Research Edition v.12.4,
which provides one of the fastest LP/QP solvers for free for academic institutes.

The total number of elements to be transferred to a central node is O(m)
for each node i = 1, 2, . . . , n. (These elements compose the matrix Z.) This cost
can be reduced, trading some potential prediction improvement, by transferring
information for a small subsample of size m′ < m, rather than for the entire
training set of size m. This also reduces the number of constraints in the central
problem (13) from O(m) to O(m′). We have usedm′ = 5000 for our experiments.

We set the maximum number of central optimization to K = 10, stopping
the algorithm earlier if the prediction performance on m′ training samples does
not improve any further. (Three passes were enough in most cases.)

5 Experiments

We implemented Algorithm 1 based on the open-source C++ program ASSET [11]1,
comparing several different implementations built upon it:

– Separated: implements Algorithm 1.
– Composite: the standard SVM with a composite kernel (2) consisting of local

kernels. We set µi =
1
n
for all i = 1, 2, . . . , n.

– Single: the standard SVM with a single global kernel that uses all features.

All of these make use of approximations to the kernel feature mappings. We
also use SVMLight with its default parameters to make comparisons to the cases
using exact kernel information.

In all runs, we randomly partition the set of features into equal-sized n groups
and assign each group to one of n nodes. We use an overlap parameter to specify
the percentage of features in each node that are sampled from other nodes,
simulating peer-to-peer information exchange among nodes. The purpose of such
communication will be amending the loss of information due to partitioning.

We use Gaussian kernels of the form k(x,x′) = exp(−γ‖x−x′‖22) in all exper-
iments, where the parameter γ is tuned by a cross validation using SVMLight [7]

1 Available at http://pages.cs.wisc.edu/~sklee/asset/.

Separable Approximate Optimization of SVMs for Distributed Sensing 11

Table 2. Data sets and their training parameters.

Name m (train) test p (density) λ γ

ADULT 40701 8141 124 (11.2%) 3.07e-08 0.001
MNIST 58100 11900 784 (19.1%) 1.72e-07 0.01
CCAT 89702 11574 47237 (1.6%) 1.28e-06 1.0
IJCNN 113352 28339 22 (56.5%) 8.82e-08 1.0
COVTYPE 464809 116203 54 (21.7%) 7.17e-07 1.0

for real-world data sets. The parameter λ is tuned in the same way, and both are
shown in Table 2. For artificial data we use λ = 0.133 and γ = 0.001 found by the
Single code. Whenever we have localized kernels ki = exp(−γi‖x[i]−x′[i]‖22), we
set their parameters by γi = nγ. The purpose here is to compensate the difference
between the orders of magnitude ‖x[i] − x′[i]‖22 ∈ O(pi) and ‖x − x′‖22 ∈ O(p),
in a way that makes the arguments for exponential functions similar, i.e.

γi =
p

pi
γ ≈ nγ ⇒ γi‖x[i]− x′[i]‖22 ∈ O(γp).

For creating approximate feature mappings for kernels, we set their dimensions
to d = 1000 and di ≈ d/n for all experiments.

All experiments have been performed on 64-bit multicore Linux systems,
where a thread is created to simulate a node optimizing a separated objective.

5.1 Data

We use an artificial data set and five real-world benchmark data sets.

Artificial Data A data set is created by sampling 7500 (training) and 2500
(testing) p = 64 dimensional random vectors from two multivariate Gaussian dis-
tributions,N−(η−, Σ) andN+(η+, Σ) for two classes. We fix η− = (−1, . . . ,−1)T
and η+ = (1, . . . , 1)T . The two distributions share a covariance matrix Σ, which
is constructed with controlling the maximum number of nonzero entries (the
ratio is specified by the correlation ratio r ∈ [0, 1]). To construct a positive
semidefinite matrix Σ, we first sample a random matrix S ∈ R

p×p, computing
its QR decomposition, S = QR. Then we replace a fraction r of the rows of Q
by normalized random vectors of length p. Finally we set Σ = QQT , so that Σ
will contain up to p(rp+ (1− r)(rp+ 1)) nonzero entries.

Real-World Data Sets Five real-world benchmark data sets2 in Table 2 are
prepared as follows. ADULT is from the UCI machine learning repository, ran-
domly split into training and test sets. MNIST is prepared for classifying the
digits 0-4 from 5-9. CCAT is from the RCV1 collection, classifying the category

2 Available at the UCI Repository http://archive.ics.uci.edu/ml/, or at the LIB-
SVM website http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

12 S. Lee, M. Stolpe, and K. Morik

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

0.0 0.25 0.5 0.75 1.0

T
es

t e
rr

or
 r

at
e

0% overlap

2 nodes
4 nodes
8 nodes

16 nodes
32 nodes

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

0.0 0.25 0.5 0.75 1.0

20% overlap

2 nodes
4 nodes
8 nodes

16 nodes
32 nodes

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

0.0 0.25 0.5 0.75 1.0

T
es

t e
rr

or
 r

at
e

Correlation ratio r

40% overlap

2 nodes
4 nodes
8 nodes

16 nodes
32 nodes

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

0.0 0.25 0.5 0.75 1.0
Correlation ratio r

60% overlap

2 nodes
4 nodes
8 nodes

16 nodes
32 nodes

Fig. 1. Test error rates for different overlaps of features (100%: all features are available
at each local node), numbers of nodes, and correlation ratios (1.0: nonzero correlation
between all pairs of features). All measurements are averages over 20 runs with random
splits of features and random approximations of ϕ.

CCAT from the others, where we use the original test set as our training set and
the original training set as our test set. IJCNN is from the IJCNN 2001 Challenge
data set. COVTYPE classifies type 1 against the other forest cover types.

5.2 Artificial Data

Locality of information vs. prediction performance We first evaluated
how the locality of features affects the prediction performance of our algorithm
using localized kernels.

In Figure 1, we show the test error rates for different overlaps of attributes,
numbers of nodes, and correlation ratio r (averaged values over 20 repetitions
using randomized splits of features and approximations of ϕ). In each plot, for a
fixed number of nodes, say n = 8, we can check that the error rate increases as
the correlation ratio increases. This is something expected, since as more features
are correlated, we are likely to lose more information by partitioning features
into groups and treating them separately.

For a fixed correlation ratio, say r = 0.5 (the midpoints of the four plots in
Figure 1), the error rate tends to increase with the number of nodes. This will
be also due to the loss of information by partitioning. But it seems that such

Separable Approximate Optimization of SVMs for Distributed Sensing 13

 0

 10

 20

 30

 40

 50

 60

 2 4 8 16 32

R
un

tim
e

in
 s

ec
on

ds

Number of nodes n

0% overlap

local
central

 0

 10

 20

 30

 40

 50

 60

 2 4 8 16 32
Number of nodes n

60% overlap

local
central

Fig. 2. Runtime (in seconds) at the central node and average runtime (in seconds)
for the local optimizations, for different overlaps of features (100%: all features are
available at each local node) and numbers of nodes. The correlation ratio is fixed at
r = 0.25. All values are averages over 20 runs with random splits of features and
random approximations of ϕ.

loss could be compensated by providing nodes some “overlapping” features from
other nodes, which can be observed as we scan through the top left, top right,
bottom left, and bottom right plots, for 32 nodes with correlation ratio r = 0.5
for instance.

Scalability using multiple nodes Figure 2 shows the average runtime (in
seconds) taken in the local and the central optimization of our algorithm. Since
the runtime values are not affected much by the correlation ratio r, we show
only the plots for r = 0.25 here.

The runtime for the local optimization keeps improving as we use more nodes
up to n = 16, since all optimizations can be done in parallel (the machine had 32
physical cores). Considering the test error rates reported in the corresponding
plots (top left and bottom right) in Figure 1, at correlation ratio r = 0.25, using
more nodes would not harm too much the prediction performance. An exception
will be n = 32, which seems to make each group too small, deteriorating both
scalability and accuracy by a noticeable amount. The runtime for central opti-
mization was almost negligible in this case. The optimization took slightly longer
for 60% overlap than the case of no overlap, since the former had to handle larger
number of attributes.

5.3 Benchmark on Real-World Data Sets

For benchmark we fix the number of nodes to n = 8, since it has showed a good
accuracy and speed tradeoff in the experiments with our artificial data. In local
optimization, we set the number of SGD iterations to 10m, ten times of the
number of training examples.

Table 3 shows the runtime and test error rate values over 20 repeated runs,
except for CCAT where we use 12 runs due to its long runtime, of all methods

14 S. Lee, M. Stolpe, and K. Morik

Table 3. Training CPU time (in seconds, h:hours) and test error rate (mean and
standard deviation %) in parentheses. The features of input vectors are distributed in
two different ways: (i) each node contains disjoint set of features (no overlap), or (ii)
each node has 25% of its features as copies from other nodes (25% overlap).

No
Overlap

ASSET-SVM
SVMLightSeparated

Composite Single
+ Central − Central

ADULT 28(20.0±0.02) 9(20.6±1.17) 44(15.5±0.64) 235(15.7±0.74) 966(15.1)
MNIST 101(11.1±0.39) 87(11.1±0.39) 539 (7.0±0.72) 1539 (7.0±0.45) 1031 (1.1)
CCAT 1h(26.3±1.00) 1h(26.3±1.00) 8h(20.9±0.63) - 2h (4.2)
IJCNN 67 (9.1±0.88) 20 (9.5±0.07) 86 (4.1±0.53) 177 (1.6±0.13) 687 (0.7)
COVTYPE 234(29.3±2.76) 82(35.2±1.05) 373(21.1±0.61) 938(18.0±0.78) 23h (7.4)

25%
Overlap

ASSET-SVM
SVMLightSeparated

Composite Single
+ Central − Central

ADULT 28(19.0±1.69) 9(19.7±1.34) 48(15.5±0.49) 235(15.7±0.74) 966(15.1)
MNIST 112(11.1±0.39) 94(12.1±0.72) 486 (7.3±0.50) 1539 (7.1±0.45) 1031 (1.1)
CCAT 2h(29.5±1.01) 2h(29.5±1.01) 10h(23.8±0.80) - 2h (4.2)
IJCNN 75 (8.6±1.05) 20 (9.4±0.63) 107 (3.8±0.56) 177 (1.6±0.13) 687 (0.7)
COVTYPE 219(29.6±2.76) 94(33.7±1.34) 466(20.8±0.63) 938(18.0±0.78) 23h (7.4)

for the five benchmark data sets, without and with 25% overlap of features.
In each run we randomize the partitioning of features and the projections for
constructing approximate feature mappings, if applicable. For Single ASSET,
the overlap parameter has no effect, so the results are copied in both tables for
readability. The results for Single on CCAT are unavailable for its impractically
long runtime.

Gap from the separation of optimization We first compare the results
of Separated and Composite in Table 3. The difference here occurs because
of our construction of separable surrogate objective functions using the convex
inequality in (7).

Comparing to the third column (Composite) of Table 3, the test error rates in
the second column (Separated without central optimization) has been increased
by 1.63 (no overlap) and 1.65 (25% overlap) times on average. Considering that
Composite has the access to all feature information, through a single composite
kernel consisting of all localized kernels, such increments seem to be moderate.
In Separated, features and optimizations are distributed among the nodes, and
thereby the SVM can be solved in much shorter time (about 5 times faster on
average) but sacrificing accuracy.

Improvement by central optimization The first two columns of Table 3
show the potential improvement and cost of an additional central optimization.
The improvements in test error rates seem to be marginal (6 ∼ 7%), but recall
that these are obtained using a small subsample (5000) from each training set

Separable Approximate Optimization of SVMs for Distributed Sensing 15

for the central problem, rather than using the entire set, simulating a limited
communication bound.

Gap from using localized kernels In the third and fourth columns of Table 3,
the information of all features is accessed through either a composite kernel con-
sisting of local kernels (Composite), or a single kernel using all features directly
(Single). The Composite approach is very similar to the standard MKL, except
that here we are using fixed weights among the local kernels. As we can see, the
performance in terms of error rates is not very different in these two approaches.

The overall runtime of Composite is shorter than Single, although they have
essentially the same time complexity. The savings in Compositemight have come
from the fact that the input vectors are sparse in our benchmark sets, where
subvectors of them tend to be more sparse, reducing the time for projections on
random directions in constructing approximate feature mappings.

Gap from approximating kernels The difference in the last two columns of
Table 3 is resulted from that the feature mappings of kernels are approximated
in Single, whereas SVMLight uses exact kernels. The error rates of Single

are comparable in most cases, except for CCAT and COVTYPE. We believe the
results will improve with larger approximation dimensions in general. Also, we
can consider using different types of approximations for CCAT, and using more
iterations in the local optimization for COVTYPE. We refer to [16, 11] for more
extensive comparison in this respect.

6 Conclusion

We suggest a separable optimization framework for solving the support vector
machines on distributed sensor measurements, minimizing communication cost
to construct a global predictor. While sacrificing some accuracy, our framework
provides a transparent way to derive a separable function that becomes an upper
bound of the original SVM objective, based on the convexity of loss functions
and approximations to kernel feature mappings.

Acknowledgements

The authors acknowledge the support of Deutsche Forschungsgemeinschaft (DFG)
within the Collaborative Research Center SFB 876 “Providing Information by
Resource-Constrained Analysis”, project B3 and C1.

References

1. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality,
and the SMO algorithm. In: Proceedings of the 21st International Conference on
Machine Learning (2004)

16 S. Lee, M. Stolpe, and K. Morik

2. Bi, J., Zhang, T., Bennett, K.P.: Column-generation boosting methods for mixture
of kernels. In: Proceedings of the 10th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 521–526 (2004)

3. Drineas, P., Mahoney, M.W.: On the nystrom method for approximating a gram
matrix for improved kernel-based learning. Journal of Machine Learning Research
6, 2153–2175 (2005)

4. Fine, S., Scheinberg, K.: Efficient svm training using low-rank kernel representa-
tions. Journal of Machine Learning Research 2, 243–164 (2001)

5. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning.
Springer (2001)

6. Joachims, T., Finley, T., Yu, C.N.: Cutting-plane training of structural svms. Ma-
chine Learning 77(1), 27–59 (2009)

7. Joachims, T.: Making large-scale support vector machine learning practical. In:
Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support
Vector Learning, chap. 11, pp. 169–184. MIT Press, Cambridge, MA (1999)

8. Kloft, M., Brefeld, U., Sonnenburg, S., Zien, A.: ℓp-norm multiple kernel learning.
Journal of Machine Learning Research 12, 953–997 (2011)

9. Lanckriet, G.R.G., De Bie, T., Cristianini, N., Jordan, M.I., Noble, W.S.: A statis-
tical framework for genomic data fusion. Bioinformatics 20(16), 2626–2635 (2004)

10. Lanckriet, G., Cristianini, N., Bartlett, P., E.G., L., Jordan, M.: Learning the kernel
matrix with semidefinite programming. In: Proceedings of the 19th International
Conference on Machine Learning (2002)

11. Lee, S., Wright, S.J.: ASSET: Approximate stochastic subgradient estimation
training for support vector machines. In: International Conference on Pattern
Recognition Applications and Methods (2012)

12. Lippi, M., Bertini, M., Frasconi, P.: Collective traffic forecasting. In: Proceedings
of the 2010 European conference on Machine learning and knowledge discovery in
databases: Part II. pp. 259–273 (2010)

13. Morik, K., Bhaduri, K., Kargupta, H.: Introduction to data mining for sustainabil-
ity. Data Mining and Knowledge Discovery 24(2), 311–324 (2012)

14. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approxima-
tion approach to stochastic programming. SIAM Journal on Optimization 19(4),
1574–1609 (2009)

15. Nemirovski, A., Yudin, D.B.: Problem complexity and method efficiency in opti-
mization. John Wiley (1983)

16. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Ad-
vances in Neural Information Processing Systems, vol. 20, pp. 1177–1184. MIT
Press (2008)

17. Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet., Y.: More efficiency in multi-
ple kernel learning. In: Proceedings of the 24th international conference on machine
learning (2007)

18. Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: Primal Estimated
sub-GrAdient SOlver for SVM. Mathematical Programming, Series B 127(1), 3–30
(2011)

19. Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel
learning. Journal of Machine Learning Research 7, 1531–1565 (July 2006)

20. Wahba, G.: Splines Models for Observational Data, CBMS-NSF Regional Confer-
ence Series in Applied Mathematics, vol. 59. SIAM (1990)

21. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. In: Proceedings of the 20th International Conference on Machine Learning.
pp. 928–936 (2003)

