In this lecture we look at string matching algorithms.

In simple terms, we want to find all the occurrences of some string P in a larger string T.
Introduction

- This seems like a very simple problem, and it is:
 - The real problem is one of efficiency in time and space.
 - Doing many matching operations demands a better than naive approach.

- High performance string matching is vital in many applications:
 - In web searches or databases:
 - We might search stored text for a keyword supplied by the user.
 - In Unix tools like grep and sed:
 - We need to match regular expressions against input text streams.
 - In DNA matching:
 - We match a small DNA strand against a large corpus
 - Here, as in many situations, inexact matching is also required
Introduction

- We look at four different exact string matching methods:
 - The naive, obvious method.
 - The Knuth-Morris-Pratt (KMP) algorithm.
 - The Boyer-Moore-Horspool (BMH) algorithm.
 - The Finite State Machine (FSM) algorithm.

- To compare each different approach, we count the number of comparisons they do:
 - Performance is mostly determined by how many comparisons are performed.
 - It is therefore a good candidate as our computational step.
 - To make absolutely sure, we should check that the run-time is linearly related to the number of comparisons in each case (it is).
Naive Method – Algorithm

- The **basic idea** is this:
 - Match pattern string against input string character by character.
 - When there is a **mismatch**, shift the whole input string down by one character in relation to the pattern string, and start again at the beginning.

Input: Strings P and T

```plaintext
n ← |$T$|;
m ← |$P$|;
for $i$ ← 0 to $n - m$ do
  if $P[1, \ldots, m] = T[i + 1, \ldots, i + m]$ then
    OUTPUT($i + 1$);
  end
end
```
Consider matching some example arrays where we set \(T = \text{ababaabbbababb} \) and \(P = \text{ababb} \)

\[
\begin{array}{c}
\text{ababaabbbababb} \\
\text{ababb} \\
\text{ababaabbbababb} \\
\quad \text{ababb} \\
\text{ababaabbbababb} \\
\quad \text{ababb} \\
\text{ababaabbbababb} \\
\end{array}
\quad
\begin{array}{c}
\text{ababaabbbababb} \\
\text{ababb} \\
\text{ababaabbbababb} \\
\quad \text{ababb} \\
\text{ababaabbbababb} \\
\quad \text{ababb} \\
\text{ababaabbbababb} \\
\end{array}
\]

The underlined characters are where the match fails.

This performs a total of 23 comparisons to find a match.
However, consider a worst case example:

- The input text is $aaa\ldots b$ and of total length n.
- That is, $n - 1$ a characters followed by one b.
- The pattern is $aaa\ldots b$ and of total length m.
- That is, $m - 1$ a characters followed by one b.

Using the naive method, we match up to the m-th character and after each mismatch, restart at the first character:

- The mismatch occurs $n - m$ times.
- The match succeeds at position $n - m + 1$.
- The total number of comparisons is therefore $(n - m + 1) \cdot m \in \Theta(n^2)$ if $n > m$.
When a mismatch occurs at index \(j \) in the naive method, we have found \(j - 1 \) characters that do match.

We can take advantage of this when deciding where to restart the match:

- Imagine a case where the string \(ababb \) mismatches at the 5th character.
- The matched text consists of \(abab? \) where \(? \) is unknown.
- We restart the match by comparing the 3rd character, an \(a \), against \(? \).

In short, since we know the pattern beforehand we can work out where to restart the match.
Knuth-Morris-Pratt – Example

Consider matching the same example arrays where we set $T = \text{ababaabbbababb}$ and $P = \text{ababb}$:

Note that we are shifting the pattern either by one or a distance from a precomputed prefix table.

Now we only perform a total of 17 comparisons.
The basic idea is this:

- First compute the **prefix** table of the pattern which tells us where to restart.
- Then when we run the KMP matcher, use the table when a mismatch occurs.

What is a prefix table? The prefix table tells us how far we can shift the pattern along at each turn without missing any matches. Let \(P = ababb \).

- The \(j \)th element of the prefix table for \(P \) is the length of the longest prefix of \(P[1, \ldots, j] \) that is also a proper suffix of \(P[1, \ldots, j] \)
- \(P[1, 1] = a \). There is no proper suffix of \(a \) so the first element of the prefix table is 0
- \(P[1, 2] = ab \). The only proper suffix of \(ab \) is \(b \) which is not a prefix of \(ab \). Therefore the second element of the prefix table is 0
- \(P[1, 3] = aba \). The proper suffixes are \(ba \) and \(a \). \(a \) is a prefix of \(aba \) so the third element of the prefix table is 1.
- The fourth and fifth elements of the prefix table are therefore 2 and 0.
Knuth-Morris-Pratt – Algorithm

The overall algorithm structure is as follows.

KMP-MATCHER \((T, P) \)
begin
 \(n \leftarrow |T| \)
 \(m \leftarrow |P| \)
 \(\Pi \leftarrow \text{KMP-PREFIX}(P) \)
 \(i \leftarrow 0 \)
 for \(j = 1 \) upto \(n \) step 1 do
 while \(i > 0 \) and \(P[i + 1] \neq T[j] \) do
 \(i \leftarrow \Pi[i] \) \(\triangleright \) Skip using prefix table
 if \(P[i + 1] = T[j] \) then
 \(i \leftarrow i + 1 \) \(\triangleright \) Next character matches
 if \(i = m \) then
 OUTPUT \((j - m) \) \(\triangleright \) Pattern at shift \(j - m \)
 \(i \leftarrow \Pi[i] \) \(\triangleright \) Look for next match
 end
Knuth-Morris-Pratt – Example

- Let’s look at the example again. \(T = \text{ababaabbababb} \) and \(P = \text{ababb} \):
 - We calculate the prefix table as \(\Pi = \{0, 0, 1, 2, 0\} \).

- We use the prefix table to shift the pattern as required.
What is the largest number of comparison KMP can take for a pattern of length m and a text of length n? Recall that i is the current index in the pattern and j is the current index in the text.

- Consider the variable $2j - i$.
- At the beginning of the main `for` loop $2j - i = 2$
- At termination $2j - i \leq 2n$
- At each iteration of the main `for` loop $2j - i$ strictly increases
- At each iteration of the `while` loop $2j - i$ strictly increases
- Therefore the maximum number of comparisons for KMP is no more than $2n$
- KMP takes $O(n)$ time assuming that the prefix table is available
Knuth-Morris-Pratt – Prefix Table

We can compute the prefix table by comparing the pattern against itself.

- For each $j \leq m$ we compute the length of the longest prefix of $P[1, \ldots, j]$ that is also a proper suffix of $P[1, \ldots, j]$.
- This can be done cleverly in $O(m)$ time

```
KMP-PREFIX(P)
begin
    m ← |P|
    Π[1] ← 0
    i ← 0
    for $j = 2$ upto $m$ step 1 do
        while $i > 0$ and $P[i + 1] \neq P[j]$ do
            i ← Π[i]
        if $P[i + 1] = P[j]$ then
            i ← i + 1
            Π[j] ← i
        end
    return Π
end
```
The KMP algorithm never needs to back-track in the input text:
 - This is an advantage if the text is streamed rather than in an array since we don’t have to maintain a buffer for the stream.

The worst case performance is $O(n)$ comparisons.

However, it doesn’t improve much on the average case:
 - Best performance when alphabet is small since this means higher chance of repeated substrings in the input and pattern.
Boyer-Moore-Horspool – Algorithm

- The main goals of BMH are simplicity and improving on the weakness of KMP over large alphabets
 - Use the alphabet that makes up the pattern and input text to skip large distances.
 - Make comparisons starting on the right of the pattern rather than the left, this finds the rightmost mismatch.
- The trick is to consider the alphabet over which the text is defined:
 - The alphabet is the set of characters $C_0, C_1, \ldots, C_{k-1}$.
- We build a table Γ which tells us the rightmost occurrence of each letter in the pattern.
 - For each C_i in the pattern string, set $\Gamma[i]$ to be the position of the rightmost occurrence of C_i in the pattern.
Say we want to search for the pattern `lean` in the following string:

```
carpetsneddleaning
  lean
```

The characters `n` and `p` mismatch, also `p` doesn’t appear anywhere in the pattern so we can move all the way past `p` and restart:

```
carpetsneddleaning
  leanleanlean
```

The characters `n` and `e` mismatch, but now `e` occurs in the pattern so line them up:

```
carpetsneddleaning
  lean
```

Only 8 comparisons needed in this example. KMP would need 18.
In the worst case no better then naive matching:
 - The Horspool heuristic is very fast in practice
 - The method works best when you have little repetition within the input text.
 - The worst case is $O(nm)$ comparisons. Consider $p = ba^{m-1}$ and $t = a^n$.
 - The best case is now $O(n/m)$ comparisons.
 - Fast in practice.
The previous methods are quite efficient but also quite simplistic in what they can do:
- What happens if we want to consider regular expressions?

This is exactly the problem faced by parsers in a compiler:
- One defines the syntactic tokens as regular expressions:

  ```
  value := [0-9]+  
  ident := [a-z][a-z0-9]*
  ```
- The goal is to match these patterns against the input text.

Using the KMP or Boyer-Moore methods is problematic:
- Pre-computing the tables can’t be done since the pattern is not finite.
We can solve this problem by using a fourth type of matching method.

A Finite State Machine (FSM) is formally defined by the following parts. Note that an FSM is in fact a Turing Machine without a tape:

- Q, a finite set of states.
- $q_0 \in Q$, a start state.
- $A \subseteq Q$, a set of accepting states.
- Σ, an input alphabet.
- δ, a function from $Q \times \Sigma$ into Q which we call the transition function.

More simply, it is just a graph where moving between nodes means consuming input characters.
Finite State Machines (3)

- Here are a few examples of basic regular expressions:
 - a^+ – one or more repetitions of a.
 - a^* – zero or more repetitions of a.
 - $.$ – any character.

- The hard bit is constructing the automaton.

- However, once this is done implementing the matching algorithm is quite easy.

```plaintext
FSM-MATCHER(T, P)
begin
   n ← |T|
   δ ← FSM-BUILD(P)
   s ← 0
   for i = 1 upto n step 1 do
      s ← δ(s, T[i])
      if s is an accepting state then
         OUTPUT(i)
   end
end
```
Consider some example FSM constructions:

- Take the input string a character at a time and move along edges which match each character.
- The empty edge denotes the start state, double circled nodes are accepting states which signal a match.

Question: How do we move through the states for the string aababaaba?
Comparison

- To get an idea of which algorithm is best, we can compare their complexities:

<table>
<thead>
<tr>
<th></th>
<th>Pre-computation</th>
<th>Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>$\Theta(m)$</td>
<td>$\Theta(nm)$</td>
</tr>
<tr>
<td>Knuth-Morris-Pratt</td>
<td>$O(m +</td>
<td>\Sigma</td>
</tr>
<tr>
<td>Boyer-Moore-Horspool</td>
<td>$O(m</td>
<td>\Sigma</td>
</tr>
<tr>
<td>Finite State Machine</td>
<td>$O(m</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

- Some points to note from this analysis are:
 - For one-off matches on short strings, the naive method isn’t so bad.
 - The methods that require pre-computation may also require extra memory.
Conclusions

- String matching sounded like a trivial problem:
 - Hopefully you can see there is a little more to it than the naive method.
 - You will see in the coursework how to perform string matching without performing any comparisons at all.

- As a general rule, selecting the right algorithm is done as follows:
 - If you need to consider complex matching like regular expressions, use the FSM method.
 - Otherwise, the choice depends on the alphabet size:
 - For large alphabets, like natural language, use the Boyer-Moore-Horspool method.
 - For small alphabets, use the Knuth-Morris-Pratt method.

- However, there are some even more complicated methods than these.
- See http://tinyurl.com/eolt7 for a long list with example code.
Further Reading

- **Introduction to Algorithms**
 - Chapter 32 – String Matching.