
Massively Parallel Feature Selection:
An Approach Based on Variance Preservation

Zheng Zhao, James Cox, David Duling, Warren Sarle

SAS Institute Inc. 600 Research Drive, Cary, NC 27513, USA

Abstract. Advances in computer technologies have enabled corpora-
tions to accumulate data at an unprecedented speed. Large-scale business
data might contain billions of observations and thousands of features,
which easily brings their scale to the level of terabytes. Most traditional
feature selection algorithms are designed for a centralized computing
architecture. Their usability significantly deteriorates when data size ex-
ceeds hundreds of gigabytes. High-performance distributed computing
frameworks and protocols, such as the Message Passing Interface (MPI)
and MapReduce, have been proposed to facilitate software development
on grid infrastructures, enabling analysts to process large-scale problems
efficiently. This paper presents a novel large-scale feature selection algo-
rithm that is based on variance analysis. The algorithm selects features
by evaluating their abilities to explain data variance. It supports both
supervised and unsupervised feature selection and can be readily imple-
mented in most distributed computing environments. The algorithm was
developed as a SAS High-Performance Analytics procedure, which can
read data in distributed form and perform parallel feature selection in
both symmetric multiprocessing mode and massively parallel processing
mode. Experimental results demonstrated the superior performance of
the proposed method for large scale feature selection.

Keywords: Feature selection, parallel processing, big-data

1 Introduction

Feature selection is an effective technique for dimensionality reduction and rel-
evance detection [1]. It improves the performance of learning models in terms
of their accuracy, efficiency, and model interpretability [2]. As an indispensable
component for successful data mining applications, feature selection has been
used in a variety of fields, including text mining, image processing, and genetic
analysis, to name a few. Continual advances in computer-based technologies have
enabled corporations and organizations to collect data at an increasingly fast
pace. Business and scientific data from many fields, such as finance, genomics,
and physics, are often measured in terabytes (1012 bytes). The enormous prolif-
eration of large-scale data sets brings new challenges to data mining techniques
and requires novel approaches to address the big-data problem [3] in feature
selection. Scalability is critical for large-scale data mining. Unfortunately, most



2

existing feature selection algorithms do not scale well, and their efficiency sig-
nificantly deteriorates or even becomes inapplicable, when the data size reaches
hundreds of gigabytes (109 bytes). Efficient distributed programming protocols
and frameworks, such as the Message Passing Interface (MPI) [4] and MapRe-
duce [5], are proposed to facilitate programming on high-performance distributed
computing infrastructures to handle very large-scale problems.

This paper presents a novel distributed parallel algorithm for handling large-
scale problems in feature selection. The algorithm can select a subset of features
that best explain (preserve) the variance contained in the data. According to
how data variance is defined, the algorithm can perform either unsupervised
or supervised feature selection. And for the supervised case, the algorithm also
supports both regression and classification. Redundant features increase data di-
mensionality unnecessarily and worsen the learning performance [6, 7]. The pro-
posed algorithm selects features by evaluating feature subsets and can therefore
handle redundant features effectively. For parallel feature selection, the compu-
tation of the proposed algorithm is fully optimized and parallelized based on
data partitioning. The algorithm is implemented as a SAS High-Performance
Analytics procedure1, which can read data in a distributed form and perform
parallel feature selection in both symmetric multiprocessing (SMP) mode via
multithreading and massively parallel processing (MPP) mode via MPI.

A few approaches have been proposed for parallel feature selection. In [8, 9,
10, 11], parallel processing is used to speed up feature selection by evaluating
multiple features or feature subsets simultaneously. Since all these algorithms
require each parallel processing unit to access the whole data, they do not scale
well when the sample size is huge. To handle large scale problems, an algorithm
needs to rely on data partitioning to ensure its scalability [12]. In [13], a parallel
feature selection algorithm is proposed for logistic regression. The algorithm is
implemented under the MapReduce framework and can evaluate features using
a criterion obtained by approximating the objective function of the logistic re-
gression model. After selecting each new feature, the algorithm needs to retrain
its model, which is an iterative process. In contrast, the proposed algorithm
solves a problem with a closed form solution in each step and therefore might be
more efficient. To the best knowledge of the authors, all existing parallel feature
selection algorithms are for supervised learning, while the proposed algorithm
supports both supervised and unsupervised feature selection.

The contributions of this paper are: (1) The proposed algorithm provides
a unified approach for both unsupervised and supervised feature selection. For
supervised feature selection, it also supports both regression and classification.
(2) The proposed algorithm can effectively handle redundant features in feature
selection. (3) The algorithm is fully optimized and parallelized based on data
partitioning, which ensures its scalability for handling large-scale problems. To
the best knowledge of the authors, this is the first distributed parallel algorithm
for unsupervised feature selection.

1 A SAS procedure is a c-based routine for statistical analysis in the SAS system.



3

2 Maximum Variance Preservation for Feature Selection

This section presents a multivariate formulation for feature selection based on
maximum variance preservation. It first shows how to use the formulation to
perform unsupervised feature selection, then extends it to support supervised
feature selection for both regression and classification.

2.1 Unsupervised Feature Selection

When label information is unavailable, feature selection becomes challenging. To
address this issue, researchers propose various criteria for unsupervised feature
selection. For example, in [14], the performance of a clustering algorithm is used
to evaluate the utility of a feature subset; in [15, 16], each feature’s ability to
preserve locality is evaluated and used to select features; and in [17] an entropy-
based criterion is proposed and used for feature selection. This paper proposes
a multivariate formulation for feature evaluation in a distributed computing
environment. The criterion is based on maximum variance preservation, which
promotes the selection of the features that can best preserve data variance.

Assume that k features need to be selected. Let X P IRn�m be a data set
that contains n samples, x1, . . ., xn, and m features, f1, . . ., fm. In this work, it
is assumed that all features have been centralized to have zero mean, 1Jf � 0,
where 1 is a column vector with all its elements being 1. Let X � pX1,X2q, where

X1 P IRn�k contains the k selected features and X2 P IRn�pm�kq contains the
remaining ones. The proposed maximum variance preservation criterion selects
features by minimizing the following expression:

argmin
X1

Trace
�
XJ

2

�
I�X1

�
XJ

1 X1

��1
XJ

1

	
X2

	
(1)

Let X1 � UΣVJ be the singular value decomposition of X1, and let U �
pUR,UN q, where UR contains the left singular vectors that correspond to the
nonzero singular values and UN contains the left singular vectors that correspond

to the zero singular values. It can be verified that I � X1

�
XJ

1 X1

��1
XJ

1 �
UNUN

J, therefore the following equation holds:

Trace
�
XJ

2

�
I�X1

�
XJ

1 X1

��1
XJ

1

	
X2

	
� Trace

��
UJ

NX2

�J �
UJ

NX2

�	
(2)

The columns of UN span the null space of XT
1 . Since each row of XJ

1 corre-
sponds to a feature in X1, UJ

NX2 effectively projects the features in X2 to the
null space of the features in X1. Therefore, Expression (1) measures the vari-
ance that resides in the null space of XJ

1 , which is the variance that cannot be
explained by the features in X1. And minimizing it leads to the selection of the
features that can jointly explain the maximum amount of the data variance.

2.2 Supervised Feature Selection

When label information is available, Expression (1) can be extended to support
feature selection in both regression and classification (categorization) settings.



4

The Regression Case In a regression setting, all responses are numerical. Let
Y P IRn�t be the response matrix that contains t response vectors, and X1

and X2 are defined as before. Assume that k features need to be selected. In a
regression setting, feature selection can be achieved by minimizing:

argmin
X1

Trace
�
YJ

�
I�X1

�
XJ

1 X1

��1
XJ

1

	
Y
	

(3)

where
�
I�X1

�
XJ

1 X1

��1
XJ

1

	 1
2 � UN projects Y to the null space of XJ

1 .

Expression (3) measures the response variance that resides in the null space of
XJ

1 , which is the variance of Y that cannot be explained by the features in X1.
Clearly, minimizing the expression leads to selecting the features that can jointly
explain the maximum amount of response variance.

The Classification Case In a classification setting, one categorical response
is specified. Let the response vector be y with C different values, t1, . . . , Cu. A
response matrix Y P IRn�C can be created using the following equation:

Yi,j �

$''&
''%

�d
1

nj
�
?
nj

n

�
, yi � j

�
?
nj

n
, yi � j

(4)

where nj is the number of instances in class j, and yi � j denotes that the ith
instance belongs to the jth class. This Y is first used in [18] for least square linear
discriminant analysis. Applying it in Expression (3) enables feature selection in
a classification setting, which leads to selecting the features that maximize the
discriminant criterion of linear discriminant analysis (LDA).

Theorem 1. Assume that features have been centralized to have zero mean and
that the response matrix Y is defined by Equation (4). Minimizing Expression (3)
is equivalent to maximizing the discriminant criterion of LDA,

maxTrace
�
S�1
t Sb

�
(5)

where St and Sb are the total and the between-class scatter matrices on X1.

Proof. Let Y be defined in Equation (4), and all features have zero mean. The
theorem can be proved by verifying the following equations:

1

n
XJX � St � 1

n

ņ

i�1

pxi � cq pxi � cqJ (6)

XJYYJX � Sb � 1

n

Ç

j�1

nj pcj � cq pcj � cqJ (7)

In the preceding equations, c is the mean of the whole data. Since features have
been centralized to have zero mean, in the preceding equations c � 0. xi is the
ith instance, and cj is the mean of the instances that belong to class j.



5

The discriminant criterion of LDA measures the separability of the instances
from different classes. For example, Expression (5) achieves a large value when
instances from the same class are close, while instances from different classes are
far away from each other. When Equation (4) is applied in Expression (3) for
feature selection, the features that maximize the separability of the instances
from different classes are selected. This is a desirable property for classifiers.

3 The Computation

Given m features, finding the k features minimizing Expressions (1) and (3)
is a combinatorial optimization problem, which is NP-hard (nondeterministic
polynomial-time hard). The sequential forward selection (SFS) strategy2 is an
efficient way of generating a suboptimal solution for the problem [1]. This sec-
tion derives closed form solutions for the problem based on sequential forward
selection, which significantly improves its efficiency. It also presents algorithms
for computing the solutions in a distributed parallel computing environment.

3.1 Closed Form Solutions Based on SFS

Solution for Unsupervised Feature Selection Assume that q features have
been selected. Let X1 contain the q selected features, and let X2 contain the
remaining ones. In the q � 1 step, a feature f is selected by

argmin
f
Trace

�
X̂J

2

�
I� X̂1

�
X̂J

1 X̂1

	�1

X̂J
1



X̂2



(8)

where X̂1 contains f and the q selected features, and X̂2 contains the remaining

ones. Let UN �
�
I�X1

�
XJ

1 X1

��1
XJ

1

	 1
2

, the following theorem applies:

Theorem 2. Solving the problem specified in Expression (8) is equivalent to
maximizing the following expression:

argmax
f

���XJ
2

�
I�X1

�
XJ

1 X1

��1
XJ

1

	
f
���2
2�����I�X1

�
XJ

1 X1

��1
XJ

1

	 1
2

f

����
2

2

(9)

Proof. The theorem can be proved by applying block matrix inversion on X̂J
1 X̂1.

�
X̂J

1 X̂1

	�1

�
�
A�1 � 1

w
A�1bbJA�1 � 1

w
A�1b

� 1
w
bJA�1 1

w



(10)

where A � XJ
1 X1, b � XJ

1 f , c � fJf , and w � c� bJA�1b. The details of the
proof is omitted due to space limit.

2 To select k features, the sequential forward selection (SFS) strategy applies k steps
of greedy search and selects one feature in each step.



6

Assuming that all features have zero mean,
���XJ

2

�
I�X1

�
XJ

1 X1

��1
XJ

1

	
f
���2
2

in Equation (9) is the summation of the squares of the covariance between the
feature f and all the unselected features (columns of X2) in the null space of

XJ
1 . And

�����I�X1

�
XJ

1 X1

��1
XJ

1

	 1
2

f

����
2

2

is the square of the variance of the

feature f in the null space of XJ
1 , which is used for normalization. Essentially,

Expression (9) measures how well the feature f can explain the variance that
cannot be explained by the q selected features. Compared to Expression (8),
Expression (9) singles out the computations that are common for evaluating
different features. This makes it possible to compute them only once in each
step and therefore improves the efficiency for solving the problem.

Let m be the number of all features, n the number of samples, and k the
number of features to be selected. Also assume that m " k. It is easy to verify
that in a traditional centralized computing environment, the time complexity
for selecting k features by solving Expression (9) is:

O
�
m2
�
n� k2

��
(11)

In the preceding expression, m2n corresponds to the complexity for computing
the covariance matrix. And m2k2 corresponds to selecting k features out of m.

Solution for Supervised Feature Selection The following theorem enables
efficient feature selection with Expression (3):

Theorem 3. When the problem specified in Expression (3) is solved by sequen-
tial forward selection, in each step the selected feature f must maximize:

argmax
f

���YJ
�
I�X1

�
XJ

1 X1

��1
XJ

1

	
f
���2
2�����I�X1

�
XJ

1 X1

��1
XJ

1

	 1
2

f

����
2

2

(12)

Proof. It can be proved in the same way as Theorem 2.

Let C be the number of columns in Y. The time complexity of selecting k
features using Expression (12) is

O
�
mk
�
n� k2

��
(13)

To obtain Expression (13), it is assumed that m " k ¡ C.

3.2 Parallel Computation through MPP and SMP

The operations for computing Expression (9) and (12) need to be carefully or-
dered, optimized, and parallelized to ensure efficiency and scalability.



7

Massive Parallel Processing (MPP) The master-worker/slave architecture
based on MPI [4] is used to support massive parallel processing. In this archi-
tecture, given p� 1 parallel processing units, one unit is used as the master for
control, and the remaining p units is used as workers for computation. In the
implementation, all expensive operations for computing feature relevance are
properly decomposed, so that they can be computed in parallel based on data
partitioning. Assume that a data set has n instances and m features. p homoge-
nous computers (the workers) are available. A data partitioning technique evenly
distributes instances to the workers, so that each worker obtain n

p instances for

computation. It is shown in [20] that any operation fitting the Statistical Query
model3 can be computed in parallel based on data partitioning. Studies also
showed that when data size is large enough, parallelization based on data par-
titioning can result in linear speedup as computing resources increase [20, 12].
Algorithms 1 and 2 contain the implementation details for distributed parallel
feature selection based on MPI. The validness of the computation can be verified
by decomposing operations into various summation forms over instances. The
details about the verification is not presented due to space limit.

Symmetric Multiprocessing (SMP) Solving the problems specified in Ex-
pression (9) and (12) involves a series of matrix-vector operations. These oper-
ations are packed together and rewritten in the matrix-matrix operation form.
This effectively simplifies programming and allows developers to use a highly
optimized threaded BLAS library to speed up computation on the workers
through multi-threading. As an example, in unsupervised feature selection, let

tir,j � fJir,jX1

�
XJ

1 X1

��1
XJ

1 fir,j , where fir,j is the j-th feature on the r-th

worker. ptir,1 , . . . , tir,m
p
q can be computed as, ptir,1 , . . . , tir,m

p
q � 1J pBr

Â
Erq,

where
Â

denotes element-wise matrix multiplication. Let Xr � pfir,1 , . . . , fir,m
p
q

and A � XJ
1 X1, it can be verified that Br � XJ

1 Xr, and Er � A�1Br.

3.3 The Implementations

Algorithm 1 and 2 contain the pseudocode for unsupervised and supervised
feature selection respectively. Both algorithms assume that the data have been
properly partitioned and distributed to p worker nodes. In the algorithms,

Â
and

Í
denote element-wise matrix multiplication and division, respectively.

For unsupervised feature selection, the covariance among features is used
repeatedly in the evaluation process. Therefore, it is more efficient to compute
the whole covariance matrix C before feature selection. In Algorithm 1, Line 2
to Line 5 compute feature scores to select the first feature. Since no feature has

been selected, Expression (9) can be simplified to
}XJfi}

2
2

fJ
i
fi

� }ci}22
ci,i

, where ci is the

ith column of C, and Ci,i is the ith diagonal element. In Line 2, vr contains the

3 An operation fits the Statistical Query model if it can be decomposed and written
in summation forms over the instances.



8

Input: X1, . . . ,Xp, P IR
n
p
�m

; k
Output: L, a list of k selected features

1 Compute covariance matrix C P IRm�m, and distribute the rth section of

the covariance matrix, Cr P IR
m�m

p , on the rth worker, r � 1, . . . , p ;
2 Compute local feature scores on each worker

sr � 1J
�
Cr

â
Cr

�
, sr � sr

í
vr; vr �

�
Cir,1,ir,1 , . . . , Cir,m

p
,ir,m

p

	
(14)

3 Workers send sr to the master via MPI Gather;
4 On the master, select i � arg max psi | si P ps1, . . . , spqq;
5 Initialization, L � tFiu, l � 1;
6 while l   k do
7 The master sends L to all workers via MPI Bcast;

8 The worker that contains ci, the ith column of C, sends ci to all other
workers via MPI Bcast;
/* ------------------simultaneously------------------- */

9 Workers construct A�1 P IRl�l, Br P IRl�tr , Dr P IRpm�lq�tr ,

vr P IRtr�1, C2,1 P IRpm�lq�l;
10 Workers compute local feature scores

Er � A�1Br, Hr � C2,1Er, Gr � Dr �Hr, (15)

gr � 1J
�
Gr

â
Gr

�
,wr � vr � 1J

�
Br

â
Er

�
, sr � gr

í
wr (16)

Workers send sr to the master via MPI Gather;
/* --------------------------------------------------- */

11 Master selects i � arg max psi | si P ps1, . . . , spqq, L � LY tFiu, l ��;

12 end

Algorithm 1: Distributed parallel unsupervised feature selection.

diagonal elements of C that corresponds to the variance of the features on the
rth worker. The vector sr contains the scores of the features on the rth worker.
After a feature Fi has been selected, each worker updates A�1, Br, Dr, vr, and
C2,1 in Line 9 using Cr and ci. Let L contain the index of selected features, Lr

contain the index of unselected features on the rth worker, and Lu contain the
index of all unselected features. A � XJ

1 X1 � CL�L, Br � XJ
1 Xr � CL�Lr

,
Dr � XJ

2 Xr � CLu�Lr
, C2,1 � XJ

2 X1, and vr contains the variance of the
unselected features on the rth worker. The scores of the features on the rth
worker is computed in Line 10. Assume that the A�1 in Line 9 can be computed
by applying rank-one update, and a tree-based mechanism is used to implement
MPI_Bcast and MPI_Reduce. The total time complexity of Algorithm 1 is

CPU

�
m2
�
n� k2

�
p

�m2 log p

�
�NET

�
m2 log p

�
(17)

In the preceding expressions, CPU p�q and NET p�q denote the time used for
computation and for network communication, respectively.



9

Input: X1, . . . ,Xp P IR
n
p�m, Y1, . . . ,Yp P IR

n
p�C , k

Output: L, a list of k selected features
1 On each worker, compute Er P IRC�m, vr P IR1�m:

Er � YJ
r Xr, vr � 1J

�
Xr

â
Xr

�
; (18)

2 Send Er and vr to the master via MPI Reduce with MPI SUM option:

E �
p̧

r�1

Er, v �
p̧

r�1

vr; (19)

3 On the master, compute feature scores

s � 1J
�
E
â

E
�
, s � s

í
v; (20)

4 On the master, select i � argmax psi | si P sq ;
5 Initialization, L � tFiu, l � 1;
6 while l   k do
7 The master sends L to all workers via MPI Bcast;

/* ---------------simultaneously---------------- */

8 Workers compute cir � XJ
r f ir, cir P IRm�1;

9 Workers send cir to the master via MPI Reduce with MPI SUM option

ci �
p̧

r�1

cir, ci P IRm�1 (21)

/* --------------------------------------------- */

10 On the master, construct A�1 P IRl�l, CY,1 P IRC�l,

C1,2 P IRl�pm�lq, CY,2 P IRC�pm�lq, v2 P IR1�pm�lq;
11 On the master, compute

B � A�1C1,2, H � CY,1B, G � CY,2 �H; (22)

g � 1J
�
G
â

G
�
, w � v2 � 1J

�
C1,2

â
B
�
, s � g

í
w; (23)

12 Master selects i � argmax psi | si P sq, L � LY tFiu, l ��;

13 end

Algorithm 2: Distributed parallel supervised feature selection.

For supervised feature selection, only a small portion of the covariance ma-
trix is needed for feature evaluation. Therefore, the covariance matrix is not
computed before feature selection. In Algorithm 2, Line 1 to Line 3 compute
feature scores to select the first feature. Since no feature has been selected, Ex-

pression (12) simplifies to
}XJf}22
fJf . In Line 10, A � XJ

1 X1, CY,1 � YJX1,
CY,2 � YJX2, C1,2 � XJ

1 X2, and v2 contains the variance of the unselected
features. As both A�1 and B can be obtained by incrementally updating their
previous versions, the complexity for selecting k features using Algorithm 2 is



10

CPU

�
mk

�
n

p
� k2




�NET pm pC � kq log pq (24)

In the preceding expression, C is the number of columns in Y.
Expression (17) and (24) suggest that when the number of instances is large

and the network is fast enough, Algorithms 1 and 2 can speed up feature selection
linearly as the number of parallel processing units increases.

4 Connections to Existing Methods

In an unsupervised setting, principal component analysis (PCA) [19] also re-
duces dimensionality by preserving data variance. The key difference between
PCA and the proposed method is that PCA generates a small set of new fea-
tures (feature extraction) by linearly combining the original features, while the
proposed method selects a small set of the original features (feature selection).
The features returned by the proposed method are the original ones. This is very
important in applications where retaining the original features is useful for model
exploration or interpretation (for example, genetic analysis and text mining).

In a regression setting, let f be a feature vector, it can be shown that

fJ
�
I�X1

�
XJ

1 X1

��1
XJ

1

	
Y � fJ pY �X1W1q (25)

where W1 �
�
XJ

1 X1

��1
XJ

1 Y is the solution of a least squares regression. Let
R be the residual, R � Y �X1W1. Expression (12) can be simplified to:

argmax
f

��fJR
��2
2�����I�X1

�
XJ

1 X1

��1
XJ

1

	 1
2

f

����
2

2

(26)

Therefore, in each step the proposed method selects the feature that has the
largest normalized correlation with the current residual. This shows that in a re-
gression setting the proposed method forms a special type of stepwise regression
with Expression (12) as the selection criterion.

When used in a classification setting, the proposed method selects features
with the discriminant criterion of LDA. LDA also reduces dimensionality. As for
PCA, the key difference is that LDA generates a small set of new features, while
the proposed method selects a small set of the original features.

5 Experimental Study

The proposed method was implemented as the HPREDUCE procedure based on
SAS High-Performance Analytics foundation. This section evaluates its perfor-
mance for both supervised and unsupervised feature selection. In the experiment,



11

12 representative feature selection algorithms are used for comparison. For un-
supervised feature selection, six algorithms are selected as baselines: Laplacian
score [15], SPEC-1 and SPEC-3 [16], trace-ratio [21], HSIC [22], and SPFS [23].
For supervised feature selection, in the classification setting, seven algorithms are
compared: ReliefF [24], Fisher Score [25], trace-ratio, HSIC, mRMR [7], AROM-
SVM [26], and SPFS. In the regression setting, LARS [27], and LASSO [28] are
compared. Among the 12 algorithms, AROM-SVM, mRMR, SPFS, LARS and
LASSO can handle redundant features.

Table 1. Summary of the benchmark data sets.

Data Set Features Instances Classes Data Set Features Instances Classes

RELATH 4,322 1,427 2 ORL 10,000 100 10
PCMAC 3,289 1,943 2 CRIME 147 2,215 -
AR 2,400 130 10 SLICELOC 386 53,500 -
PIE 2,400 210 10 s25mf5k 5,000 25,000,000 -
PIX 10,000 100 10 u10mf5k 5,000 10,000,000 -

Ten benchmark data sets are used in the experiment. Four are face image
data: AR4, PIE5, PIX6, and ORL7 (images from 10 persons are used). Two are
text data extracted from the 20-newsgroups data8: RELATH (BASEBALL vs.
HOCKEY) and PCMAC (PC vs. MAC). Two are UCI data: CRIME (Com-
munities and Crime Unnormalized) and SLICELOC (relative location of CT
slices on axial axis)9. And two are large-scale data sets for performance tests.
The u10mf5k data set contains 5,000 features and 10 million instances, which is
used for testing unsupervised feature selection. The s25mf5k data set contains
5,000 features, 1 response, and 25 million instances, which is used for testing
supervised feature selection. Each data set has 100 continuous variables sampled
from uniform distribution. And the remains are binary variables sampled from
Bernoulli distribution. Details on the ten data sets can be found in Table 1. The
first six data sets are used to test unsupervised feature selection and supervised
feature selection for classification. The seventh and the eighth data sets are used
to test feature selection for regression. And the last two are used to evaluate the
HPREDUCE procedure in a distributed computing environment.

Assume that L is the set of selected features and that XL is the data that
contain only features in L. For the classification setting, algorithms are compared
on (1) classification accuracy and (2) redundancy rate which is defined as:

RED pLq � 1

mpm� 1q
¸

Fi,FjPL,i¡j

ρi,j (27)

4 http://rvl1.ecn.purdue.edu/�leix/aleix face DB.html.
5 http://peipa.essex.ac.uk/ipa/pix/faces/manchester/.
6 http://www.ri.cmu.edu/projects/project 418.html.
7 http://www.uk.research.att.com/facedatabase.html.
8 http://people.csail.mit.edu/jrennie/20Newsgroups/.
9 http://archive.ics.uci.edu/ml/index.html.



12

where ρi,j returns the correlation between feature Fi and feature Fj . Equa-
tion (27) assesses the average correlation among all feature pairs. A large value
indicates that features in L are strongly correlated and thus redundant features
might exist. In the regression setting, algorithms are compared on (1) rooted
mean square error (RMSE) and (2) redundancy rate. For unsupervised feature
selection, algorithms are compared on: (1) redundancy rate and (2) percentage
of the total variance explained by features in L,

PCTV AR pLq �
Trace

�
XJXL

�
XJ
L
XL

��1
XJ
L
X
	

Trace pXJXq (28)

For each data set, half of the instances are randomly sampled for training and
the remaining are used for test. The process is repeated 20 times, which results
in 20 different partitions of the data set. Each feature selection algorithm is
used to select 5, 10, . . . , 100 features on each partition. The obtained 20 feature
subsets are then evaluated using a criterion C. By doing this, a score matrix
S P IR20�20 is generated for each algorithm, where each row of S corresponds
to a data partition and each column corresponds to a size of the feature subset.

The average score of C is obtained by s � 1JS1
20�20 . To calculate classification

accuracy, linear support vector machine (SVM) is used. The parameters of SVM
and all feature selection algorithms are tuned via 5 fold cross-validation on the

training data. Let s � 1JS
20 . The elements of s corresponds to the average score

achieved when different numbers of features are selected. The paired Student’s t
test is applied to compare the s achieved by different algorithms to s�, the best
s measured by 1Js. And the threshold for rejecting the null hypothesis is set to
0.05. Rejecting the null hypothesis means that s and s� are significantly different,
and suggests that the performance of the algorithm is consistently different to
the best algorithm when different numbers of selected features.

5.1 Study of Unsupervised Cases

Percentage of explained variance: Table 2 presents the average percentage
of the data variance explained by the features selected by different algorithms.
The result shows that compared with the baselines, the HPREDUCE procedure
achieved the best performance on all six data sets. This is to be expected, since
the HPREDUCE procedure is designed to preserve data variance. The result
demonstrates the strong capability of the proposed algorithm for preserving
variance in feature selection. It also suggests that using Expression (9) with
sequential forward search is effective for minimizing Expression (1).

Redundancy rate: Table 3 presents the average redundancy rate results.
It shows that SPFS and the HPREDUCE procedure achieved much better re-
sults than the others. This is to be expected, since they are designed to handle
redundant features, while the others are not.



13

Table 2. Unsupervised feature selection: explained variance with p-val.

Algorithm PCMAC RELATH PIX PIE AR ORL AVE Best

Laplacian 0.13 (.00) 0.10 (.00) 0.57 (.00) 0.76 (.00) 0.55 (.00) 0.45 (.00) 0.427 0
SPEC-1 0.13 (.00) 0.10 (.00) 0.57 (.00) 0.75 (.00) 0.56 (.00) 0.45 (.00) 0.427 0
SPEC-3 0.21 (.00) 0.18 (.00) 0.61 (.00) 0.78 (.00) 0.58 (.00) 0.52 (.00) 0.481 0
Trace-ratio 0.44 (.00) 0.45 (.00) 0.57 (.00) 0.75 (.00) 0.56 (.00) 0.45 (.00) 0.537 0
HSIC 0.42 (.00) 0.44 (.00) 0.62 (.00) 0.75 (.00) 0.55 (.00) 0.45 (.00) 0.538 0
SPFS 0.45 (.00) 0.47 (.01) 0.74 (.01) 0.86 (.00) 0.72 (.01) 0.60 (.01) 0.639 0
HPREDUCE 0.60 (1.0) 0.54 (1.0) 0.97 (1.0) 0.97 (1.0) 0.96 (1.0) 0.97 (1.0) 0.835 6

Table 3. Unsupervised feature selection: redundancy rate with p-val.

Algorithm PCMAC RELATH PIX PIE AR ORL AVE Best

Laplacian 0.70 (.00) 0.78 (.00) 0.90 (.00) 0.85 (.00) 0.82 (.00) 0.85 (.00) 0.817 0
SPEC-1 0.71 (.00) 0.78 (.00) 0.90 (.00) 0.87 (.00) 0.80 (.00) 0.85 (.00) 0.818 0
SPEC-3 0.84 (.00) 0.93 (.00) 0.89 (.00) 0.81 (.00) 0.78 (.00) 0.73 (.00) 0.829 0
Trace-ratio 0.20 (.00) 0.27 (.00) 0.90 (.00) 0.87 (.00) 0.80 (.00) 0.85 (.00) 0.649 0
HSIC 0.17 (.00) 0.25 (.00) 0.90 (.00) 0.84 (.00) 0.80 (.00) 0.85 (.00) 0.633 0
SPFS 0.08 (.00) 0.11 (.00) 0.36 (.00) 0.31 (1.0) 0.24 (1.0) 0.26 (.05) 0.227 3
HPREDUCE 0.02 (1.0) 0.02 (1.0) 0.22 (1.0) 0.34 (.01) 0.27 (.01) 0.22 (1.0) 0.181 4

5.2 Study of Supervised Cases

Classification, accuracy: Table 4 presents the average accuracy achieved by
SVM using the features selected by algorithms. The HPREDUCE procedure
achieved the best results on five data sets, which is followed by SPFS (three
data sets) and Arom-SVM (two data sets). According to the average accuracy,
the HPREDUCE procedure also performed the best (0.880), followed by SPFS
(0.869) and HSIC (0.813). This result demonstrates the good performance of the
HPREDUCE procedure in the classification setting.

Table 4. Supervised feature selection for classification: accuracy with p-val.

Algorithm PCMAC RELATH PIX PIE AR ORL AVE Best

ReliefF 0.70 (.00) 0.66 (.00) 0.92 (.00) 0.92 (.00) 0.76 (.00) 0.78 (.00) 0.789 0
Fisher Score 0.86 (1.0) 0.73 (.00) 0.92 (.00) 0.90 (.01) 0.72 (.00) 0.73 (.00) 0.810 1
Trace-ratio 0.86 (1.0) 0.73 (.00) 0.92 (.00) 0.90 (.01) 0.72 (.00) 0.73 (.00) 0.810 1
HSIC 0.85 (.14) 0.75 (.00) 0.92 (.00) 0.90 (.01) 0.72 (.00) 0.74 (.00) 0.813 1
mRMR 0.84 (.00) 0.79 (.81) 0.85 (.00) 0.92 (.02) 0.64 (.00) 0.68 (.00) 0.787 1
Arom-SVM 0.85 (.14) 0.75 (.00) 0.80 (.00) 0.90 (.09) 0.55 (.00) 0.71 (.00) 0.761 2
SPFS 0.85 (.32) 0.78 (.02) 0.95 (.02) 0.94 (.14) 0.80 (.13) 0.89 (.00) 0.869 3
HPREDUCE 0.84 (.00) 0.80 (1.0) 0.96 (1.0) 0.95 (1.0) 0.81 (1.0) 0.92 (1.0) 0.880 5

Classification, redundancy rate: The average redundancy rate achieved
by algorithms are presented in Table 5. Among the eight algorithms in the ta-
ble, mRMR, Arom-SVM, SPFS, and the HPREDUCE procedure are designed
to handle redundant features. In the experiment, on average these algorithms
achieved redundancy rates at the level of 0.2. In contrast, the other four algo-
rithms had much higher redundancy rates. The result shows that the HPRE-
DUCE procedure is effective in handling redundant features for classification.



14

Table 5. Supervised feature selection for classification: redundancy rate with p-val.

Algorithm PCMAC RELATH PIX PIE AR ORL AVE Best

ReliefF 0.10 (.00) 0.09 (.00) 0.78 (.00) 0.38 (.00) 0.76 (.00) 0.89 (.00) 0.501 0
Fisher Score 0.07 (.00) 0.15 (.00) 0.83 (.00) 0.40 (.00) 0.67 (.00) 0.77 (.00) 0.481 0
Trace-ratio 0.07 (.00) 0.15 (.00) 0.83 (.00) 0.40 (.00) 0.67 (.00) 0.77 (.00) 0.481 0
HSIC 0.13 (.00) 0.10 (.00) 0.83 (.00) 0.40 (.00) 0.67 (.00) 0.77 (.00) 0.483 0
mRMR 0.04 (1.0) 0.04 (.00) 0.33 (.00) 0.26 (.46) 0.25 (1.0) 0.25 (1.0) 0.194 4
Arom-SVM 0.05 (.00) 0.07 (.00) 0.26 (1.0) 0.29 (.02) 0.25 (.22) 0.25 (.35) 0.196 3
SPFS 0.11 (.00) 0.07 (.00) 0.45 (.00) 0.25 (1.0) 0.31 (.03) 0.36 (.00) 0.260 1
HPREDUCE 0.05 (.00) 0.03 (1.0) 0.32 (.00) 0.31 (.00) 0.31 (.00) 0.27 (.00) 0.214 1

Regression: In the regression setting, the HPREDUCE procedure is com-
pared to LARS and LASSO. The RMSE and redundancy rate results are pre-
sented in Tables 6, respectively. The results suggest that in terms of RMSE and
redundancy rate, the performance of the three algorithms are largely comparable
on the benchmark data sets. Compared to LARS and LASSO, the HPREDUCE
procedure is a general method for both supervised and unsupervised feature
selection, while LARS and LASSO are for supervised regression only.

Table 6. Supervised feature selection for regression, RMSE (col 2- col 4), the lower
the better; redundancy rate (col 5 - col 7) with p-val.

DATA LARS LASSO HPREDUCE LARS LASSO HPREDUCE

CRIME 3.6e-7 (.00) 3.6e-7 (.00) 3.3e-7 (1.0) 0.31 (1.0) 0.31 (1.0) 0.32 (.00)
SLICELOC 2.8e-3 (.04) 2.8e-3 (.04) 2.6e-3 (1.0) 0.17 (.00) 0.17 (.00) 0.14 (1.0)
Average 1.38e-3 1.38e-3 1.32e-3 0.241 0.241 0.233
Best 0 0 2 1 1 1

5.3 Study of Scalability

To evaluate the scalability of the HPREDUCE procedure, it was tested in a dis-
tributed computing environment. The cluster has 32 nodes, and each node has
two Intel Xeon CPUs, 16 GB memory, and two 186GB disk drives. In the exper-
iment, different numbers of workers are used for selecting 200 features from the
input data. Compared with the unsupervised case, supervised feature selection
with the HPREDUCE procedure has a lower time complexity. Therefore, for su-
pervised feature selection the maximum number of nodes is set to 20, while for
unsupervised feature selection, this number is increased to 30. Multiple threads
are used on each node for matrix computation.

The running time and the speedup information for both supervised and un-
supervised feature selection is presented in Figure 1. It shows that the HPRE-
DUCE procedure generally performs faster when more computing resource is
available. For example, when only one worker node is used for computation in
the unsupervised case, the HPREDUCE procedure finishes in 1,670.98 seconds.
When 30 worker nodes are used, it finishes in just 83.69 seconds. In general, for
both supervised and unsupervised feature selection, the speedup of the HPRE-
DUCE procedure is linear. For the supervised case, the speedup ratio (slope of



15

0

5

10

15

20

25

30

0 5 10 15 20 25 30
0

2

4

6

8

10

12

0 5 10 15 20 25 30
0

0.5

1

1.5

2

0 5 10 15 20
0

4

8

12

16

20

0 4 8 12 16 20

Unsupervised, Speedup Unsupervised, Scaleup Supervised, Speedup Supervised, Scaleup

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Unsupervised, speedup

0

300

600

900

1,200

1,500

1,800

0 5 10 15 20 25 30

Unsupervised, runtime

0

4

8

12

16

20

0 4 8 12 16 20

Supervised, speedup

0

40

80

120

160

200

0 4 8 12 16 20

Supervised, runtime

Fig. 1. Runtime and speedup in the unsupervised and the supervised settings with
different number of workers for feature selection.

the line) of the HPREDUCE procedure is close to 1, which is quite good. And
for the unsupervised case, the speedup ratio is about 0.66. The unsupervised
case has a lower speedup ratio because it involves more network communication
between the master and the workers in the feature selection process. It can also
be observed from the s25mf5k data set that when more than 15 nodes are used
for supervised feature selection, the speedup ratio of the HPREDUCE procedure
decreases. For a fixed size problem, when too many nodes are used, the warm-up
and the communication costs start to offset the increase of computing resources.
The results clearly demonstrate the scalability of the proposed algorithm.

6 Conclusions

This paper presents a distributed parallel feature selection algorithm based on
maximum variance preservation. The proposed algorithm forms a unified ap-
proach for feature selection. By defining the preserving target in different ways,
the algorithm can achieve both supervised and unsupervised feature selection.
And for supervised feature selection, it also supports both regression and clas-
sification. The algorithm performs feature selection by evaluating feature sets
and can therefore handle redundant features. The computation of the algorithm
is also optimized and parallelized to support both MPP an SMP. As illustrated
by an extensive experimental study, the proposed algorithm can effectively re-
move redundant features and achieve superior performance for both supervised
and unsupervised feature selection. The study also shows that given a large-
scale data set, the proposed algorithm can significantly improve the efficiency
of feature selection through distributed parallel computing. Our ongoing work
will extend the HPREDUCE procedure to also support semi-supervised feature
selection and sparse feature extraction, such as sparse PCA and sparse LDA.

7 Acknowledgments

The authors would like to thank An Shu, Anne Baxter, Russell Albright, and
the anonymous reviewers for their valuable suggestions to improve this paper.



16

References

[1] Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining.
Boston: Kluwer Academic Publishers (1998)

[2] Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3 (2003) 1157–1182

[3] Zaki, M.J., Ho, C.T., eds.: Large-scale parallel data mining. Springer (2000)
[4] Snir, M., et al.: MPI: The Complete Reference. MIT Press Cambridge (1995)
[5] Dean, J., Ghemawat, S.: System and method for efficient large-scale data pro-

cessing, United States Patent 7650331, (2010)
[6] Hall, M.: Correlation-Based Feature Selection for Machine Learning. PhD thesis,

University of Waikato, Dept. of Computer Science (1999)
[7] Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene

expression data. In: Proceedings of the CSB. (2003) 523–529
[8] Felix, G.L., et al.: Solving feature subset selection problem by a parallel scatter

search. European Journal of Operational Research 169(2) (2006) 477–489
[9] Melab, N., et al.: Grid computing for parallel bioinspired algorithms. Journal of

Parallel and Distributed Computing 66(8) (2006) 1052–1061
[10] Garcia, D.J., et al.: A parallel feature selection algorithm from random subsets.

In: Proceedings of the International Workshop on Parallel Data Mining. (2006)
[11] Guillen, A., et al.: Efficient parallel feature selection for steganography problems.

In: Bio-Inspired Systems: Computational and Ambient Intelligence. (2009)
[12] Kent, P., Schabenberger, O.: SAS high performance computing: The future is not

what it used to be. www.monash.com/uploads/SAS HPA 2011-Longer.pdf (2011)
[13] Singh, S., et al.: Parallel large scale feature selection for logistic regression. In:

Proc. of SDM. (2009)
[14] Dy, J.G., Brodley, C.E.: Feature selection for unsupervised learn. Journal of

Machine Learning Research 5 (2004) 845–889
[15] He, X., et al.: Laplacian score for feature selection. In: Proc. of NIPS, (2005)
[16] Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised

learning. In: Proceedings of ICML. (2007)
[17] Dash, M., et al.: Feature selection for clustering, a filter solution. In: Proceedings

of ICDM. (2002)
[18] Ye, J.: Least squares linear discriminant analysis. In: Proceedings of ICML. (2007)
[19] Jolliffe, I.T.: Principal Component Analysis. Springer; 2nd edition (2002)
[20] Chu, C.T., et al.: Map-reduce for machine learning on multicore. In: In Proceed-

ings of NIPS. (2007)
[21] Nie, F., et al.: Trace ratio criterion for feature selection. In: Proc. of AAAI. (2008)
[22] Song, L., et al.: Supervised feature selection via dependence estimation. In:

Proceedings of ICML. (2007)
[23] Zhao, Z., Wang, L., Liu, H., Ye, J.: On similarity preserving feature selection.

IEEE Transactions on Knowledge and Data Engineering 99 (2011) 198–206
[24] Sikonja, M.R., Kononenko, I.: Theoretical and empirical analysis of Relief and

ReliefF. Machine Learning 53 (2003) 23–69
[25] Duda, R., et al.: Pattern Classification. 2 edn. John Wiley & Sons. (2001)
[26] Weston, J., et al.: Use of the zero norm with linear models and kernel methods.

Journal of Machine Learning Research 3 (2003) 1439–1461
[27] Efron, B., et al.: Least angle regression. Annals of Statistics 32 (2004) 407–49
[28] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society, Series B 58, No. 1 (1994) 267–288


