Semi-local string comparison: Algorithmic applications

Alexander Tiskin
http://www.dcs.warwick.ac.uk/~tiskin

Department of Computer Science
University of Warwick
String matching: find an *exact* pattern in a string

String comparison: find *similar* patterns in two strings

- **global:** compare whole string against whole string
- **local:** compare substrings against substrings
- **semi-local:** compare whole string against substrings (will extend this definition later)

Often called “approximate string matching” (no relation to approximation algorithms!)

Applications: computational biology, image recognition, . . .
1 Semi-local string comparison

2 Efficient output representation

3 Fast block iteration and applications

4 Fast divide-and-conquer and applications

5 Further algorithmic ideas and applications

6 Conclusions and future work
1 Semi-local string comparison

2 Efficient output representation

3 Fast block iteration and applications

4 Fast divide-and-conquer and applications

5 Further algorithmic ideas and applications

6 Conclusions and future work
Consider *strings* (= *sequences*) over an alphabet of size σ

Distinguish contiguous *substrings* and not necessarily contiguous *subsequences*

Special cases of substring: *prefix*, *suffix*

Standard notation: strings a, b of length m, n respectively

Assume when necessary: $m \leq n$; m, n reasonably close
Recall: the *longest common subsequence (LCS) problem*

Determine the LCS length for string a against string b

A variant of the *edit distance problem*

$O(mn)$ \[\text{[Needleman, Wunsch, 1970]}\]

$O\left(\frac{mn \log \log n}{\log n}\right)$ \[
\text{implicit in [Masek, Paterson, 1980]}\]

$O\left(\frac{mn}{\log n}\right)$ assuming $\sigma = O(1)$ \[\text{[Masek, Paterson, 1980] also [Crochemore+., 2003]}\]
Semi-local string comparison

\[LCS("baabcbca", "baabcabcabaca") = "baabcbca" \]

\[m \leq n \]

Alignment graph

Longest common subsequence \(\sim\) longest source-to-sink path
Semi-local string comparison

The *semi-local longest common subsequences (LCS) problem*

Determine the LCS length for

- string a against every substring of b
- every substring of a against string b
- every prefix of a against every suffix of b
- every suffix of a against every prefix of b

Total $\Theta(n^2)$ outputs, allowed to be represented implicitly
Semi-local string comparison

$LCS(\text{"baabcbca"}, \text{"...cabcaba..."}) = \text{"abcba"}$

$m \leq n$

Semi-local LCS \sim all longest border-to-border paths

(string-substring \sim top-to-bottom, etc.)
Semi-local string comparison

Semi-local LCS problem: the output
size $O(n^2)$ query time $O(1)$ trivial
Semi-local string comparison

Semi-local LCS problem: the output

- size $O(n^2)$ query time $O(1)$, trivial

Representing the output implicitly

- size $O(m^{1/2}n)$ query time $O(\log n)$ [Alves+, 2003]
- size $O(n)$ query time $O(n)$ [Alves+, 2005]
- size $O(n \log n)$ query time $O(\log^2 n)$ [T, 2006]

In a stronger model:

- size $O(n)$ query time $O(\log n \log \log n)$ [T, 2006]
Semi-local string comparison

Semi-local LCS problem: the output
size $O(n^2)$ query time $O(1)$ trivial

Representing the output implicitly
size $O(m^{1/2}n)$ query time $O(\log n)$ [Alves+ , 2003]
size $O(n)$ query time $O(n)$ [Alves+ , 2005]
size $O(n \log n)$ query time $O(\log^2 n)$ [T, 2006]

In a stronger model:
size $O(n)$ query time $O(\frac{\log n}{\log \log n})$ [T, 2006]
Semi-local string comparison

Semi-local LCS problem: computation time

\(O(mn^2) \)
naive

\(O(mn) \)
restricted, [Schmidt, 1998]

\(O\left(\frac{mn}{\log^{0.5} n}\right) \)
restricted, [Alves+, 2005]

\(O\left(\frac{mn \log \log n}{\log n}\right) \)
[T, 2006]

NEW
Recall: the *longest increasing subsequence (LIS)* problem

Determine the LCS length for a permutation of length n against permutation $id = (1, 2, \ldots, n)$

$O(n^2)$ naive

$O(n \log n)$ implicit in [Erdös, Szekeres, 1935] also [Robinson, 1938], [Knuth, 1970], [Dijkstra, 1980]

$O(n \log \log n)$ in the RAM model [Hunt, Szymanski, 1977] also [Chang, Wang, 1992], [Bespamyatnikh, Segal, 2000]
Semi-local string comparison

Semi-local LCS problem: running time on permutations

\(O(n^2 \log n) \) naive
\(O(n^2) \) restricted, [Albert+, 2003]
\(O(n^{1.5} \log n) \) randomised restricted, [Chen+, 2005]
\(O(n^{1.5}) \) restricted, [Albert+, 2007]
\(O(n^{1.5}) \) [T, 2006]
1. Semi-local string comparison

2. Efficient output representation

3. Fast block iteration and applications

4. Fast divide-and-conquer and applications

5. Further algorithmic ideas and applications

6. Conclusions and future work
Efficient output representation

Notation

Integers 0, 1, 2, ... Odd half-integers $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$

$x \triangleleft y \iff y - x = 1 \quad x \triangleleft y \iff y - x = \frac{1}{2}$

Definition

Point (i_0, j_0) dominates point (i, j), if $i_0 < i$ and $j < j_0$
Definition

Point \((i, j)\) is \textit{A-critical}, if

\[
A(i^-, j^-) \triangleleft A(i^-, j^+) = A(i^+, j^-) = A(i^+, j^+)
\]

where \(i^- \triangleleft i \triangleleft i^+ \quad j^- \triangleleft j \triangleleft j^+\)

Notation

\(d_A(i_0, j_0)\) is the number of \textit{A-critical} points dominated by \((i_0, j_0)\)
Efficient output representation

Lemma

\[A(i_0, j_0) = j_0 - i_0 - d_A(i_0, j_0) \]

\(j_0 - i_0 \): input substring length \(d_A(i_0, j_0) \): unmatched characters

Proof: simple induction

More generally:

- \(A \) is a \textit{Monge matrix}
- its \textit{density matrix} happens to be the permutation matrix of critical points
Efficient output representation

Full top-to-bottom highest-score matrix: $A(i, j)$ $0 \leq i, j \leq n$

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 6 & 7 & 8 & 8 & 8 & 8 & 8 & 8 \\
-1 & 0 & 1 & 2 & 3 & 4 & 5 & 5 & 6 & 7 & 7 & 7 & 7 & 7 & 7 \\
-2 & -1 & 0 & 1 & 2 & 3 & 4 & 4 & 5 & 6 & 6 & 6 & 6 & 6 & 7 \\
-3 & -2 & -1 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 5 & 6 & 6 & 6 & 7 \\
-4 & -3 & -2 & -1 & 0 & 1 & 2 & 2 & 3 & 4 & 4 & 5 & 5 & 6 & 7 \\
-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 4 & 5 & 5 & 5 & 6 \\
-6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 3 & 4 & 4 & 4 & 5 \\
-7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \\
-8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 3 & 4 & 4 \\
-9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 4 \\
-10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
-11 & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
-12 & -11 & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 \\
-13 & -12 & -11 & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 \\
\end{array}
\]
Efficient output representation

Full top-to-bottom highest-score matrix: $A(i, j)$ \quad $0 \leq i, j \leq n$

$$
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 6 & 7 & 8 & 8 & 8 & 8 & 8 \\
-1 & 0 & 1 & 2 & 3 & 4 & 5 & 5 & 6 & 7 & 7 & 7 & 7 & 7 \\
-2 & -1 & 0 & 1 & 2 & 3 & 4 & 4 & 5 & 6 & 6 & 6 & 6 & 7 \\
-3 & -2 & -1 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 5 & 6 & 6 & 7 \\
-4 & -3 & -2 & -1 & 0 & 1 & 2 & 2 & 3 & 4 & 4 & 5 & 5 & 6 \\
-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 4 & 5 & 5 & 6 \\
-6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 3 & 4 & 4 & 5 \\
-7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 2 & 3 & 3 & 4 \\
-8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 3 & 4 \\
-9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
-10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
-11 & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 \\
-12 & -11 & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 \\
-13 & -12 & -11 & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 \\
\end{array}
$$

$A(i^+, j) \preceq A(i^-, j)$

$A(i, j^-) \preceq A(i, j^+)$

A totally monotone:

$A(i^+, j^+) \triangleright A(i^-, j^+) \Rightarrow A(i^+, j^-) \triangleright A(i^-, j^-)$

A^T totally monotone:

$A(i^-, j^-) \triangleright A(i^-, j^+) \Rightarrow A(i^+, j^-) \triangleright A(i^+, j^+)$

where $i^- \triangleright i^+, j^- \triangleright j^+$

$blue = 0 \quad red = 1$
Efficient output representation

Full top-to-bottom highest-score matrix: \(A(i, j) \) \(0 \leq i, j \leq n \)

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 6 & 7 & 8 & 8 & 8 & 8 \\
-1 & 0 & 1 & 2 & 3 & 4 & 5 & 5 & 6 & 7 & 7 & 7 & 7 \\
-2 & -1 & 0 & 1 & 2 & 3 & 4 & 4 & 5 & 6 & 6 & 6 & 6 \\
-3 & -2 & -1 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 5 & 6 & 6 \\
-4 & -3 & -2 & -1 & 0 & 1 & 2 & 2 & 3 & 4 & 4 & 5 & 5 \\
-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 4 & 5 & 6 \\
-6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
-7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
-8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
-9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
-10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 \\
-11 & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 \\
-12 & -11 & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 \\
-13 & -12 & -11 & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 \\
\end{array}
\]

\(A(i^+, j) \preceq A(i^-, j) \)
\(A(i, j^-) \preceq A(i, j^+) \)

\(A \) totally monotone:
\(A(i^+, j^+) \preceq A(i^-, j^+) \Rightarrow A(i^+, j^-) \preceq A(i^-, j^-) \)

\(A^T \) totally monotone:
\(A(i^-, j^-) \preceq A(i^-, j^+) \Rightarrow A(i^+, j^-) \preceq A(i^+, j^+) \)

where \(i^- \preceq i^+, j^- \preceq j^+ \)

\text{blue} = 0 \quad \text{red} = 1 \quad \text{green} = \text{critical}
Efficient output representation

Implicit top-to-bottom highest-score matrix: \(A(i, j) \) \(\quad 0 \leq i, j \leq n \)

\[
A(i, j) = \begin{cases}
1 & \text{blue}\n0 & \text{red}\n-1 & \text{green}\n\end{cases}
\]

\[
j_0 - i_0 - d_A(i_0, j_0) = 11 - 4 - 2 = 5
\]

\(blue = 0 \quad red = 1 \quad green = critical \)
Efficient output representation

Implicit top-to-bottom highest-score matrix: $A(i, j) \quad 0 \leq i, j \leq n$

$j_0 - i_0 - d_A(i_0, j_0) = 11 - 4 - 2 = 5$

blue = 0 red = 1 green = critical
Efficient output representation

Critical point \((i, j)\) in implicit highest-score matrix gives a \textit{critical curve}\(^1\) \((\text{top}, i) \rightsquigarrow (\text{bottom}, j)\) in the alignment graph.

\(^1\) Also define \((\text{top}) \rightsquigarrow \text{right}, \text{left} \rightsquigarrow \text{right}, \text{left} \rightsquigarrow \text{bottom}\) critical curves.

Gives complete border-to-border graph-theoretic matching.
Critical point \((i, j)\) in implicit highest-score matrix gives a critical curve \((\text{top}, i) \leadsto (\text{bottom}, j)\) in the alignment graph.

Also define \(\text{top} \leadsto \text{right}, \text{left} \leadsto \text{right}, \text{left} \leadsto \text{bottom}\) critical curves.

Gives complete border-to-border graph-theoretic matching.
Efficient output representation

Gaudi’s seaweeds (Casa Milà, Barcelona)
Establishing $d_A(i_0, j_0)$: *dominance counting*

Range tree: [Bentley, 1980]

- binary search tree by i-coordinate for all nodes
- rooted at its every node, binary search tree by j-coordinate for relevant nodes

Every node represents a *canonical range* (rectangular region), and stores its point count
Efficient output representation

Range tree:

Every range can be decomposed into $\leq \log^2 n$ canonical ranges.

Overall, $\leq n \log n$ canonical ranges are non-empty.
Efficient output representation

<table>
<thead>
<tr>
<th>Theorem (Bentley, 1980)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A range tree on n points has</td>
</tr>
<tr>
<td>- size $O(n \log n)$</td>
</tr>
<tr>
<td>- dominance counting query time $O(\log^2 n)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (JaJa+, 2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the RAM model, there is a data structure on n points with</td>
</tr>
<tr>
<td>- size $O(n)$</td>
</tr>
<tr>
<td>- dominance counting query time $O\left(\frac{\log n}{\log \log n}\right)$</td>
</tr>
</tbody>
</table>
Corollary

Semi-local LCS lengths can be represented in

- size $O(n \log n)$ query time $O(\log^2 n)$
- size $O(n)$ query time $O(\frac{\log n}{\log \log n})$ in the RAM model
1. Semi-local string comparison
2. Efficient output representation
3. Fast block iteration and applications
4. Fast divide-and-conquer and applications
5. Further algorithmic ideas and applications
6. Conclusions and future work
Semi-local LCS by Schmidt/Alves+ (in new notation)

Iterate over alignment graph, tracing critical curves. Each pair of critical curves is allowed to cross at most once.
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)
Semi-local LCS by Schmidt/Alves+ (contd.)
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves (contd.)
Semi-local LCS by Schmidt/Alves+ (contd.)
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(nm)$
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Fast block iteration and applications

Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Semi-local LCS by Schmidt/Alves+ (contd.)

Time $O(mn)$
Theorem (new)

Semi-local LCS can be computed in time $O\left(\frac{mn \log \log n}{\log n}\right)$ and memory $O(n)$

Must assume m, n are reasonably close: $\frac{\log n}{\log \log n} \leq m \leq n$
Theorem (new)

Semi-local LCS can be computed in time $O\left(\frac{mn \log \log n}{\log n}\right)$ and memory $O(n)$

Must assume m, n are reasonably close: \(\frac{\log n}{\log \log n} \leq m \leq n \)

Proof: Iterate over alignment graph in small blocks, tracing critical curves

Classical technique by Arlazarov+: when blocks sufficiently small, better to precompute all possible block transitions in advance

Threshold block size $t = \frac{\log n}{4 \log \log n}$

For each of at most $(t!)^2$ possible block types, precompute the mapping of $(t!)^2$ possible inputs to $(t!)^2$ possible outputs
Fast block iteration and applications

Semi-local LCS: the new algorithm

\[O(mn \log \log n) \]
Fast block iteration and applications

Semi-local LCS: the new algorithm

Time $O(mn \log \log n)$
Semi-local LCS: the new algorithm

Time $O(mn \log \log n \log n)$
Semi-local LCS: the new algorithm

Time $O(mn \log \log n)$
Semi-local LCS: the new algorithm
Fast block iteration and applications

Semi-local LCS: the new algorithm

Time $O(mn \log \log n \log n)$
Fast block iteration and applications

Semi-local LCS: the new algorithm

Time $O(mn \log \log n)$
Semi-local LCS: the new algorithm

Time $O(mn \log \log n \log n)$
Fast block iteration and applications

Semi-local LCS: the new algorithm

\[\text{Time } O\left(\frac{m \log \log n}{\log n}\right) \]
Semi-local LCS: the new algorithm

Time $O(mn \log \log n)$
Fast block iteration and applications

Semi-local LCS: the new algorithm

Time $O(mn \log \log n)$
Fast block iteration and applications

Semi-local LCS: the new algorithm

Time $O(mn \log \log n)$
Semi-local LCS: the new algorithm

Time $O(mn \log \log n \log n)$
Fast block iteration and applications

Semi-local LCS: the new algorithm

Time $O(mn \log \log n)$
Fast block iteration and applications

Semi-local LCS: the new algorithm

Time $O\left(\frac{mn \log \log n}{\log n} \right)$
Application: *LCS problem on cyclic strings*

Determine the maximum LCS length for string a against all cyclic rotations of b

Used in handwriting recognition
Fast block iteration and applications

Application: *LCS problem on cyclic strings*

Determine the maximum LCS length for string a against all cyclic rotations of b

Used in handwriting recognition

\[O\left(\frac{mn^2}{\log n} \right) \] naive

\[O(mn \log m) \] [Maes, 1990]

\[O(mn) \] [Bunke, Bühler, 1993]

also [Landau+, 1998], [Schmidt, 1998]
Fast block iteration and applications

Application: *LCS problem on cyclic strings*

Determine the maximum LCS length for string a against all cyclic rotations of b

Used in handwriting recognition

$O\left(\frac{mn^2}{\log n}\right)$ \hspace{1cm} naive

$O(mn \log m)$ \hspace{1cm} [Maes, 1990]

$O(mn)$ \hspace{1cm} [Bunke, Bühler, 1993]

$O\left(\frac{mn \log \log n}{\log n}\right)$ \hspace{1cm} also [Landau+, 1998], [Schmidt, 1998]

$O\left(\frac{mn \log \log n}{\log n}\right)$ \hspace{1cm} NEW

Run semi-local LCS on a against bb, then perform n

string-substring LCS queries
Application: the *longest repeated subsequence* problem

Given string a of length n, determine its longest subsequence that is a square (i.e. a concatenation of two identical strings)

Related to “tandem repeats” in genome
Application: the *longest repeated subsequence* problem

Given string a of length n, determine its longest subsequence that is a square (i.e. a concatenation of two identical strings)

Related to “tandem repeats” in genome

$O(n^3)$ (somewhat) naive

$O(n^2)$ [Kosowski, 2004]
Application: the *longest repeated subsequence* problem

Given string a of length n, determine its longest subsequence that is a square (i.e. a concatenation of two identical strings)

Related to “tandem repeats” in genome

$O(n^3)$ (somewhat) naive

$O(n^2)$ [Kosowski, 2004]

$O\left(\frac{n^2 \log \log n}{\log n}\right)$ NEW

Run semi-local LCS on a against itself, then perform n suffix-prefix LCS queries
1. Semi-local string comparison
2. Efficient output representation
3. Fast block iteration and applications
4. Fast divide-and-conquer and applications
5. Further algorithmic ideas and applications
6. Conclusions and future work
Fast divide-and-conquer and applications

Computing highest-score matrices by divide-and-conquer

“Divide”: partitioning the alignment dag recursively into strips or square blocks

“Conquer”: $(\max, +)$ highest-score matrix multiplication
Computing highest-score matrices by divide-and-conquer

“Divide”: partitioning the alignment dag recursively into strips or square blocks

“Conquer”: \((\max, +)\) highest-score matrix multiplication

General matrices: time \(O(n^3)\)

Monge (= planar distance) matrices: time \(O(n^2)\)

Implicit highest-score matrices: time \(O(n^{1.5})\) \[T, 2006\]
Let A, B be implicit highest-score matrices of size n. The $(\max, +)$ product $AB = C$ can be computed in time $O(n^{1.5})$.

Proof: divide-and-conquer on the product C. Obtain counts of C-critical points in square blocks. If (and only if!) the block has at least one C-critical point, recurse into half-sized subblocks. Crucial observation: for a block of size r, only need to keep $O(r)$ data from A, B, and to perform $O(r)$ work.
Theorem (T, 2006)

Let A, B be implicit highest-score matrices of size n. The $(\max, +)$ product $AB = C$ can be computed in time $O(n^{1.5})$.

Proof: divide-and-conquer on the product C

Obtain counts of C-critical points in square blocks. If (and only if!) the block has at least one C-critical point, recurse into half-sized subblocks.

Crucial observation: for a block of size r, only need to keep $O(r)$ data from A, B, and to perform $O(r)$ work
Proof (contd.)

In the divide-and-conquer tree

- root: one block of size n, work $O(n)$
- middle level: at most n blocks of size $n^{0.5}$, work $O(n \cdot n^{0.5}) = O(n^{1.5})$
- leaves: at most n blocks of size 1, work $O(n)$

Middle level dominates, total work $O(n^{1.5})$
Alternative method for semi-local LCS: divide-and-conquer on strips, each “conquer” runs in time $O(n^{1.5})$

$blue = 0$

$red = 1$

$green = critical$
Alternative method for semi-local LCS: divide-and-conquer on strips, each “conquer” runs in time $O(n^{1.5})$

- Blue = 0
- Red = 1
- Green = Critical
Alternative method for semi-local LCS: divide-and-conquer on strips, each “conquer” runs in time $O(n^{1.5})$

- $\text{blue} = 0$
- $\text{red} = 1$
- $\text{green} = \text{critical}$
Alternative method for semi-local LCS: divide-and-conquer on strips, each “conquer” runs in time $O(n^{1.5})$.

- $blue = 0$
- $red = 1$
- $green = critical$
Alternative method for semi-local LCS: divide-and-conquer on strips, each “conquer” runs in time $O(n^{1.5})$

```
b a a b c a b c a b a c a
b a a b c a b c a b a c a
b a a b c a b c a b a c a
b a a b c a b c a b a c a
```

blue = 0
red = 1
green = critical
Alternative method for semi-local LCS: divide-and-conquer on strips, each “conquer” runs in time $O(n^{1.5})$

- $\text{blue} = 0$
- $\text{red} = 1$
- $\text{green} = \text{critical}$
Fast divide-and-conquer and applications

Alternative method for semi-local LCS: divide-and-conquer on strips, each “conquer” runs in time $O(n^{1.5})$

Time $O(mn)$, but can be efficiently adapted to special cases

blue = 0
red = 1
green = critical
Theorem (T, 2006)

Semi-local LCS on permutations of length n can be computed in
time $O(n^{1.5})$ and memory $O(n)$.
Theorem (T, 2006)

Semi-local LCS on permutations of length n can be computed in time $O(n^{1.5})$ and memory $O(n)$

Proof: in a strip of height k, at most k critical curves non-trivial

Two such strips can be “conquered” in time $O(k^{1.5})$

In every recursion level:

- number of subproblems goes up by a factor of 2
- time per subproblem goes down by a factor of $2^{1.5}$

Hence, the top level dominates with time $O(n^{1.5})$
Application: the *maximum clique problem in a circle graph*

Given a circle with \(n \) chords, determine the maximum-size subset of pairwise intersecting chords.
Fast divide-and-conquer and applications

Application: the \textit{maximum clique problem in a circle graph} (contd.)

\begin{align*}
\exp(n) & \quad \text{naive} \\
O(n^3) & \quad [\text{Gavril, 1973}] \\
O(n^2) & \quad [\text{Rotem, Urrutia, 1981}] \\
& \quad \text{also [Hsu, 1985], [Masuda+}, 1990], [\text{Apostolico+}, 1992] \\
O(n^{1.5}) & \quad \text{NEW}
\end{align*}

Finds (implicitly) all \textit{maximal} cliques
Application: the maximum clique problem in a circle graph (contd.)

Standard reduction to an interval model: cut the circle and lay it out on the line; chords become intervals.

The interval model can be represented by permutation a of size $2n$.

Chords intersect iff corresponding intervals overlap, i.e. intersect without containment.

Helly property: if any set of intervals intersect pairwise, then they all intersect at a common point.
Application: the *maximum clique problem in a circle graph* (contd.)

Algorithm idea: check all $2n + 1$ possible common intersection points

For each candidate intersection point, need to find the maximum subset of covering segments without pairwise containment

Equivalent to prefix-suffix LCS on permutations a, id

Run semi-local LCS on a, id and build range tree: time $O(n^{1.5})$

Query prefix-suffix LCS for each candidate intersection point: time $(2n + 1) \cdot O(\log^2 n) = O(n \log^2 n)$

Overall time $O(n^{1.5}) + O(n \log^2 n) = O(n^{1.5})$
1. Semi-local string comparison
2. Efficient output representation
3. Fast block iteration and applications
4. Fast divide-and-conquer and applications
5. Further algorithmic ideas and applications
6. Conclusions and future work
Further algorithmic ideas and applications

Suppose $m \gg n$, so the alignment graph is very “tall and thin”

The *partial implicit highest-score matrix*: top-to-bottom, top-to-right, left-to-bottom critical curves

Overall $O(n)$ data, ignores $O(m)$ left-to-right critical curves

Allows string-substring, prefix-suffix and suffix-prefix (but not substring-string) LCS queries

Still sufficient for divide-and-conquer on strips, “conquer” time $O(n^{1.5})$
Application: *subsequence recognition in compressed text*

Text compression model: a straight-line program (SLP, context-free grammar) generating the text by \(m \) assignments of the form

- \(T_r = \alpha \), where \(\alpha \) is an alphabet character
- \(T_r = T_s T_t \), where \(s, t < r \)

Let \(T = T_m \). Denote the uncompressed size of \(T \) by \(M \).

Covers various compression types, e.g. Lempel–Ziv

Note \(M \) can be \(O(c^m) \). Assume address arithmetic on \(T \) still \(O(1) \).

Pattern string \(P \) is given explicitly
Further algorithmic ideas and applications

Application: subsequence recognition in compressed text (contd.)

Global subsequence recognition: does a contain b as a subsequence?
Further algorithmic ideas and applications

Application: *subsequence recognition in compressed text* (contd.)

Global subsequence recognition: does a contain b as a subsequence?

On an uncompressed text:

$O(M)$ greedy
Application: *subsequence recognition in compressed text* (contd.)

Global subsequence recognition: does *a* contain *b* as a subsequence?

On an uncompressed text:

\[O(M) \] greedy

On an SLP-compressed text:

\[O(mn) \] greedy
Further algorithmic ideas and applications

Application: *subsequence recognition in compressed text* (contd.)

Local subsequence recognition: determine the number of minimal substrings of a containing b as a subsequence
Further algorithmic ideas and applications

Application: *subsequence recognition in compressed text* (contd.)

Local subsequence recognition: determine the number of minimal substrings of a containing b as a subsequence

On an uncompressed text:

$O(Mn)$
$O\left(\frac{Mn}{\log n}\right)$
$O(M + c^n)$
$O(M\sigma + n)$

[Boasson+, 2001]
[Mannila+, 1995]
[Troniček, 2001]
[Das+, 1997]
Further algorithmic ideas and applications

Application: *subsequence recognition in compressed text* (contd.)

Local subsequence recognition: determine the number of minimal substrings of a containing b as a subsequence

On an uncompressed text:

$O(Mn)$ \hfill [Mannila+, 1995]

$O\left(\frac{Mn}{\log n}\right)$ \hfill [Das+, 1997]

$O(M + c^n)$ \hfill [Boasson+, 2001]

$O(M\sigma + n)$ \hfill [Troniček, 2001]

On an SLP-compressed text:

$O(mn^2 \log n)$ \hfill [Cégielski+, 2006]

$O(mn^{1.5})$ \hfill NEW
Further algorithmic ideas and applications

Application: *subsequence recognition in compressed text* (contd.)

Algorithm idea: build a partial implicit highest-score matrix for every T_r by divide-and-conquer in time $O(mn^{1.5})$
Further algorithmic ideas and applications

Application: *subsequence recognition in compressed text* (contd.)

Algorithm idea: build a partial implicit highest-score matrix for every T_r by divide-and-conquer in time $O(mn^{1.5})$

Given an assignment $T = T' T''$, first count by recursion

- minimum substrings in T' containing P as subsequence
- minimum substrings in T'' containing P as subsequence
Further algorithmic ideas and applications

Application: *subsequence recognition in compressed text* (contd.)

Algorithm idea: build a partial implicit highest-score matrix for every T_r by divide-and-conquer in time $O(mn^{1.5})$

Given an assignment $T = T' T''$, first count by recursion

- minimum substrings in T' containing P as subsequence
- minimum substrings in T'' containing P as subsequence

Then for each prefix-suffix split $P = P' P''$, count by prefix-suffix and suffix-prefix LCS queries

- minimum suffixes of T' containing P' as subsequence
- minimum prefixes of T'' containing P'' as subsequence
Application: *subsequence recognition in compressed text* (contd.)

Algorithm idea: build a partial implicit highest-score matrix for every T_r by divide-and-conquer in time $O(mn^{1.5})$

Given an assignment $T = T' T''$, first count by recursion

- minimum substrings in T' containing P as subsequence
- minimum substrings in T'' containing P as subsequence

Then for each prefix-suffix split $P = P' P''$, count by prefix-suffix and suffix-prefix LCS queries

- minimum suffixes of T' containing P' as subsequence
- minimum prefixes of T'' containing P'' as subsequence

Overall time $O(mn^{1.5}) + O(mn \log^2 n) = O(mn^{1.5})$
Further algorithmic ideas and applications

More efficient divide-and-conquer on strips

Suppose a strip is “short and fat”: for such a strip, $m \ll n$

The “conquer” time can be improved from $n^{1.5}$ to $mn^{0.5}$, even if the counterpart strip being “conquered” is tall!
Further algorithmic ideas and applications

More efficient divide-and-conquer on strips

Suppose a strip is “short and fat”: for such a strip, $m \ll n$

The “conquer” time can be improved from $n^{1.5}$ to $mn^{0.5}$, even if the counterpart strip being “conquered” is tall!

The quasi-local LCS problem

Given m overlapping prescribed substrings in string a, solve the semi-local LCS problem for every prescribed substring against b
More efficient divide-and-conquer on strips

Suppose a strip is “short and fat”: for such a strip, $m \ll n$

The “conquer” time can be improved from $n^{1.5}$ to $mn^{0.5}$, even if the counterpart strip being “conquered” is tall!

The quasi-local LCS problem

Given m overlapping prescribed substrings in string a, solve the semi-local LCS problem for every prescribed substring against b

$O(m^2n)$ naive

$O(m^{1.25}n)$ NEW
The *sparse spliced alignment* problem

Given *m* overlapping *prescribed substrings* in string *a*, determine the chain of non-overlapping prescribed substrings giving the highest LCS score against string *b*

Describes assembly of an unknown genome from candidate exons, given a known similar genome
Further algorithmic ideas and applications

The *sparse spliced alignment* problem

Given m overlapping *prescribed substrings* in string a, determine the chain of non-overlapping prescribed substrings giving the highest LCS score against string b

Describes assembly of an unknown genome from candidate exons, given a known similar genome

Assume $m = n$

$O(n^3)$
$O(n^{2.5})$
$O(n^{2.25})$

$O(n^3)$
$O(n^{2.5})$
$O(n^{2.25})$

[Gelfand+ 1996]
[Kent+ 2006]
NEW
1. Semi-local string comparison
2. Efficient output representation
3. Fast block iteration and applications
4. Fast divide-and-conquer and applications
5. Further algorithmic ideas and applications
6. Conclusions and future work
Conclusions and future work

Have given efficient algorithms for

- semi-local LCS (output represented implicitly)
- semi-local LCS on permutations
- related techniques

Potential further improvements:
- extension to real-weighted edit scores
- new interesting applications
Conclusions and future work

Have given efficient algorithms for

- semi-local LCS (output represented implicitly)
- semi-local LCS on permutations
- related techniques

Used as an “algorithmic plug-in”, leads to improvements in

- cyclic LCS
- longest repeated subsequence
- maximum clique in a circle graph
- local subsequence recognition in compressed text
- sparse spliced alignment

Potential further improvements:
- extension to real-weighted edit scores
- new interesting applications
Conclusions and future work

Have given efficient algorithms for

- semi-local LCS (output represented implicitly)
- semi-local LCS on permutations
- related techniques

Used as an “algorithmic plug-in”, leads to improvements in

- cyclic LCS
- longest repeated subsequence
- maximum clique in a circle graph
- local subsequence recognition in compressed text
- sparse spliced alignment

Potential further improvements:

- extension to real-weighted edit scores
- new interesting applications
A. Tiskin.
All semi-local longest common subsequences in subquadratic time.

A. Tiskin.
Longest common subsequences in permutations and maximum cliques in circle graphs.