Range Minimum Queries

Benjamin Sach
Range minimum query

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

\[
A = \begin{bmatrix}
23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54
\end{bmatrix}
\]
Range minimum query

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

![Array A](image)

After preprocessing, a **range minimum query** is given by $\text{RMQ}(i, j)$
Range minimum query

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

$$A = \begin{array}{c}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54
\end{array}$$

After preprocessing, a range minimum query is given by $\text{RMQ}(i, j)$

the output is the location of the smallest element in $A[i, j]$
Range minimum query

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\text{RMQ}(i, j)$

the output is the location of the smallest element in $A[i, j]$
Range minimum query

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

After preprocessing, a **range minimum query** is given by $\text{RMQ}(i, j)$

the output is the location of the smallest element in $A[i, j]$
Range minimum query

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\text{RMQ}(i, j)$

the output is the location of the smallest element in $A[i, j]$
Range minimum query

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

After preprocessing, a **range minimum query** is given by $\text{RMQ}(i, j)$

the output is the location of the smallest element in $A[i, j]$

e.g. $\text{RMQ}(3, 7) = 6$, which is the location of the smallest element in $A[3, 7]$
Range minimum query

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\text{RMQ}(i, j)$

the output is the location of the smallest element in $A[i, j]$

- e.g. $\text{RMQ}(3, 7) = 6$, which is the location of the smallest element in $A[3, 7]$
- e.g. $\text{RMQ}(5, 11) = 8$, which is the location of the smallest element in $A[5, 11]$
Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

After preprocessing, a **range minimum query** is given by $\text{RMQ}(i, j)$

the output is the location of the smallest element in $A[i, j]$

- e.g. $\text{RMQ}(3, 7) = 6$, which is the location of the smallest element in $A[3, 7]$
- e.g. $\text{RMQ}(5, 11) = 8$, which is the location of the smallest element in $A[5, 11]$

- We will discuss several algorithms which give trade-offs between space used, prep. time and query time
Range minimum query

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\text{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>17</td>
<td>8</td>
<td>73</td>
<td>51</td>
<td>82</td>
<td>19</td>
<td>32</td>
<td>5</td>
<td>67</td>
<td>91</td>
<td>14</td>
<td>46</td>
<td>9</td>
<td>21</td>
<td>54</td>
</tr>
</tbody>
</table>

- We will discuss several algorithms which give trade-offs between
  space used, prep. time and query time

- Ideally we would like $O(n)$ space, $O(n)$ prep. time and $O(1)$ query time

  e.g. $\text{RMQ}(3, 7) = 6$, which is the location of the smallest element in $A[3, 7]$
  
  e.g. $\text{RMQ}(5, 11) = 8$, which is the location of the smallest element in $A[5, 11]$
Block decomposition

\[ A = \begin{bmatrix}
23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54 \\
\end{bmatrix} \]
## Block decomposition

### Matrix $A$

<table>
<thead>
<tr>
<th>17</th>
<th>8</th>
<th>51</th>
<th>19</th>
<th>5</th>
<th>14</th>
<th>9</th>
<th>21</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>17</td>
<td>8</td>
<td>73</td>
<td>51</td>
<td>82</td>
<td>19</td>
<td>32</td>
<td>5</td>
</tr>
</tbody>
</table>

$n = 15$
Block decomposition

smallest from each pair

\[ A = \begin{bmatrix} 23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54 \end{bmatrix} \]
Block decomposition

smallest from each pair

A

\[
\begin{array}{cccccccccccccccc}
& 17 & 8 & 51 & 19 & 5 & 21 & 46 & 9 & 21 & 54 \\
1 & 2 & 3 & 4 & 6 & 8 & & & & & \\
2 & & & & & & & & & & \\
3 & & & & & & & & & & \\
4 & & & & & & & & & & \\
6 & & & & & & & & & & \\
8 & & & & & & & & & & \\
10 & 11 & 12 & 13 & 14 & & & & & & \\
\end{array}
\]
Block decomposition

<table>
<thead>
<tr>
<th>17</th>
<th>8</th>
<th>51</th>
<th>19</th>
<th>5</th>
<th>14</th>
<th>9</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>17</td>
<td>8</td>
<td>73</td>
<td>51</td>
<td>82</td>
<td>19</td>
<td>32</td>
</tr>
</tbody>
</table>

smallest from each pair

$A$

$n$
Block decomposition

\[
A = \begin{bmatrix}
17 & 8 & 51 & 19 & 5 & 14 & 9 & 21 & 23 \\
23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54
\end{bmatrix}
\]
Block decomposition

\[ A = \begin{bmatrix}
8 & 17 & 19 & 5 & 9 \\
2 & 8 & 51 & 19 & 14 \\
& 8 & 73 & 32 & 9 \\
& & 82 & 67 & 46 \\
& & & 54 & 21 \\
\end{bmatrix} \]

smallest from each four
Block decomposition

<table>
<thead>
<tr>
<th>A</th>
<th>23</th>
<th>17</th>
<th>8</th>
<th>73</th>
<th>51</th>
<th>82</th>
<th>19</th>
<th>32</th>
<th>5</th>
<th>67</th>
<th>91</th>
<th>14</th>
<th>46</th>
<th>9</th>
<th>21</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

smallest from each four
Block decomposition

\[ A = \begin{bmatrix}
8 & 17 & 19 & 5 & 9 \\
17 & 8 & 51 & 19 & 5 \\
19 & 5 & 19 & 14 & 9 \\
5 & 14 & 19 & 46 & 21 \\
9 & 9 & 21 & 14 & 54
\end{bmatrix} \]
### Block decomposition

The diagram above illustrates the block decomposition of matrix $A$. The matrix is divided into submatrices as follows:

- Upper left: $\begin{bmatrix} 8 & 2 \\ 8 & 2 \end{bmatrix}$
- Upper right: $\begin{bmatrix} 5 & 8 \\ 5 & 8 \end{bmatrix}$
- Lower left: $\begin{bmatrix} 17 & 8 \\ 19 & 5 \end{bmatrix}$
- Lower right: $\begin{bmatrix} 9 & 13 \\ 14 & 13 \end{bmatrix}$

The matrix $A$ is:

$$
A = \begin{bmatrix}
23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54 \\
\end{bmatrix}
$$

The submatrices are labeled with numbers indicating the order of elements within each block.
Block decomposition

<table>
<thead>
<tr>
<th></th>
<th>23</th>
<th>17</th>
<th>8</th>
<th>73</th>
<th>51</th>
<th>82</th>
<th>19</th>
<th>32</th>
<th>5</th>
<th>67</th>
<th>91</th>
<th>14</th>
<th>46</th>
<th>9</th>
<th>21</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

smallest from each eight
Block decomposition

smallest from each eight

\[
\begin{array}{cccccccccccc}
23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54 \\
\end{array}
\]
Block decomposition

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>19</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>17</td>
<td>8</td>
<td>51</td>
<td>19</td>
<td>5</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>8</td>
<td>73</td>
<td>51</td>
<td>82</td>
<td>19</td>
<td>32</td>
<td>5</td>
<td>67</td>
<td>91</td>
<td>14</td>
<td>46</td>
<td>9</td>
<td>21</td>
<td>54</td>
</tr>
</tbody>
</table>

A
Block decomposition

\[
\begin{bmatrix}
8 & 17 & 23 & 32 & 67 & 91 & 46 & 46 & 21 & 54 \\
5 & 19 & 82 & 31 & 14 & 9 & 9 & 13 & 13 & 14 \\
2 & 2 & 73 & 19 & 14 & 19 & 14 & 14 & 13 & 15 \\
5 & 8 & 8 & 19 & 5 & 9 & 9 & 19 & 19 & 19 \\
8 & 8 & 17 & 19 & 5 & 8 & 8 & 8 & 8 & 8 \\
\end{bmatrix}
\]
Block decomposition
Block decomposition

$A_k$ is an array of length $\frac{n}{k}$ so that for all $i$: $A_k[i] = (x, v)$

where $v$ is the minimum in $A[ik, (i+1)k]$ and $x$ is its location in $A$. 

<table>
<thead>
<tr>
<th>A16</th>
<th></th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>A4</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>A2</td>
<td>17</td>
<td>51</td>
</tr>
<tr>
<td>A</td>
<td>23</td>
<td>17</td>
</tr>
</tbody>
</table>

$n$
Block decomposition

$A_k$ is an array of length $\frac{n}{k}$ so that for all $i$: $A_k[i] = (x, v)$

where $v$ is the minimum in $A[ik, (i + 1)k]$ and $x$ is its location in $A$.

We store $A_k$ for all $k = 1, 2, 4, 8 \ldots \leq n$.

<table>
<thead>
<tr>
<th>$A$</th>
<th>23</th>
<th>17</th>
<th>8</th>
<th>73</th>
<th>51</th>
<th>82</th>
<th>19</th>
<th>32</th>
<th>5</th>
<th>67</th>
<th>91</th>
<th>14</th>
<th>46</th>
<th>9</th>
<th>21</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_2$</td>
<td>17</td>
<td>8</td>
<td>51</td>
<td>19</td>
<td>32</td>
<td>5</td>
<td>67</td>
<td>91</td>
<td>14</td>
<td>46</td>
<td>9</td>
<td>21</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_4$</td>
<td>8</td>
<td>2</td>
<td>19</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>$A_8$</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>$A_{16}$</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\end{array}$
Block decomposition

$A_k$ is an array of length $\frac{n}{k}$ so that for all $i$: $A_k[i] = (x, v)$

where $v$ is the minimum in $A[ik, (i + 1)k]$ and $x$ is its location in $A$.

We store $A_k$ for all $k = 1, 2, 4, 8 \ldots \leq n$

How much space is this?
Block decomposition

$A_k$ is an array of length $\frac{n}{k}$ so that for all $i$: $A_k[i] = (x, v)$

where $v$ is the minimum in $A[ik, (i + 1)k]$ and $x$ is its location in $A$.

We store $A_k$ for all $k = 1, 2, 4, 8 \ldots \leq n$

How much space is this? $O(n)$ in total

How much space is this? $O(n)$ in total
Block decomposition

$A_k$ is an array of length $\frac{n}{k}$ so that for all $i$: $A_k[i] = (x, v)$
where $v$ is the minimum in $A[i k, (i + 1)k]$ and $x$ is its location in $A$.

We store $A_k$ for all $k = 1, 2, 4, 8 \ldots \leq n$

How much space is this? $O(n)$ in total

\[
\begin{array}{cccccc}
A_{16} & & & & & 5 \\
& 8 & & & 5 \\
A_8 & & & & & 5 \\
& 8 & & 19 & 5 \\
A_4 & & & & & 9 \\
& 17 & 8 & 51 & 19 & 14 & 9 & 21 & 54 \\
A & 23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54 \\
\end{array}
\]
Block decomposition

$A_k$ is an array of length $\frac{n}{k}$ so that for all $i$: $A_k[i] = (x, v)$

where $v$ is the minimum in $A[ik, (i + 1)k]$ and $x$ is its location in $A$.

We store $A_k$ for all $k = 1, 2, 4, 8 \ldots \leq n$

How much space is this? $O(n)$ in total

\[\begin{array}{ccccccccc}
A_16 & & & & & & & & \\
\hline
& & & & & & & & 5 \\
& & & & & & & & 8 \\
A_8 & & & & & & & & \begin{array}{c}
2 \\
5 \\
8 \\
\end{array} \\
\hline
& & & & & & & & 5 \\
& & & & & & & & 8 \\
A_4 & & & & & & & & \begin{array}{c}
8 \\
19 \\
5 \\
9 \\
\end{array} \\
\hline
& & & & & & & & 9 \\
& & & & & & & & 21 \\
A_2 & & & & & & & & \begin{array}{c}
17 \\
8 \\
51 \\
19 \\
14 \\
9 \\
21 \\
\end{array} \\
\hline
& & & & & & & & \begin{array}{c}
23 \\
17 \\
8 \\
73 \\
51 \\
82 \\
19 \\
32 \\
5 \\
67 \\
91 \\
14 \\
46 \\
9 \\
21 \\
54 \\
\end{array} \\
\hline
\end{array}\]

\[O(n) + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \frac{n}{16} + \cdots \leq O(n)\]
Block decomposition

$A_k$ is an array of length $\frac{n}{k}$ so that for all $i$: $A_k[i] = (x, v)$

where $v$ is the minimum in $A[ik, (i+1)k]$ and $x$ is its location in $A$.

We store $A_k$ for all $k = 1, 2, 4, 8 \ldots \leq n$

How much space is this? $O(n)$ in total
Block decomposition

$A_k$ is an array of length $\frac{n}{k}$ so that for all $i$: $A_k[i] = (x, v)$

where $v$ is the minimum in $A[ik, (i + 1)k]$ and $x$ is its location in $A$.

We store $A_k$ for all $k = 1, 2, 4, 8 \ldots \leq n$

How much space is this? $O(n)$ in total

How quickly can we build them?

$A_{16}$

$A_8$

$A_4$

$A_2$

$A$

$n$

<table>
<thead>
<tr>
<th>23</th>
<th>17</th>
<th>8</th>
<th>73</th>
<th>51</th>
<th>82</th>
<th>19</th>
<th>32</th>
<th>5</th>
<th>67</th>
<th>91</th>
<th>14</th>
<th>46</th>
<th>9</th>
<th>21</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>
Block decomposition

$A_k$ is an array of length $\frac{n}{k}$ so that for all $i$: $A_k[i] = (x, v)$ where $v$ is the minimum in $A[i_k, (i + 1)k]$ and $x$ is its location in $A$.

We store $A_k$ for all $k = 1, 2, 4, 8 \ldots \leq n$

How much space is this? $O(n)$ in total

How quickly can we build them?

$A_{16}$

$A_8$

$A_4$

$A_2$

$A$

$\begin{array}{cccccccccccccccccc}
23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54 \\
\end{array}$

construct the $A_k$ arrays bottom-up
Block decomposition

$A_k$ is an array of length $\frac{n}{k}$ so that for all $i$: $A_k[i] = (x, v)$

where $v$ is the minimum in $A[ik, (i+1)k]$ and $x$ is its location in $A$.

We store $A_k$ for all $k = 1, 2, 4, 8 \ldots \leq n$

How much space is this? $O(n)$ in total

How quickly can we build them?

$A_{16}$

$A_8$

$A_4$

$A_2$

$A$

$n$

construct the $A_k$ arrays bottom-up

compute this from these in $O(1)$ time
Block decomposition

$A_k$ is an array of length $\frac{n}{k}$ so that for all $i$: $A_k[i] = (x, v)$

where $v$ is the minimum in $A[ik, (i + 1)k]$ and $x$ is its location in $A$.

We store $A_k$ for all $k = 1, 2, 4, 8 \ldots \leq n$

How much space is this? $O(n)$ in total

How quickly can we build them? $O(n)$ preprocessing time

construct the $A_k$
arrays bottom-up

compute this from
these in $O(1)$ time
Block decomposition

$A_k$ is an array of length $\frac{n}{k}$ so that for all $i$: $A_k[i] = (x, v)$

where $v$ is the minimum in $A[i, (i + 1)k]$ and $x$ is its location in $A$.

We store $A_k$ for all $k = 1, 2, 4, 8 \ldots \leq n$

How much space is this? $O(n)$ in total

How quickly can we build them? $O(n)$ preprocessing time

<table>
<thead>
<tr>
<th>$A$</th>
<th>23</th>
<th>17</th>
<th>8</th>
<th>73</th>
<th>51</th>
<th>82</th>
<th>19</th>
<th>32</th>
<th>5</th>
<th>67</th>
<th>91</th>
<th>14</th>
<th>46</th>
<th>9</th>
<th>21</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

$A_{16}$

$A_{8}$

$A_{4}$

$A_{2}$
Block decomposition

<table>
<thead>
<tr>
<th></th>
<th>A16</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>8</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>17</td>
<td>8</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>23</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td>51</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>91</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$n$
How do we find $\text{RMQ}(i,j)$?
How do we find $\text{RMQ}(i,j)$?

Block decomposition

<table>
<thead>
<tr>
<th></th>
<th>$A_{16}$</th>
<th></th>
<th>$A_{8}$</th>
<th></th>
<th>$A_{4}$</th>
<th></th>
<th>$A_{2}$</th>
<th></th>
<th>$A$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
<td>17</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td>8</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>4</td>
<td></td>
<td>6</td>
<td></td>
<td>3</td>
<td></td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>51</td>
<td></td>
<td>19</td>
<td></td>
<td>51</td>
<td></td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>19</td>
<td></td>
<td>5</td>
<td></td>
<td>19</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>32</td>
<td></td>
<td>6</td>
<td></td>
<td>32</td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>5</td>
<td></td>
<td>8</td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td></td>
<td>14</td>
<td></td>
<td>9</td>
<td></td>
<td>21</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>91</td>
<td></td>
<td>14</td>
<td></td>
<td>13</td>
<td></td>
<td>46</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>46</td>
<td></td>
<td>13</td>
<td></td>
<td>14</td>
<td></td>
<td>9</td>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
<td>14</td>
<td></td>
<td>14</td>
<td></td>
<td>21</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>54</td>
<td></td>
<td>13</td>
<td></td>
<td>14</td>
<td></td>
<td>54</td>
<td></td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

$n = 15$
How do we find $\text{RMQ}(i,j)$?

Find the largest *block* which is completely contained within the query interval.
How do we find $\text{RMQ}(i,j)$?

Find the largest block which is completely contained within the query interval.
Block decomposition

How do we find \( \text{RMQ}(i,j) \)?

**Repeat:** Find the largest block which is completely contained within the query interval

*but doesn’t overlap a block you chose before*

![Diagram showing block decomposition and RMQ(1,9)]
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest block which is completely contained within the query interval but doesn’t overlap a block you chose before.
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest block which is completely contained within the query interval

*but doesn’t overlap a block you chose before*

*(break ties arbitrarily)*
How do we find \( \text{RMQ}(i,j) \)?

**Repeat:** Find the largest block which is completely contained within the query interval but doesn’t overlap a block you chose before.
Block decomposition

How do we find $\text{RMQ}(i,j)$?

Repeat: Find the largest <block> which is completely contained within the query interval but doesn’t overlap a block you chose before
How do we find $RMQ(i,j)$?

**Repeat:** Find the largest block which is completely contained within the query interval but doesn’t overlap a block you chose before.

The minimum is the smallest in all these blocks because they cover the query.

<table>
<thead>
<tr>
<th></th>
<th>RMQ(1,9)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{16}$</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>$A_8$</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>$A_4$</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>$A_2$</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>$A$</td>
<td>23 17 8 73 51 82 19 32 5 67 91 14 46 9 21 54</td>
<td></td>
</tr>
</tbody>
</table>

$n$
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest block which is completely contained within the query interval but doesn’t overlap a block you chose before.

The minimum is the smallest in all these blocks because they cover the query.

---

**Block decomposition**

**How many blocks do we pick?**
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest block which is completely contained within the query interval but doesn’t overlap a block you chose before.

The minimum is the smallest in all these blocks because they cover the query.

How many blocks do we pick?
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest *block* which

is completely contained within the query interval

*but doesn't overlap a block you chose before*

The minimum is the smallest in all these blocks

*because they cover the query*

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{16}$</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_8$</td>
<td>8</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_4$</td>
<td>8</td>
<td>19</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_2$</td>
<td>17</td>
<td>8</td>
<td>51</td>
<td>19</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>$A$</td>
<td>23</td>
<td>17</td>
<td>8</td>
<td>73</td>
<td>19</td>
<td>32</td>
</tr>
</tbody>
</table>

How many blocks do we pick?
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest block which
is completely contained within the query interval
*but doesn’t overlap a block you chose before*

The minimum is the smallest in all these blocks

because they cover the query
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest *block* which is completely contained within the query interval *but doesn’t overlap a block you chose before*

The minimum is the smallest in all these blocks *because they cover the query*

<table>
<thead>
<tr>
<th></th>
<th>$A_{16}$</th>
<th></th>
<th>$A_{8}$</th>
<th></th>
<th>$A_{4}$</th>
<th></th>
<th>$A_{2}$</th>
<th></th>
<th>$A$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

How many blocks do we pick?
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest *block* which is completely contained within the query interval but doesn’t overlap a block you chose before.

The minimum is the smallest in all these blocks because they cover the query.

1. **How many blocks do we pick?**
2. Never three in a row.
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest block which

is completely contained within the query interval

*but doesn’t overlap a block you chose before*

The minimum is the smallest in all these blocks

*because they cover the query*
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest block which
is completely contained within the query interval

*but doesn’t overlap a block you chose before*

The minimum is the smallest in all these blocks

*because they cover the query*

How many blocks do we pick?

at most 2 blocks of each size

never three in a row
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest block which
is completely contained within the query interval

*but doesn’t overlap a block you chose before*

The minimum is the smallest in all these blocks

*because they cover the query*
Block decomposition

How do we find RMQ(i,j)?

Repeat: Find the largest block which
is completely contained within the query interval
but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks

because they cover the query

How many blocks do we pick?
at most 2 blocks of each size

never two on one side
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest block which

is completely contained within the query interval

*but doesn’t overlap a block you chose before*

The minimum is the smallest in all these blocks

*because they cover the query*

---

*How many blocks do we pick? at most 2 blocks of each size*

*never two on one side*
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest block which

is completely contained within the query interval

*but doesn’t overlap a block you chose before*

The minimum is the smallest in all these blocks

*because they cover the query*

<table>
<thead>
<tr>
<th>$A_{16}$</th>
<th>$A_{8}$</th>
<th>$A_{4}$</th>
<th>$A_{2}$</th>
<th>$A$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>

How many blocks do we pick?

at most 2 blocks of each size
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest *block* which

- is completely contained within the query interval
- *but doesn’t overlap a block you chose before*

The minimum is the smallest in all these blocks *because they cover the query*

---

**Diagram:**

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>$A_{16}$</td>
<td></td>
</tr>
<tr>
<td>$A_{8}$</td>
<td></td>
</tr>
<tr>
<td>$A_{4}$</td>
<td></td>
</tr>
<tr>
<td>$A_{2}$</td>
<td></td>
</tr>
<tr>
<td>$A$</td>
<td>23</td>
<td>17</td>
<td>8</td>
<td>73</td>
<td>51</td>
<td>82</td>
<td>19</td>
<td>32</td>
<td>5</td>
<td>67</td>
<td>91</td>
</tr>
</tbody>
</table>

How many blocks do we pick? At most 2 blocks of each size.
How do we find RMQ(i,j)?

Repeat: Find the largest block which

is completely contained within the query interval

but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks

because they cover the query

How many blocks do we pick?

at most 2 blocks of each size

no gaps
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest *block* which

is completely contained within the query interval

*but doesn’t overlap a block you chose before*

The minimum is the smallest in all these blocks

*because they cover the query*

---

```
<table>
<thead>
<tr>
<th>8</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
</tr>
</tbody>
</table>
```

How many blocks do we pick?

**at most 2 blocks of each size**

---

```
<table>
<thead>
<tr>
<th>23</th>
<th>17</th>
<th>8</th>
<th>73</th>
<th>51</th>
<th>82</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>32</td>
<td>5</td>
<td>67</td>
<td>91</td>
<td>14</td>
</tr>
<tr>
<td>46</td>
<td>9</td>
<td>21</td>
<td>54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\( n \)
```
Block decomposition

How do we find $\text{RMQ}(i,j)$?

Repeat: Find the largest block which is completely contained within the query interval but doesn’t overlap a block you chose before

The minimum is the smallest in all these blocks because they cover the query

10,000 foot view

$A_{16}$

$A_{8}$

$A_{4}$

$A_{2}$

$A$

How many blocks do we pick? at most 2 blocks of each size
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest block which is completely contained within the query interval but doesn’t overlap a block you chose before.

The minimum is the smallest in all these blocks because they cover the query.

How many blocks do we pick? at most 2 blocks of each size.
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest *block* which

is completely contained within the query interval

*but doesn’t overlap a block you chose before*

The minimum is the smallest in all these blocks

*because they cover the query*

---

**Block decomposition**

<table>
<thead>
<tr>
<th>$A_{16}$</th>
<th>$A_{8}$</th>
<th>$A_{4}$</th>
<th>$A_{2}$</th>
<th>$A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>17</td>
<td>8</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>46</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>32</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>5</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>67</td>
<td>67</td>
<td>51</td>
</tr>
<tr>
<td>82</td>
<td>82</td>
<td>21</td>
<td>21</td>
<td>82</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>14</td>
<td>14</td>
<td>51</td>
</tr>
<tr>
<td>91</td>
<td>91</td>
<td>54</td>
<td>54</td>
<td>91</td>
</tr>
<tr>
<td>$n$</td>
<td>$n$</td>
<td>$n$</td>
<td>$n$</td>
<td>$n$</td>
</tr>
</tbody>
</table>

How many blocks do we pick?

at most 2 blocks of each size

There are $O(\log n)$ sizes
How do we find $\text{RMQ}(i,j)$?

**Repeat:** Find the largest block which is completely contained within the query interval but doesn't overlap a block you chose before.

The minimum is the smallest in all these blocks because they cover the query.

How many blocks do we pick? at most 2 blocks of each size.

There are $O(\log n)$ sizes.

Picking the blocks from $A_k$ takes $O(1)$ time.
How do we find \( \text{RMQ}(i,j) \)?

**Repeat:** Find the largest block which

is completely contained within the query interval

*but doesn’t overlap a block you chose before*

The minimum is the smallest in all these blocks

\[ \text{because they cover the query} \]

How many blocks do we pick?

at most 2 blocks of each size

There are \( O(\log n) \) sizes

Picking the blocks from \( A_k \) takes \( O(1) \) time

So we have … \( O(n) \) space,
\( O(n) \) prep time
\( O(\log n) \) query time
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16, ... 

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16 . . .

\[
A
\]

The array \( R_2 \) stores \( \text{RMQ}(i, i + 1) \) for all \( i \)
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$. 
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16 \ldots

![Array A](image)

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$. 
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$
More space, faster queries

**Key Idea** precompute the answers for every interval of length \(2, 4, 8, 16 \ldots\)

The array \(R_2\) stores \(\text{RMQ}(i, i + 1)\) for all \(i\)
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$. 
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$. 
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16 \ldots

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16 ...
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16, ... 

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$
More space, faster queries

**Key Idea** precompute the answers for every interval of length \(2, 4, 8, 16 \ldots\)

![Diagram]

The array \(R_2\) stores \(\text{RMQ}(i, i + 1)\) for all \(i\)
- \(R_4\) stores \(\text{RMQ}(i, i + 3)\) for all \(i\)
- \(R_8\) stores \(\text{RMQ}(i, i + 7)\) for all \(i\)
- \(R_k\) stores \(\text{RMQ}(i, i + k - 1)\) for all \(i\)

We build \(R_k\) for \(k = 2, 4, 8, 16 \ldots \leq n\)
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$

We build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

each of the $O(\log n)$ arrays uses $O(n)$ space
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$

We build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

Each of the $O(\log n)$ arrays uses $O(n)$ space

so $O(n \log n)$ total space
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$

We build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

each of the $O(\log n)$ arrays uses $O(n)$ space

so $O(n \log n)$ *total space*
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$

We build $R_2$ from $A$ in $O(n)$ time

We build $R_{2k}$ from $R_k$ in $O(n)$ time

We build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

each of the $O(\log n)$ arrays uses $O(n)$ space

so $O(n \log n)$ total space
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$

We build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

We build $R_{2k}$ from $R_k$ in $O(n)$ time

We build $R_2$ from $A$ in $O(n)$ time

each of the $O(\log n)$ arrays uses $O(n)$ space

so $O(n \log n)$ total space
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$

We build $R_2$ from $A$ in $O(n)$ time

We build $R_{2k}$ from $R_k$ in $O(n)$ time

We build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

each of the $O(\log n)$ arrays uses $O(n)$ space

so $O(n \log n)$ total space
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16 . . .

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$

We build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

We build $R_{2k}$ from $R_k$ in $O(n)$ time

each of the $O(\log n)$ arrays uses $O(n)$ space

so $O(n \log n)$ total space
**More space, faster queries**

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i+1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i+3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i+7)$ for all $i$

$R_k$ stores $\text{RMQ}(i, i+k-1)$ for all $i$

We build $R_2$ from $A$ in $O(n)$ time

We build $R_{2k}$ from $R_k$ in $O(n)$ time

We build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

each of the $O(\log n)$ arrays uses $O(n)$ space

so $O(n \log n)$ total space
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$

We build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

each of the $O(\log n)$ arrays uses $O(n)$ space

so $O(n \log n)$ total space
More space, faster queries

**Key Idea** precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$

$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$

$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$

We build $R_{2k}$ from $R_k$ in $O(n)$ time

We build $R_2$ from $A$ in $O(n)$ time

We build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

each of the $O(\log n)$ arrays uses $O(n)$ space

so $O(n \log n)$ total space
More space, faster queries

Key Idea precompute the answers for every interval of length $2, 4, 8, 16 \ldots$

The array $R_2$ stores $\text{RMQ}(i, i + 1)$ for all $i$
$R_4$ stores $\text{RMQ}(i, i + 3)$ for all $i$
$R_8$ stores $\text{RMQ}(i, i + 7)$ for all $i$
$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$

We build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

each of the $O(\log n)$ arrays uses $O(n)$ space

so $O(n \log n)$ total space
More space, faster queries

**Key Idea** precompute the answers for every interval of length 2, 4, 8, 16 . . .

We build $R_2$ from $A$ in $O(n)$ time

We build $R_{2k}$ from $R_k$ in $O(n)$ time

Each of the $O(\log n)$ arrays uses $O(n)$ space

so $O(n \log n)$ total space

This takes $O(n \log n)$ prep time
More space, faster queries

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$.

we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

How do we compute $\text{RMQ}(i, j)$?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer
More space, faster queries

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$,
we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

How do we compute $\text{RMQ}(i, j)$?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer
More space, faster queries

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$,
we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

How do we compute $\text{RMQ}(i, j)$?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer
these queries take $O(1)$ time
More space, faster queries

\( R_k \) stores \( \text{RMQ}(i, i + k - 1) \) for all \( i \),

we build \( R_k \) for \( k = 2, 4, 8, 16 \ldots \leq n \)

\[ \begin{array}{c}
A
\hline
\hline
\text{stored in } R_2 \\
\text{stored in } R_4 \\
\text{stored in } R_8 \\
\hline
\end{array} \]

How do we compute \( \text{RMQ}(i, j) \)?

If the interval length, \( \ell = (j - i + 1) \), is a power-of-two - just look up the answer

these queries take \( O(1) \) time

Otherwise, find the \( k = 2, 4, 8, 16 \ldots \) such that \( k \leq \ell < 2k \)
More space, faster queries

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$,
we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

How do we compute $\text{RMQ}(i, j)$?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer
these queries take $O(1)$ time

Otherwise, find the $k = 2, 4, 8, 16 \ldots$ such that $k \leq \ell < 2k$
More space, faster queries

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$,
we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

How do we compute $\text{RMQ}(i, j)$?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer
these queries take $O(1)$ time

Otherwise, find the $k = 2, 4, 8, 16 \ldots$ such that $k \leq \ell < 2k$

Compute the minimum of $\text{RMQ}(i, i + k - 1)$ and $\text{RMQ}(j - k + 1, j)$
More space, faster queries

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$,
we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

How do we compute $\text{RMQ}(i, j)$?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer
these queries take $O(1)$ time

Otherwise, find the $k = 2, 4, 8, 16 \ldots$ such that $k \leq \ell < 2k$

Compute the minimum of $\text{RMQ}(i, i + k - 1)$ and $\text{RMQ}(j - k + 1, j)$
(these two queries take $O(1)$ time)
More space, faster queries

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$, we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

How do we compute $\text{RMQ}(i, j)$?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer

these queries take $O(1)$ time

Otherwise, find the $k = 2, 4, 8, 16 \ldots$ such that $k \leq \ell < 2k$

Compute the minimum of $\text{RMQ}(i, i + k - 1)$ and $\text{RMQ}(j - k + 1, j)$

( these two queries take $O(1)$ time)
More space, faster queries

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$,
we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

$A$

stored in $R_2$

stored in $R_4$

stored in $R_8$

How do we compute $\text{RMQ}(i, j)$?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer
these queries take $O(1)$ time

Otherwise, find the $k = 2, 4, 8, 16 \ldots$ such that $k \leq \ell < 2k$

Compute the minimum of $\text{RMQ}(i, i + k - 1)$ and $\text{RMQ}(j - k + 1, j)$
(these two queries take $O(1)$ time)

This takes $O(1)$ time but why does it work?
More space, faster queries

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$.

we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

How do we compute $\text{RMQ}(i, j)$?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer

these queries take $O(1)$ time

Otherwise, find the $k = 2, 4, 8, 16 \ldots$ such that $k \leq \ell < 2k$

Compute the minimum of $\text{RMQ}(i, i + k - 1)$ and $\text{RMQ}(j - k + 1, j)$

(these two queries take $O(1)$ time)

This takes $O(1)$ time but why does it work?
More space, faster queries

$R_k$ stores RMQ($i, i + k - 1$) for all $i$,
we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

How do we compute RMQ($i, j$)?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer
these queries take $O(1)$ time

Otherwise, find the $k = 2, 4, 8, 16 \ldots$ such that $k \leq \ell < 2k$

Compute the minimum of RMQ($i, i + k - 1$) and RMQ($j - k + 1, j$)
(thises two queries take $O(1)$ time)

This takes $O(1)$ time but why does it work?
More space, faster queries

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$.

we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

How do we compute $\text{RMQ}(i, j)$?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer

these queries take $O(1)$ time

Otherwise, find the $k = 2, 4, 8, 16 \ldots$ such that $k \leq \ell < 2k$

Compute the minimum of $\text{RMQ}(i, i + k - 1)$ and $\text{RMQ}(j - k + 1, j)$

(these two queries take $O(1)$ time)

This takes $O(1)$ time but why does it work?
More space, faster queries

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$, we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

How do we compute $\text{RMQ}(i, j)$?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer these queries take $O(1)$ time

Otherwise, find the $k = 2, 4, 8, 16 \ldots$ such that $k \leq \ell < 2k$

Compute the minimum of $\text{RMQ}(i, i + k - 1)$ and $\text{RMQ}(j - k + 1, j)$ (these two queries take $O(1)$ time)

This takes $O(1)$ time but why does it work?
More space, faster queries

$R_k$ stores $\text{RMQ}(i, i + k - 1)$ for all $i$.

we build $R_k$ for $k = 2, 4, 8, 16 \ldots \leq n$

What do we compute $\text{RMQ}(i, j)$?

If the interval length, $\ell = (j - i + 1)$, is a power-of-two - just look up the answer

these queries take $O(1)$ time

Otherwise, find the $k = 2, 4, 8, 16 \ldots$ such that $k \leq \ell < 2k$

Compute the minimum of $\text{RMQ}(i, i + k - 1)$ and $\text{RMQ}(j - k + 1, j)$

(These two queries take $O(1)$ time)

This takes $O(1)$ time but why does it work?
Range minimum query (intermediate) summary

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

After preprocessing, a **range minimum query** is given by $\text{RMQ}(i, j)$
the output is the location of the smallest element in $A[i, j]$
Range minimum query (intermediate) summary

Preprocess an integer array \( A \) (length \( n \)) to answer range minimum queries...

\[
\begin{array}{cccccccccccccc}
    0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
A & 23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54 \\
\end{array}
\]

\( i = 3 \quad \rightarrow \quad j = 7 \)

\[
\text{RMQ}(3, 7) = 6
\]

After preprocessing, a range minimum query is given by \( \text{RMQ}(i, j) \)

the output is the location of the smallest element in \( A[i, j] \)

**Solution 1**

- \( O(n) \) space
- \( O(n) \) prep time
- \( O(\log n) \) query time

**Solution 2**

- \( O(n \log n) \) space
- \( O(n \log n) \) prep time
- \( O(1) \) query time
## Range minimum query (intermediate) summary

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>17</td>
<td>8</td>
<td>73</td>
<td>51</td>
<td>82</td>
<td>19</td>
<td>32</td>
<td>5</td>
<td>67</td>
<td>91</td>
<td>14</td>
<td>46</td>
<td>9</td>
<td>21</td>
<td>54</td>
</tr>
</tbody>
</table>

After preprocessing, a **range minimum query** is given by $\text{RMQ}(i, j)$

the output is the location of the smallest element in $A[i, j]$

<table>
<thead>
<tr>
<th>Solution 1</th>
<th>Can we do better?</th>
<th>Solution 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$ space</td>
<td>$O(n \log n)$ space</td>
<td></td>
</tr>
<tr>
<td>$O(n)$ prep time</td>
<td>$O(n \log n)$ prep time</td>
<td></td>
</tr>
<tr>
<td>$O(\log n)$ query time</td>
<td>$O(1)$ query time</td>
<td></td>
</tr>
</tbody>
</table>
Range minimum query (intermediate) summary

Preprocess an integer array \( A \) (length \( n \)) to answer range minimum queries...

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54
\end{array}
\]

\( i = 3 \) \quad \text{\( j = 7 \)}

\( \text{RMQ}(3, 7) = 6 \)

After preprocessing, a \textbf{range minimum query} is given by \( \text{RMQ}(i, j) \)

the output is the location of the smallest element in \( A[i, j] \)

**Solution 1**

\( O(n) \) space
\( O(n) \) prep time
\( O(\log n) \) query time

Can we do better? \( \text{(yes)} \)

**Solution 2**

\( O(n \log n) \) space
\( O(n \log n) \) prep time
\( O(1) \) query time
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, *low resolution* array $H$
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$

$$\tilde{n} = \frac{n}{\log n}$$
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, *low resolution* array $H$

\[ \tilde{n} = \frac{n}{\log n} \]
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$

$\tilde{n} = \frac{n}{\log n}$

The smallest of these is stored here.
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$

$$\tilde{n} = \frac{n}{\log n}$$

A

$\tilde{n}$

$H$
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, *‘low resolution’* array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ *‘for the details’*

\[
\tilde{n} = \frac{n}{\log n}
\]
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$
and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

$$\tilde{n} = \frac{n}{\log n}$$
**Low-resolution RMQ**

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

$$\tilde{n} = \frac{n}{\log n}$$
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, *low resolution* array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ *for the details*

\[ \tilde{n} = \frac{n}{\log n} \]

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs...
Low-resolution RMQ

**Key Idea** replace \( A \) with a smaller, *low resolution* array \( H \)

and many small arrays \( L_0, L_1, L_2 \ldots \) *for the details*

\[
\tilde{n} = \frac{n}{\log n}
\]

Preprocess the array \( H \) (which has length \( \tilde{n} = \frac{n}{\log n} \)) to answer RMQs...

using **Solution 2**
Low-resolution RMQ

Key Idea replace $A$ with a smaller, ‘low resolution’ array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

$\tilde{n} = \frac{n}{\log n}$

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs…

Recall…

Solution 2 on $A$

$O(n \log n)$ space

$O(n \log n)$ prep time

$O(1)$ query time
**Low-resolution RMQ**

**Key Idea** replace $A$ with a smaller, *low resolution* array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs…

**Recall…**

**Solution 2 on $A$**

- $O(n \log n)$ space
- $O(n \log n)$ prep time
- $O(1)$ query time

using **Solution 2**
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

$$\tilde{n} = \frac{n}{\log n}$$

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs…

*Recall…*

**Solution 2 on $A$**

- $O(n \log n)$ space
- $O(n \log n)$ prep time
- $O(1)$ query time

**Solution 2 on $H$**

- $O(\tilde{n} \log \tilde{n})$ space
- $O(\tilde{n} \log \tilde{n})$ prep time
- $O(1)$ query time
**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs…

**Recall…**

<table>
<thead>
<tr>
<th>Solution 2 on $A$</th>
<th>Solution 2 on $H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n \log n)$ space</td>
<td>$O(\tilde{n} \log \tilde{n})$ space $= O\left(\left(\frac{n}{\log n}\right) \log \left(\frac{n}{\log n}\right)\right)$</td>
</tr>
<tr>
<td>$O(n \log n)$ prep time</td>
<td>$O(\tilde{n} \log \tilde{n})$ prep time</td>
</tr>
<tr>
<td>$O(1)$ query time</td>
<td>$O(1)$ query time</td>
</tr>
</tbody>
</table>
**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs…

using Solution 2

---

### Solution 2 on $A$

- $O(n \log n)$ space
- $O(n \log n)$ prep time
- $O(1)$ query time

### Solution 2 on $H$

- $O(\tilde{n} \log \tilde{n})$ space
- $O\left(\left(\frac{n}{\log n}\right) \log \left(\frac{n}{\log n}\right)\right) = O(n)$
- $O(\tilde{n} \log \tilde{n})$ prep time
- $O(1)$ query time
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, \textit{‘low resolution’} array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

\[ \tilde{n} = \frac{n}{\log n} \]

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs...

\textbf{Recall}...

<table>
<thead>
<tr>
<th>Solution 2 on $A$</th>
<th>Solution 2 on $H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n \log n)$ space</td>
<td>$O(\tilde{n} \log \tilde{n})$ space = $O \left( \left( \frac{n}{\log n} \right) \log \left( \frac{n}{\log n} \right) \right) = O(n) $</td>
</tr>
<tr>
<td>$O(n \log n)$ prep time</td>
<td>$O(\tilde{n} \log \tilde{n})$ prep time = $O(n)$</td>
</tr>
<tr>
<td>$O(1)$ query time</td>
<td>$O(1)$ query time</td>
</tr>
</tbody>
</table>
**Low-resolution RMQ**

**Key Idea** replace \( A \) with a smaller, ‘low resolution’ array \( H \) and many small arrays \( L_0, L_1, L_2 \ldots \) ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

Preprocess the array \( H \) (which has length \( \tilde{n} = \frac{n}{\log n} \)) to answer RMQs... using **Solution 2** in \( O(n) \) space/prep time

**Recall...**

<table>
<thead>
<tr>
<th>Solution 2 on ( A )</th>
<th>Solution 2 on ( H )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( O(n \log n) ) space</td>
<td>( O(\tilde{n} \log \tilde{n}) ) space = ( O \left( \left( \frac{n}{\log n} \right) \log \left( \frac{n}{\log n} \right) \right) = O(n) )</td>
</tr>
<tr>
<td>( O(n \log n) ) prep time</td>
<td>( O(\tilde{n} \log \tilde{n}) ) prep time = ( O(n) )</td>
</tr>
<tr>
<td>( O(1) ) query time</td>
<td>( O(1) ) query time</td>
</tr>
</tbody>
</table>
**Low-resolution RMQ**

**Key Idea** replace \( A \) with a smaller, ‘low resolution’ array \( H \) and many small arrays \( L_0, L_1, L_2 \ldots \) ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

Preprocess the array \( H \) (which has length \( \tilde{n} = \frac{n}{\log n} \)) to answer RMQs...

using **Solution 2** in \( O(n) \) space/prep time
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, *low resolution* array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

$\tilde{n} = \frac{n}{\log n}$

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs...

using **Solution 2** in $O(n)$ space/prep time

Preprocess each array $L_i$ (which has length $\log n$) to answer RMQs...

using **Solution 2**
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, 'low resolution' array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs…

using **Solution 2** in $O(n)$ space/prep time

Preprocess each array $L_i$ (which has length $\log n$) to answer RMQs…

using **Solution 2**

**Solution 2 on $L_i$**

$O((\log n) \log \log n))$ space/prep time    $O(1)$ query time
**Low-resolution RMQ**

**Key Idea** replace $A$ with a smaller, 'low resolution' array $H$
and many small arrays $L_0, L_1, L_2 \ldots$ 'for the details'

$$\tilde{n} = \frac{n}{\log n}$$

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs...
using **Solution 2** in $O(n)$ space/prep time

Preprocess each array $L_i$ (which has length $\log n$) to answer RMQs...
using **Solution 2** in $O(\log n \log \log n)$ space/prep time

**Solution 2 on $L_i$**

$O((\log n) \log \log n))$ space/prep time $\quad O(1)$ query time
Low-resolution RMQ

**Key Idea** replace \( A \) with a smaller, ‘low resolution’ array \( H \)
and many small arrays \( L_0, L_1, L_2 \ldots \) ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

Preprocess the array \( H \) (which has length \( \tilde{n} = \frac{n}{\log n} \)) to answer RMQs...
using **Solution 2** in \( O(n) \) space/prep time

Preprocess each array \( L_i \) (which has length \( \log n \)) to answer RMQs...
using **Solution 2** in \( O(\log n \log \log n) \) space/prep time

**Total space** = \( O(n) + O(\tilde{n} \log n \log \log n) \)
**Low-resolution RMQ**

**Key Idea** replace $A$ with a smaller, 'low resolution' array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs...

using **Solution 2** in $O(n)$ space/prep time

Preprocess each array $L_i$ (which has length $\log n$) to answer RMQs...

using **Solution 2** in $O(\log n \log \log n)$ space/prep time

**Total space** = $O(n) + O(\tilde{n} \log n \log \log n)$

space for RMQ structure for $H$

space for RMQ structures for all the $L_i$ arrays
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, *low resolution* array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs...

using **Solution 2** in $O(n)$ space/prep time

Preprocess each array $L_i$ (which has length $\log n$) to answer RMQs...

using **Solution 2** in $O(\log n \log \log n)$ space/prep time

**Total space** = $O(n) + O(\tilde{n} \log n \log \log n) = O(n \log \log \log n)$
Low-resolution RMQ

Key Idea replace $A$ with a smaller, *low resolution* array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

$\tilde{n} = \frac{n}{\log n}$

Preprocess the array $H$ (which has length $\tilde{n} = \frac{n}{\log n}$) to answer RMQs…

using Solution 2 in $O(n)$ space/prep time

Preprocess each array $L_i$ (which has length $\log n$) to answer RMQs…

using Solution 2 in $O(\log n \log \log n)$ space/prep time

Total space $= O(n) + O(\tilde{n} \log n \log \log n) = O(n \log \log n)$
Low-resolution RMQ

**Key Idea** replace \(A\) with a smaller, ‘low resolution’ array \(H\) and many small arrays \(L_0, L_1, L_2 \ldots\) ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

Preprocess the array \(H\) (which has length \(\tilde{n} = \frac{n}{\log n}\)) to answer RMQs… using **Solution 2** in \(O(n)\) space/prep time

Preprocess each array \(L_i\) (which has length \(\log n\)) to answer RMQs… using **Solution 2** in \(O(\log n \log \log n)\) space/prep time

**Total space** = \(O(n) + O(\tilde{n} \log n \log \log n) = O(n \log \log n)\)

**Total prep. time** = \(O(n \log \log n)\)
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$

and many small arrays $L_0$, $L_1$, $L_2$ . . . ‘for the details’

\[ \tilde{n} = \frac{n}{\log n} \]
Low-resolution RMQ

Key Idea replace \( A \) with a smaller, ‘low resolution’ array \( H \)

and many small arrays \( L_0, L_1, L_2 \ldots \) ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

How do we answer a query in \( A \)?
Low-resolution RMQ

**Key Idea** replace \( A \) with a smaller, ‘low resolution’ array \( H \) and many small arrays \( L_0, L_1, L_2 \ldots \) ‘for the details’

\[ \tilde{n} = \frac{n}{\log n} \]

How do we answer a query in \( A \)?
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$
and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

$$\tilde{n} = \frac{n}{\log n}$$

How do we answer a query in $A$?

Do at most one query in $H$ . . .
and one query in at most two different $L_i$
then take the smallest
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, *'low resolution'* array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ *'for the details'*

\[ \tilde{n} = \frac{n}{\log n} \]

How do we answer a query in $A$?

Do at most one query in $H \ldots$

and one query in at most two different $L_i$

then take the smallest
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, *'low resolution'* array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

$$\tilde{n} = \frac{n}{\log n}$$

How do we answer a query in $A$?

Do at most one query in $H$ . . .

and one query in at most two different $L_i$

then take the smallest
Low-resolution RMQ

Key Idea replace $A$ with a smaller, ‘low resolution’ array $H$
and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

$$\tilde{n} = \frac{n}{\log n}$$

How do we answer a query in $A$?

Do at most one query in $H\ldots$

and one query in at most two different $L_i$
then take the smallest

$$i' = \left\lceil \frac{i}{\log n} \right\rceil \quad j' = \left\lfloor \frac{j}{\log n} \right\rfloor$$
Low-resolution RMQ

Key Idea replace \( A \) with a smaller, ‘low resolution’ array \( H \)
and many small arrays \( L_0, L_1, L_2 \ldots \) ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

How do we answer a query in \( A \)?

Do at most one query in \( H \)
and one query in at most two different \( L_i \)
then take the smallest

\[
i' = \left\lceil \frac{i}{\log n} \right\rceil \quad j' = \left\lfloor \frac{j}{\log n} \right\rfloor
\]
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

How do we answer a query in $A$?

Do at most one query in $H \ldots$

and one query in at most two different $L_i$

then take the smallest

$\tilde{n} = \frac{n}{\log n}$
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, 'low resolution' array $H$

and many small arrays $L_0, L_1, L_2, \ldots$ ‘for the details’

How do we answer a query in $A$?

Do at most one query in $H$ . . .

and one query in at most two different $L_i$

then take the smallest

\[ i' = \left\lceil \frac{i}{\log n} \right\rceil \quad j' = \left\lfloor \frac{j}{\log n} \right\rfloor \]
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$
and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

$$\tilde{n} = \frac{n}{\log n}$$

How do we answer a query in $A$?

Do at most one query in $H$…

and one query in at most two different $L_i$

then take the smallest
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, *low resolution* array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ *for the details*

\[
\tilde{n} = \frac{n}{\log n}
\]

How do we answer a query in $A$?

Do at most one query in $H$ . . .

and one query in at most two different $L_i$ (here we query $L_1$ and $L_5$)

then take the smallest

\[
i' = \left\lceil \frac{i}{\log n} \right\rceil \quad j' = \left\lfloor \frac{j}{\log n} \right\rfloor
\]
Low-resolution RMQ

**Key Idea** replace $A$ with a smaller, ‘low resolution’ array $H$

and many small arrays $L_0, L_1, L_2 \ldots$ ‘for the details’

$$\tilde{n} = \frac{n}{\log n}$$

How do we answer a query in $A$?

Do at most one query in $H$ . . .

and one query in at most two different $L_i$ (here we query $L_1$ and $L_5$)

then take the smallest

$$i' = \left\lceil \frac{i}{\log n} \right\rceil \quad j' = \left\lfloor \frac{j}{\log n} \right\rfloor$$

This takes $O(1)$ total query time
Low-resolution RMQ

**Key Idea** replace \( A \) with a smaller, ‘**low resolution**’ array \( H \)

and many small arrays \( L_0, L_1, L_2 \ldots \) ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

**How do we answer a query in** \( A \)?

Do at most one query in \( H \ldots \)

and one query in at most two different \( L_i \) (here we query \( L_1 \) and \( L_5 \))

then take the smallest

\[
i' = \left\lceil \frac{i}{\log n} \right\rceil \quad j' = \left\lfloor \frac{j}{\log n} \right\rfloor
\]

*This takes \( O(1) \) total query time*
Low-resolution RMQ

**Key Idea** replace \( A \) with a smaller, ‘low resolution’ array \( H \) and many small arrays \( L_0, L_1, L_2 \ldots \) ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

How do we answer a query in \( A \)?

Do at most one query in \( H \) . . .

and one query in at most two different \( L_i \) (here we query \( L_1 \) and \( L_5 \))

then take the smallest

\[
i' = \left\lceil \frac{i}{\log n} \right\rceil \quad j' = \left\lfloor \frac{j}{\log n} \right\rfloor
\]

**Solution 3**

\( O(n \log \log n) \) space \quad \( O(n \log \log n) \) prep time \quad \( O(1) \) query time
Low-resolution RMQ

Key Idea replace \( A \) with a smaller, ‘low resolution’ array \( H \) and many small arrays \( L_0, L_1, L_2 \ldots \) ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

How do we answer a query in \( A \)?

Do at most one query in \( H \) . . .

and one query in at most two different \( L_i \) (here we query \( L_1 \) and \( L_5 \))

then take the smallest

This takes \( O(1) \) total query time

Solution 4

\( O(n \log \log \log n) \) space \quad \( O(n \log \log \log n) \) prep time \quad \( O(1) \) query time
**Key Idea** replace \( A \) with a smaller, *low resolution* array \( H \) and many small arrays \( L_0, L_1, L_2 \ldots \) ‘for the details’

\[
\tilde{n} = \frac{n}{\log n}
\]

**How do we answer a query in \( A \)?**

Do at most one query in \( H \) ... and one query in at most two different \( L_i \) (here we query \( L_1 \) and \( L_5 \)) then take the smallest

\[
i' = \left\lceil \frac{i}{\log n} \right\rceil \quad j' = \left\lfloor \frac{j}{\log n} \right\rfloor
\]

*This takes \( O(1) \) total query time*

**Solution 4**

\( O(n \log \log \log n) \) space \quad \( O(n \log \log \log n) \) prep time \quad \( O(1) \) query time
Range minimum query summary

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

After preprocessing, a **range minimum query** is given by $\text{RMQ}(i, j)$

the output is the location of the smallest element in $A[i, j]$

**Solution 1**
- $O(n)$ space
- $O(n)$ prep time
- $O(\log n)$ query time

**Solution 2**
- $O(n \log n)$ space
- $O(n \log n)$ prep time
- $O(1)$ query time

**Solution 3**
- $O(n \log \log n)$ space
- $O(n \log \log n)$ prep time
- $O(1)$ query time
Range minimum query summary

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

After preprocessing, a **range minimum query** is given by $\text{RMQ}(i, j)$

the output is the location of the smallest element in $A[i, j]$

<table>
<thead>
<tr>
<th>Solution 1</th>
<th>Solution 2</th>
<th>Solution 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$ space</td>
<td>$O(n \log \log n)$ space</td>
<td>$O(n \log \log n)$ space</td>
</tr>
<tr>
<td>$O(n)$ prep time</td>
<td>$O(n \log \log n)$ prep time</td>
<td>$O(n \log \log n)$ prep time</td>
</tr>
<tr>
<td>$O(\log n)$ query time</td>
<td>$O(1)$ query time</td>
<td>$O(1)$ query time</td>
</tr>
</tbody>
</table>

Can we do $O(n)$ space and $O(1)$ query time?
Range minimum query summary

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

After preprocessing, a range minimum query is given by $\text{RMQ}(i, j)$

the output is the location of the smallest element in $A[i, j]$

<table>
<thead>
<tr>
<th>Solution 1</th>
<th>Solution 2</th>
<th>Solution 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$ space</td>
<td>$O(n \log n)$ space</td>
<td>$O(n \log \log n)$ space</td>
</tr>
<tr>
<td>$O(n)$ prep time</td>
<td>$O(n \log n)$ prep time</td>
<td>$O(n \log \log n)$ prep time</td>
</tr>
<tr>
<td>$O(\log n)$ query time</td>
<td>$O(1)$ query time</td>
<td>$O(1)$ query time</td>
</tr>
</tbody>
</table>

Can we do $O(n)$ space and $O(1)$ query time? Yes...
Range minimum query summary

Preprocess an integer array $A$ (length $n$) to answer range minimum queries...

\[
\begin{array}{cccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
23 & 17 & 8 & 73 & 51 & 82 & 19 & 32 & 5 & 67 & 91 & 14 & 46 & 9 & 21 & 54 \\
\end{array}
\]

$i = 3$ \quad \ quad
\]

After preprocessing, a **range minimum query** is given by $\text{RMQ}(i, j)$

the output is the location of the smallest element in $A[i, j]$

<table>
<thead>
<tr>
<th>Solution 1</th>
<th>Solution 3</th>
<th>Solution 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$ space</td>
<td>$O(n \log \log n)$ space</td>
<td>$O(n \log n)$ space</td>
</tr>
<tr>
<td>$O(n)$ prep time</td>
<td>$O(n \log \log n)$ prep time</td>
<td>$O(n \log n)$ prep time</td>
</tr>
<tr>
<td>$O(\log n)$ query time</td>
<td>$O(1)$ query time</td>
<td>$O(1)$ query time</td>
</tr>
</tbody>
</table>

Can we do $O(n)$ space and $O(1)$ query time? Yes… but not until next lecture