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Abstract. The success of many machine learning algorithms (e.g. the
nearest neighborhood classification and k-means clustering) depends on
the representation of the data as elements in a metric space. Learning an
appropriate distance metric from data is usually superior to the default
Euclidean distance. In this paper, we revisit the original model proposed
by Xing et al. [25] and propose a general formulation of learning a Maha-
lanobis distance from data. We prove that this novel formulation is equiv-
alent to a convex optimization problem over the spectrahedron. Then, a
gradient-based optimization algorithm is proposed to obtain the optimal
solution which only needs the computation of the largest eigenvalue of a
matrix per iteration. Finally, experiments on various UCI datasets and
a benchmark face verification dataset called Labeled Faces in the Wild
(LFW) demonstrate that the proposed method compares competitively
to those state-of-the-art methods.

Keywords: Metric learning, convex optimization, Frank-Wolfe algorithm,
face verification.

1 Introduction

Many machine learning algorithms critically depend on the quality of the chosen
distance metric. For instance, k-nearest neighbor classification needs the identifi-
cation of nearest neighbors and k-means clustering depends on the distance mea-
surements for clustering. The default distance is the Euclidean distance, which,
however, does not reflect the given data representation. Recent advances in met-
ric learning [1, 2, 4, 6, 19, 20, 22, 23, 25, 27] make it possible to learn an effective
distance metric which is more suitable for a given learning problem. These meth-
ods have demonstrated the successful applications of metric learning to various
real-world problems including information retrieval and face verification.

Given some partial information of constraints, the goal of metric learning is
to learn a distance metric which reports small distances for similar examples and
large distances for dissimilar examples. The partial information can be presented
in the form of constraints such as similarity or dissimilarity between a pair of
examples. These constraints can be collected either from the label information
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in supervised classification or the side information in semi-supervised clustering
such as must-links and cannot-links. Most of metric learning methods focus on
learning a Mahalanobis metric defined by dM (xi, xj) =

√
(xi − xj)⊤M(xi − xj)

where M is a positive semi-definite (p.s.d.) matrix. Many metric learning meth-
ods for learning Mahalanobis distances are therefore formulated as semi-definite
programs [21].

Depending on the generation of constraints information, metric learning can
be supervised or unsupervised. Unsupervised metric learning is closely related
to dimension reduction. To see this, observe that any positive semi-definite M
can be rewritten as A⊤A, and hence, dM (xi, xj) =

√
(xi − xj)⊤M(xi − xj) =

∥A(xi−xj)∥. This simple observation implies that learning an appropriate M is
equivalent to learning an appropriate projection map A. From this perspective,
dimension reduction methods (e.g. [3, 16, 17]) can be regarded as unsupervised
metric learning. In supervised metric learning, the available labels can be used
to create the information of constraints. Supervised metric learning can be fur-
ther divided into two categories: the global method and the local method. The
global methods learn the distance metric which satisfies all the pairwise con-
straints simultaneously. The original model proposed by Xing et al. [25] is a
global method which used all the similar pairs (same labels) and dissimilar pairs
(distinct labels). Local methods only use local pairwise constraints which usu-
ally outperform the global ones as observed in many previous studies. This is
particularly reasonable in the case of learning a metric for the kNN classifiers
since kNN classifiers are influenced mostly by the data items that are close to
the test/query examples. Since we are mainly concerned with metric learning
for kNN classifier, the pairwise constraints are generated locally, that is, the
similar/dissimilar pairs are k-nearest neighbors. The details can be found in the
experimental section.

In this paper, we revisit the original model proposed by Xing et al. [25],
where the authors proposed to learn a metric by maximizing the distance be-
tween dissimilar samples whilst keeping the distance between similar points
upper-bounded. However, the projection gradient method employed there usu-
ally takes a large number of iterations to become convergent, and also it needs
the full eigen-decomposition per iteration. The first contribution of this paper is
to extend the methods in [25, 28] and propose a general formulation for metric
learning. We prove the convexity of this general formulation and illustrate it
with various examples. Our second contribution is to show, by exploring its spe-
cial structures, that the proposed formulation is further equivalent to a convex
optimization over the spectrahedron. This equivalent formulation enables us to
directly employ the Frank-Wolfe algorithm [5] to obtain the optimal solution. In
contrast to the algorithm in [25], our proposed algorithm only needs to compute
the largest eigenvalue of a matrix per iteration and is guaranteed to converge
with a time complexity O(1/t) where t is the iteration number.

The paper is organized as follows. The next section presents the proposed
model and proves its convexity. Section 3 establishes its equivalent formulation
from which an efficient algorithm is proposed. In Section 4, we review and discuss
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some related work on metric learning. Section 5 reports experimental results on
UCI datasets and a benchmark face verification dataset called Labeled Faces in
the Wild (LFW). The last section concludes the paper.

2 Convex Metric Learning Model

We begin by introducing some useful notations. For any n ∈ N, denote Nn =
{1, 2, . . . , n}. The space of symmetric d × d matrices is denoted by Sd and Sd+
denotes the cone of positive semi-definite matrices. For any X,Y ∈ Rd×n, the
inner product in Sd is denoted by ⟨X,Y ⟩ := Tr(X⊤Y ) where Tr(·) is the trace
of a matrix.

For simplicity, we focus on learning a distance metric for kNN classification,
although the proposed methods below can easily be adapted to metric learning
for k-means clustering. Now we denote the training data by z := {(xi, yi) : i ∈
Nn} with input xi = (x1

i , x
2
i , . . . , x

d
i ) ∈ Rd, class label yi (not necessary binary).

Later on, we use the convention Xij = (xi − xj)(xi − xj)
⊤ and let S index the

similarity pairs, D index the dissimilarity pairs. For instance, τ = (i, j) ∈ S
means that (xi, xj) is a similar pair and rewrite Xij as Xτ . One can follow the
mechanism in [22] to extract local information of similarity or dissimilarity for
kNN classification; see the experimental section for more details.

Given a set of similar samples and a set of dissimilar samples, we aim to find
a good distance matrix M such that the distance between the dissimilar pair
is large while keeping the distance between the similar pairs small. There are
many formulations to achieve this goal. In particular, the following formulation
was proposed in [25]:

maxM∈Sd+

∑
(i,j)∈D dM (xi, xj)

s.t.
∑

(i,j)∈S [dM (xi, xj)]
2 ≤ 1.

(1)

An iterative projection method was employed to solve the above problem. How-
ever, the algorithm generally takes a long time to converge and it needs the
computation of the full eigen-decomposition of a matrix per iteration.

In this paper, we propose a more general formulation:

maxM∈Sd+

[∑
(i,j)∈D[dM (xi, xj)]

2p/D
] 1

p

s.t.
∑

(i,j)∈S [dM (xi, xj)]
2 ≤ 1,

(2)

where p ∈ (−∞,∞) and D is the number of dissimilarity pairs. We refer to the
above formulation as DMLp . The above formulation is well defined even for
the limiting case p = 0 as discussed in the examples below.

– p = 1/2: In this case, problem (2) can be written as

maxM∈Sd+

[∑
(i,j)∈D dM (xi, xj)/D

]2
s.t.

∑
(i,j)∈S [dM (xi, xj)]

2 ≤ 1,
(3)

which is equivalent to formulation (1) proposed in [25].
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– p→ −∞: Observe, for any positive sequence {αi > 0 : i ∈ Nn}, that

lim
p→−∞

(∑
i∈Nn

api /n
) 1

p = min
i∈Nn

ai.

Hence, in the limiting case p → −∞, problem (2) is reduced to the metric
learning model called DML-eig [28]:

maxM∈Sd+ min(i,j)∈D[dM (xi, xj)]
2

s.t.
∑

(i,j)∈S [dM (xi, xj)]
2 ≤ 1.

(4)

– p→ 0: Note, for any sequence {αi > 0 : i ∈ Nn}, that

lim
p→0

[∑
i∈Nn

api /n
] 1

p =

n∏
i=1

α
1
n
i .

Hence, in the limiting case p→ 0, problem (2) becomes

maxM∈Sd+

∏
(i,j)∈D[dM (xi, xj)]

2
D

s.t.
∑

(i,j)∈S [dM (xi, xj)]
2 ≤ 1,

where D is the number of dissimilar pairs in the set D.

The following theorem investigates the convexity/concavity of the objective
function in problem (2).

Theorem 1. Let function L : Sd+ → R be the objective function of DMLp, i.e.,

for any M ∈ Sd+, L(M) =
[∑

(i,j)∈D⟨Xij ,M⟩p/D
] 1

p for p ̸= 0, and L(M) =∏
(i,j)∈D[dM (xi, xj)]

2
D for p = 0. Then, we have that L(·) is concave for p < 1

and otherwise convex.

Proof. First we prove the concavity of L(·) when p < 1 and p ̸= 0. It suffices
to prove, for any n ∈ N and for any {a = (a1, a2, . . . , an) : ai > 0, i ∈ Nn},
that function (

∑
j∈Nn

apj )
1/p is concave w.r.t. variable a. To this end, let f be

a function defined, for any x > 0 and y > 0, by f(x, y) = −x1−pyp/p. We can
easily prove that f is jointly convex w.r.t. (x, y), since its Hessian matrix

(1− p)

(
x−p−1yp −x−pyp−1

−x−pyp−1 x1−pyp−2

)
∈ Sd+.

Consequently, for any i ∈ Nn, −x1−papi /p is jointly convex, which implies that its
summation

∑
i∈Nn

−x1−papi /p = −x1−p(
∑

i∈Nn
api )/p is jointly convex. Hence,

the function defined by E(x,a) = (1− p)x/p− x1−p(
∑

i∈Nn
api )/p is also jointly

convex w.r.t. (x,a). Clearly,

−(
∑
j∈Nn

apj )
1/p = min{E(x,a) : x ≥ 0}. (5)
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Recalling that the partial minimum of a jointly convex function is convex [9,
Sec.IV.2.4], we obtain the concavity of (

∑
j∈Nn

apj )
1/p when p < 1 and p ̸= 0.

The concavity of L for p = 0 follows from the fact that the limit function of a
sequence of concave functions is concave.

The convexity of L for p ≥ 1 can be proved similarly by observing that
E(x,a) is jointly concave if p ≥ 1. Consequently, equation (5) should be replaced
by (

∑
j∈Nn

apj )
1/p = min{−E(x,a) : x ≥ 0}. This completes the proof of the

theorem.

We conclude this section with two remarks. Firstly, we exclude the extreme
case p = 1 since, in this case, the optimal solution of DMLp will be always
a rank-one matrix (i.e. the data is projected to the line), as argued in [25].
Secondly, when p ∈ (1,∞), by Theorem 1 we know that formulation (2) is
indeed a problem of maximizing a convex function, which is a challenging task
to get a global solution. In this paper we will only consider the case p ∈ (−∞, 1)
which guarantees that formulation (2) is a convex optimization problem.

3 Equivalent Formulation and Optimization

We turn our attention to an equivalent formulation of problem (2), which is
critical to designing its efficient algorithms. For notational simplicity, denote the
spectrahedron by P = {M ∈ Sd+ : Tr(M) = 1} and let XS =

∑
(i,j)∈S Xij . Then,

DMLp (i.e. formulation (2)) can be rewritten as the following problem:

maxM∈Sd+

[∑
τ∈D⟨Xτ ,M⟩p/D

] 1
p

s.t. ⟨XS + δId,M⟩ ≤ 1.
(6)

Without loss of generality, we assume thatXS is invertible throughout the paper.
This can be achieved by adding a small ridge term, i.e. XS ←− XS + δ Id where
Id is the identity matrix and δ > 0 is a small ridge constant. In this case, we can
apply the Cholesky decomposition to get that XS = LL⊤, where L is a lower
triangular matrix with strictly positive diagonal entries.

Equipped with the above preparations, we are now ready to show that
problem (2) is equivalent to an optimization problem over the spectrahedron
P = {M ∈ Sd+ : Tr(M) = 1}. Similar ideas have been used in [28].

Theorem 2. For any τ = (i, j) ∈ D, let X̃τ = L−1(xi − xj)(L
−1(xi − xj))

⊤.
Then, problem (2) is equivalent to

max
S∈P

[∑
τ∈D

⟨X̃τ , S⟩p
] 1

p , (7)

Proof. Let M∗ be an optimal solution of problem (2) and M̃∗ = M∗

⟨XS ,M∗⟩ .

Then, ⟨XS , M̃
∗⟩ = 1 and

[∑
τ∈D

⟨Xτ ,M̃
∗⟩p

D

] 1
p =

[∑
τ∈D

⟨Xτ ,M
∗⟩p

D

] 1
p /⟨XS ,M

∗⟩ ≥
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Input:
· parameter p ∈ (−∞, 1)
· tolerance value tol (e.g. 10−5)
· step sizes {αt = 2/(t+ 1) : t ∈ N}

Initialization: S1 ∈ Sd
+ with Tr(S1) = 1

for t = 1, 2, 3, . . . do

· Zt = argmax
{
⟨Z,∇f(St)⟩ : Z ∈ Sd

+, Tr(Z) = 1
}

i.e. Zt = vv⊤

where v is the maximal eigenvector of matrix ∇f(St)
· St+1 = (1− αt)St + αtZt

· if |f(St+1)− f(St)| < tol then break

Output: d× d matrix St ∈ Sd
+

Table 1. Pseudo-code of the Frank-Wolfe algorithm to solve DMLp where f denotes
the objective function of formulation (7).

[∑
τ∈D

⟨Xτ ,M
∗⟩p

D

] 1
p since ⟨XS ,M

∗⟩ ≤ 1. This implies that M̃∗ is also an optimal
solution. Consequently, problem (2) is equivalent to, up to a scaling constant,

maxM∈Sd+

[∑
(i,j)∈D⟨Xτ ,M⟩p/D

] 1
p

s.t. ⟨XS ,M⟩ = 1.
(8)

Recall that XS = LL⊤ by Cholesky decomposition. Now the desired equivalence
between (2) and (7) follows from changing variable S = L⊤ML in (8). This
completes the proof of the theorem.

By Theorem 2, the original metric learning problem (2) is reduced to a max-
imization problem on the spectrahedron. Therefore, we can apply the Frank-
Wolfe (FW) algorithm [5, 8] to obtain the optimal solution: the pseudo-code of
the algorithm is given in Table 1 where f denotes the objective function of formu-
lation (7). We conclude this section with a final remark. The objective function[∑

τ∈D⟨X̃τ , S⟩p
] 1

p in formulation (7) is not smooth since p can be negative. In
order to avoid the numerical instability, we can add a small positive number

inside so that it becomes a smooth function, i.e.
[∑

τ∈D(⟨X̃τ , S⟩)p
] 1

p is replaced

by
[∑

τ∈D(⟨X̃τ , S⟩ + ε)p
] 1

p where ε is a small positive number (e.g. ε = 10−8).
If the objective function has a Lipschitz-continuous gradient, then, by choosing
αt =

2
t+1 , the FW algorithm is guaranteed to converge with a time complexity

O(1/t). One can refer to [8, 27] for a detailed proof.

4 Related Work

In recent years, distance metric learning has received a lot of attention in machine
learning, see e.g. [1, 2, 4, 6, 15, 19, 20, 22, 25, 27] and the references therein. It will
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be a difficult task to give a comprehensive review on related work. Below we only
briefly discuss some methods which are closely related to our work. We refer the
readers to [26] for more related work on metric learning.

Xing et al. [25] presented metric-learning formulation (1) for k-means cluster-
ing. The method aims to maximize the distances between dissimilar samples sub-
ject to the constraint that distances between similar samples are upper-bounded.
Ying et al. [28] proposed to maximize the minimal distance between dissimilar
pairs while maintaining an upper bound for the distances between similar pairs.
The proposed method (4) was shown to be equivalent to an eigenvalue opti-
mization, which was solved by the Frank-Wolfe algorithm after smoothing the
objective function. Our method DMLp is mainly motivated by the above two
methods and provides a more general framework by recovering [25, 28] as special
cases. In contrast to the alternating projection method [25], we show that DMLp

is reduced to a convex optimization problem over the spectrahedron. This new
optimization formulation enables the direct application of the Frank-Wolfe algo-
rithm which only needs the computation of the largest eigenvector of a matrix
per iteration.

Weinberger et al. [22] developed the method called LMNN to learn a Ma-
halanobis distance metric in kNN classification settings. LMNN, as one of the
state-of-the-art metric learning methods, aims to enforce k-nearest neighbors
always belonging to the same class while examples from different classes being
separated by a large margin. LMNN is a local method as it only used triplets
from k-nearest neighbors. Similar to LMNN, our method focuses on similar pairs
and dissimilar pairs generated from k-nearest neighbors. Davis et al. [4] proposed
an information theoretic approach (ITML) to learning a Mahalanobis distance
function by minimizing the Kullbach-Leibler divergence between two multivari-
ate Gaussians subject to pairwise constraints.

Shen et al. [19] recently employed the exponential loss for metric learning
named as BoostMetric and a boosting-based algorithm was developed. The ra-
tionale behind this algorithm is that each p.s.d. matrix can be decomposed into
a linear positive combination of trace-one and rank-one matrices. This algorithm
is very similar to the Frank-Wolfe algorithm employed for DMLp since both of
them iteratively find a linear combination of rank-one matrices to approximate
the desired solution. However, the method is a general column-generation al-
gorithm and its convergence rate is not clear. The Frank-Wolfe algorithm for
DMLp is theoretically guaranteed to have a convergence rate O(1/t) and it is
relatively easy to be implemented by using just a few lines of MATLAB codes.

Guillaumin et al. [7] presented a metric learning model based on a logistic
regression loss function called LDML. The method aims to learn robust dis-
tance measures for face identification using a logistic discriminant. In order to
reduce the computational time, the authors proposed to remove the positive
semi-definiteness constraint on the distance matrix. This would only lead to a
sub-optimal solution.
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Data No. n d class T D

Balance 1 625 4 3 3951 1317
Breast-Cancer 2 569 30 2 3591 1197

Diabetes 3 768 8 2 4842 1614
Image 4 2310 19 2 14553 4851
Iris 5 150 4 3 954 315

Waveform 6 5000 21 3 31509 10503
Wine 7 178 13 3 1134 378

Table 2. Description of datasets used in the experiments: n and d respectively denote
the number of samples and attributes (feature elements) of the data; T is the number
of triplets and D is the number of dissimilar pairs.

5 Experiments

In this section, we compare the empirical performance of our proposed method
DMLp with six other methods: the method proposed in [25] denoted by Xing,
LMNN [22], ITML [4], BoostMetric [19], DML-eig [28] and the baseline algorithm
using the standard Euclidean distance denoted by Euclidean. The model param-
eters in ITML, LMNN, BoostMetric and DMLp are tuned via three-fold cross
validation. In addition, the maximum iteration number for DMLp is 1000 and
the algorithm is terminated when the relative change of the objective function
value is less than 10−5.

We first run the experiments on UCI datasets to compare the kNN classifi-
cation performance (k = 3) of different metric learning methods, where the kNN
classifier is constructed using the Mahalanobis distance learned by metric learn-
ing methods. Then, we investigate the application of our method to the problem
of face verification. In particular, we evaluate our new metric learning method
using a large scale face database called Labeled Faces in the Wild (LFW) [10].
The LFW dataset is very challenging and difficult due to face variations in scale,
pose, lighting, background, expression, hairstyle, and glasses, as the faces are de-
tected in images in the wild, taken from Yahoo! News. Recently it has become
a benchmark to test new face verification algorithms [10, 24, 7, 18].

5.1 Convergence and Generalization on UCI Datasets

To investigate the convergence and generalization of DMLp , we run experiments
on seven UCI datasets: i.e. 1) Balance; 2) Breast-Cancer; 3) Diabetes; 4) Image
segmentation; 5) Iris; 6) Waveform; 7) Wine. The statistics of the datasets are
summarized in Table 2. All the experimental results are obtained by averaging
over 10 runs and, for each run, the data is randomly split into 70% for training
and 30% for testing. To generate relative constraints and pairwise constraints, we
adopt a similar mechanism in [22]. More specifically, for each training point xi,
k nearest neighbors that have the same labels as yi (targets) as well as k nearest
neighbors that have different labels from yi (imposers) are found. According
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to xi and its corresponding targets and imposers, we then construct the set of
similar pairs S, the set of dissimilar pairs D and the set of relative constraints
in the form of triplets denoted by T required by LMNN and BoostMetric. As
mentioned above, the original formulation in [25] used all pairwise constraints.
For fairness of comparison, all methods including Xing used the same set of
similar/dissimilar pairs generated locally as above.

Firstly, we study the convergence of algorithm DMLp with varying values of
p. In Figure 1, we plot the objective function value of DMLp versus the number
of iteration on Balance (subfigure (a)); Iris (subfigure (b)); Diabetes (subfigure
(c)); and Image (subfigure (d)). We can see from Figure 1 that the algorithm
converges quickly. The smaller the value of p is and the more iterations algorithm
DMLp needs.

Secondly, we investigate the performance of DMLp against different values of
p. Figure 2 depicts the test error of DMLp versus the value of p on Balance (sub-
figure (a)); Iris (subfigure (b)); Diabetes (subfigure (c)); and Image (subfigure
(d)). We can observe from Figure 2 that the test error varies on different values
of p and the best performance of DMLp is superior to those of DML-eig [28] and
Xing [25] which are the special cases of DMLp with p→ −∞ and p = 1/2 respec-
tively. This observation validates the value of the general formulation DMLp and
suggests the importance of choosing an appropriate value of p. In the following
experiments, we will tune the value of p by three cross-validation.

Finally, we study the generalization performance of kNN classifiers where
the distance metric to measure nearest neighbors is learned by metric learning
methods. To this end, we compare DMLp with other metric learning methods
including Xing [25], LMNN [22, 23], ITML [4] and BoostMetric [19] as mentioned
above. Figure 3 depicts the performance of different methods. It shows that al-
most all metric learning methods improve kNN classification using Euclidean
distance on most datasets. Our proposed method DMLp delivers competitive
performance with other state-of-the-art algorithms such as ITML, LMNN and
BoostMetric. Indeed, DMLp outperforms other methods on 4 out of 7 datasets
and shows competitive performance against the best one on the rest 3 datasets.
From Figure 3, it is reasonable to see that the test errors of DML1/2 are consis-
tent with those of Xing since they are essentially the same model implemented
by different algorithms. The only exception is the performance on Waveform
dataset: the test error of Xing is much worse than DML1/2. The reason could
be that the alternating projection method proposed in [25] does not converge
in a reasonable time due to the relatively large number of samples in Waveform
dataset.

5.2 Application to Face Verification

The task of face verification is to determine whether two face images are from
the same identity or not. Metric learning provides a very natural solution by
comparing the image pairs based on the metric learnt from the face data. In
this experiment, we investigate the performance of DMLp on the LFW dataset
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Fig. 1. Evolution of the objective function value of DMLp versus the number of itera-
tion with varying p on Balance (a), Iris (b), Diabetes (c) and Image (d).

[10] – a benchmark dataset for face verification. It contains a total of 13233 la-
beled face images of 5749 people, 1680 of them appear in more than two images.
There are two separate settings for forming training data: image-restricted and
image-unrestricted setting. In the image-restricted paradigm, only the informa-
tion whether a pair of images belongs to the same person (same class) is available
and no information of actual names (class labels) in the pair of images is given.
In the unrestricted setting, all available data including the identity of the people
in the image is known. In this paper, we mainly consider the image-restricted
setting.

The images we used are in gray scale and aligned in two ways. One is “fun-
neled” [10] and the other is “aligned” using a commercial face alignment software
[14]. We investigated several facial descriptors (features extracted from face im-
ages): 1) raw pixel data by concatenating the intensity value of each pixel in
the image denoted by Intensity; 2) Local Binary Patterns (LBP) [13]; 3) Three-
Patch Local Binary Patterns (TPLBP) [24]. For a fair comparison with [7], we



Distance Metric Learning Revisited 11

−256 −64 −16 −4 0 0.0078 0.313 0.125 0.5 0.75
5

10

15

20

25

value of p

te
s
t 
e

r
r
o

r
 (

%
)

 

 

DMLp

DML−eig

Xing

(a)

−256 −64 −16 −4 0 0.078 0.0313 0.125 0.5 0.75
2.5

3

3.5

4

4.5

5

5.5

6

6.5

value of p

te
s
t 
e

r
r
o

r
 (

%
)

 

 

DMLp

DML−eig

Xing

(b)

−256 −64 −16 −4 0 0.0078 0.0313 0.125 0.5 0.75
26.5

27

27.5

28

28.5

29

29.5

30

value of p

te
s
t 
e

r
r
o

r
 (

%
)

 

 

DMLp

DML−eig

Xing

(c)

−256 −64 −16 −4 0 0.0078 0.313 0.125 0.5 0.75
2

4

6

8

10

12

14

16

value of p

te
s
t 
e

r
r
o

r
 (

%
)

 

 

DMLp

DML−eig

Xing

(d)

Fig. 2. Test error (%) of DMLp versus different values of p on Balance (a), Iris (b),
Diabetes (c) and Image (d). Red circled line is the result of DMLp across different
values of p (log-scaled); blue dashed line is the result of DML-eig and black dashed line
represents the result of Xing.

also used SIFT descriptors 1computed at the fixed facial key-points (e.g., cor-
ners of eyes and nose). Since the original dimensionality of the features is quite
high (from 3456 to 12000), we reduced the dimension using principal component
analysis (PCA). These descriptors were tested with both their original values
and the square root of them [24, 7].

In the image-restricted protocol, only pairwise constraints are given. LMNN
and BoostMetric are not applicable to this setting since they require relative
constraints in the form of triplets. Hence, we only compared our DMLp method
with ITML [4] and LDML [7]. The performance of our method is measured
by the 10-fold cross-validation test. In each repeat, nine folds containing 2700
similar pairs of images and 2700 dissimilar pairs of images are used to learn a

1 http://lear.inrialpes.fr/people/guillaumin/data.php
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Fig. 3. Average test error (%) of DMLp against other methods.

metric and the remaining fold containing 600 image pairs is used to evaluate the
performance of the metric learning method using accurate verification rate.

Firstly, we investigate the performance of DMLp on the SIFT descriptor by
varying the dimension of principal components. Figure 4 depicts the verification
accuracy versus the dimension of PCA. We can see that, compared to the ITML
and LDML algorithms, our DMLp method using only SIFT descriptor deliv-
ers relatively stable performance as the PCA dimension varies. In particular,
the performance of DMLp becomes stable after the dimension of PCA reaches
around 100 and it consistently outperforms ITML across different PCA dimen-
sions. We also observed similar results for other descriptors. Hence, for simplicity
we set the PCA dimension to be 100 for the SIFT descriptor and other descrip-
tors. According to [7], the best performances of LDML and ITML on the SIFT
descriptor are 77.50% and 76.20% respectively. The best performance of DMLp

reaches around 80% which outperforms ITML and LDML. We also note that
the performance of ITML we got here is consistent with that reported in [7].

Secondly, we test the performance of our method using different descriptors
and their combinations. Table 3 summarizes the results. In Table 3, the notation
“Above combined” means that we combine the distance scores from the above
listed (six) descriptors in the table using a linear Support Vector Machine (SVM),
following the procedure in [7]. “All combined” means that all eight distance
scores are combined. We observe that combining 4 descriptors (Intensity, SIFT,
LBP and TFLBP) and their square-root ones yields 86.07% which outperforms
85.65% of DML-eig [28]. As mentioned above, DML-eig can be regarded as a
limiting case of DMLp as p → −∞. This observation also validates the value
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Fig. 4. Average verification rate of DMLp , ITML, and LDML on LFW by varying
PCA dimension using the SIFT descriptor. The result of LDML is copied from Guil-
laumin et al. [7]: the best performance of LDML and ITML on the SIFT descriptor are
respectively 77.50% and 76.20%.

of the general formulation DMLp . From Table 3, we can see that, although
the individual performance of Intensity is inferior to those of other descriptors,
combining it with other descriptors slightly increases the overall performance
from 85.72% to 86.07%.

Finally, we summarize the performance of DMLp and other state-of-the-art
methods in Table 4 and plot the ROC curve of our method compared to other
published results in Figure 5. We observe from Table 4 that our method DMLp

outperforms LDML [7] and slightly improves the result of DML-eig [28]. The
best performance on the restricted setting to date is 88.13% [18]. Note that
the results compared here are system to system where metric learning is only
one part of the system. We should also point out the result in [18] was not
achieved by metric learning method. Instead, it performs sophisticated large
scale feature search which used multiple complimentary representations derived
through training set augmentation, alternative face comparison functions, and
feature set searches with a varying number of model layers. We believe that the
performance of DMLp may be further improved by exploring different types of
descriptors such as those used in [18].
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DMLp DMLp SQRT

SIFT 0.8015± 0.0055 0.8028± 0.0059

LBP 0.7972± 0.0062 0.8005± 0.0081

TPLBP 0.7790± 0.0058 0.7822± 0.0061

Above combined 0.8572± 0.0055

Intensity 0.7335± 0.0054 0.7348± 0.0051

All combined 0.8607± 0.0058

Table 3. Performance of DMLp on LFW database with different descriptors (average
verification accuracy and standard error). “DMLp SQRT” means DMLp uses the square
root of the descriptor. “Intensity” means the raw pixel data by concatenating the
intensity value of each pixel in the image. For all feature descriptors, the dimension is
reduced to 100 using PCA. See more details in the text.

Method Accuracy

High-Throughput Brain-Inspired Features, aligned [18] 0.8813± 0.0058

LDML + Combined, funneled [7] 0.7927± 0.0060

DML-eig + Combined [28] 0.8565± 0.0056

DMLp + Combined (this work) 0.8607± 0.0058

Table 4. Comparison of DMLp with other state-of-the-art methods in the restricted
configuration (mean verification rate and standard error of the mean of 10-fold cross
validation test) based on combination of different types of descriptors.

6 Conclusion

In this paper we extended and developed the metric learning models proposed in
[25, 28]. In particular, we proposed a general and unified framework which recov-
ers the models in [25, 28] as special cases. This novel framework was shown to be
equivalent to a semi-definite program over the spectrahedron. This equivalence
is important since it enables us to directly apply the Frank-Wolfe algorithm (e.g.
[5, 8]) to obtain the optimal solution. Experiments on UCI datasets validate the
effectiveness of our proposed method and algorithm. In addition, the proposed
method performs well on the Labeled Faces in the Wild (LFW) dataset in the
task of face verification.

We now discuss some possible future work. It would be interesting to inves-
tigate the kernelised version of DMLp using similar ideas from [11, 15]. Metric
learning can be also regarded as a dimension reduction method. However, in its
application to face verification, a common approach is to use PCA to reduce
the dimensionality of the original descriptor. This triggers a natural question for
future work on how to design effective metric learning methods to directly deal
with the original descriptors of the images.
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