Number Theoretic Algorithms

- **Number theory** is basically a branch of pure mathematics.
 - The topic is typically described in the context of cryptography.
 - Mainly, it is simply concerned with the properties of integer numbers.
- Number theory is interesting in this context for a couple of important reasons:
 - There are some ancient and classic algorithms that you should know about.
 - We are dealing with large integers, so algorithm performance is crucial.
 - It has a tight connection to complexity and the theory of computation.

GCD and XGCD

- The greatest common divisor or GCD of two numbers is an easy concept to describe:
 - Given \(a \) and \(b \) we want to find \(c \), the largest number that exactly divides both \(a \) and \(b \).
 - If \(c = 1 \), then \(a \) and \(b \) are termed co-prime or relatively prime.
- Consider some simple examples:
 - If we set \(a = 6 \) and \(b = 9 \) then \(c = \text{gcd}(a, b) = 3 \) since 3 is the largest number to exactly divide 6 and 9.
 - If we set \(a = 5 \) and \(b = 7 \) then \(c = \text{gcd}(a, b) = 1 \) and \(a \) and \(b \) are co-prime.
- A basic real-world use of GCD is to reduce fractions into the simple form:
 - The GCD of numerator and denominator cancel:
 \[
 \frac{42}{56} = \frac{3 \cdot 14}{4 \cdot 14} = \frac{3}{4}.
 \]

GCD and XGCD

- The most naive way to solve this problem would be to write a brute force check:
 \[
 \text{GCD}(a, b) \begin{align*}
 \text{begin} & \quad \text{for } \min(a, b) \text{ downto } 1 \text{ do} \\
 & \quad \text{if } a \equiv 0 \pmod{i} \text{ and } b \equiv 0 \pmod{i} \text{ then} \\
 & \quad \text{return } i \\
 \text{end}
 \end{align*}
 \]
 - We loop through all possible divisors from the largest to the smallest and return the first that divides both \(a \) and \(b \).
 - Clearly, this isn’t very clever since we need to do a lot of loop iterations for large values of \(a \) or \(b \).
- A better way is Euclid’s algorithm which can be expressed recursively or (more inefficiently) iteratively:
 \[
 \text{GCD}(a, b) \begin{align*}
 \text{begin} & \quad \text{while } a \neq b \text{ do} \\
 & \quad \text{if } a > b \text{ then} \\
 & \quad \quad a \leftarrow a - b \\
 & \quad \text{else} \\
 & \quad \quad b \leftarrow b - a \\
 & \quad \text{end} \\
 & \quad \text{return } a \\
 \text{end}
 \end{align*}
 \]
- They key fact that shows correctness is that
 \[
 \text{gcd}(a, b) = \text{gcd}(b, a \mod b)
 \]
- We now do fewer loop iterations than the naive implementation but need to do some more costly arithmetic:
GCD and XGCD

▶ Say for example the remainder of the division of \(a\) by \(b\) is \(t\).
 ▶ In this case we have \(a = q \cdot b + t\) where \(q\) is the quotient of the division of \(a\) by \(b\).
▶ Any divisor of both \(a\) and \(b\) also divides \(t\).
 ▶ Since \(t\) can be written as \(t = a - q \cdot b\).
▶ In the same way, any common divisor of \(b\) and \(t\) will also divide \(a\).
 ▶ So the GCD of \(a\) and \(b\) is the same as the GCD of \(b\) and \(t\).
▶ Therefore it is enough if we continue the process with the numbers \(b\) and \(t\).

GCD - Running Time

Before we start we must convince ourselves that Euclid's algorithm actually terminates.
▶ Observe that the second term strictly decreases at every recursive call
 ▶ The second term is also integer valued and bounded below by 0
 ▶ Therefore Euclid's algorithm must terminate

The overall running time of \textsc{Euclid} is proportional to the number of recursive calls it makes. The running time turns out to have its worst case when \(a\) and \(b\) are consecutive Fibonacci numbers.
▶ Recall that \(F_0 = 0, F_1 = 1\) and \(F_i = F_{i-1} + F_{i-2}\) for \(i \geq 2\)

GCD - Running Time

Lemma

\[\text{If } a > b \geq 0, \text{ then } a \mod b \leq a/2\]

Proof.

Either \(b \leq a/2\), in which case \(a \mod b \leq b \leq a/2\). Or \(b > a/2\), in which case \(a \mod b = a - b \leq a/2\).

▶ The total number of recursive calls to \textsc{Euclid} must be bounded above by \(2 \log a\) since in two recursive invocations of the algorithm, the larger number, \(a\), is replaced by at most \(a/2\).
▶ Since each call requires a division (to reduce \(a \mod b\)), each division requires \(O(\log^2 a)\) steps, for a grand total of \(O(\log^3 a)\) operations for the whole of \textsc{Euclid}.
▶ If we assume that number of bits \(b\) needed to represent \(a\) is \(\Theta(\log a)\), then the total running time is \(O(b^3)\)
▶ Problem 33-2 in CLRS asks you to show a tighter \(O(b^2)\) bound on the number of bit operations for \textsc{Euclid}.

GCD and XGCD

▶ For example, the GCD of 1071 and 1029 is computed by the algorithm to be 21 as follows:

\[
\begin{array}{c|c|c}
 a & b & a \mod b \\
 \hline
 1071 & 1029 & 42 \\
 1029 & 42 & 21 \\
 42 & 21 & 0 \\
 21 & 0 & \\
\end{array}
\]

▶ Note that this is far fewer loop iterations than the naive algorithm would perform.
GCD and XGCD

- In practise, this is still bad news for large numbers because modular reduction of large a and b values is expensive.
- To improve on practical performance (without changing the time complexity), we use the binary GCD algorithm:
 - The basic idea is to utilise the fact that we are working in binary, or base-2.
 - Recall that division by two is just a right shift by one bit.
 - Checking if a value is odd or even is just a test of the least significant bit.
- You can think of this as an optimisation of the GCD algorithm rather than a new algorithm:
 - We are reducing the constants in the complexity by matching the implementation against the capabilities of our processor.

GCD and XGCD

- So instead of a general modular reduction, we apply a few basic rules to reduce a and b:
 - If a is even and b is even, then \(\gcd(a, b) = 2 \cdot \gcd(a/2, b/2) \).
 - Since we know that 2 is a common divisor.
 - If a is even and b is odd, then \(\gcd(a, b) = \gcd(a/2, b) \).
 - Since we know that 2 is not a common divisor.
 - If a is odd and b is even, then \(\gcd(a, b) = \gcd(a, b/2) \).
 - Since we know that 2 is not a common divisor.
 - If a is odd and b is odd, then \(\gcd(a, b) = \gcd(|a - b|/2, b) \) which is also the same as \(\gcd(a, |a - b|/2) \).
 - Which we get from the original Euclidean algorithm.

GCD and XGCD

- The result is a longer but far more efficient algorithm:

\[
\begin{align*}
\text{GCD}(a, b) & \quad \text{begin} \\
& \quad k \leftarrow 0 \\
& \quad \text{while } a \equiv 0 \pmod{2} \text{ and } b \equiv 0 \pmod{2} \text{ do} \\
& \quad \quad a \leftarrow a/2 \\
& \quad \quad b \leftarrow b/2 \\
& \quad \quad k \leftarrow k + 1 \\
& \quad \text{repeat} \\
& \quad \quad \text{if } a \equiv 0 \pmod{2} \text{ then} \\
& \quad \quad \quad a \leftarrow a/2 \\
& \quad \quad \text{else if } b \equiv 0 \pmod{2} \text{ then} \\
& \quad \quad \quad b \leftarrow b/2 \\
& \quad \quad \text{else if } a \geq b \text{ then} \\
& \quad \quad \quad a \leftarrow (a - b)/2 \\
& \quad \quad \text{else} \\
& \quad \quad \quad b \leftarrow (b - a)/2 \\
& \quad \quad \text{until } a \leq 0 \\
& \quad \text{return } b/2^k \\
\end{align*}
\]

- Further minor improvements to the Euclidean algorithm can give us even more useful information.
 - As well as \(g = \gcd(a, b) \), we can compute \(x \) and \(y \) so \(a \cdot x + b \cdot y = g \).
 - This is usually called the extended Euclidean algorithm or XGCD.
- The XGCD algorithm has some more interesting uses than the more basic GCD.
 - Consider working with integers modulo some prime number \(p \).
 - Given \(a \), we often want to find a number \(b \) so that \(a \cdot b \equiv 1 \pmod{p} \).
 - If \((g, x, y) = \text{xgcd}(p, a) \) then \(g = 1 \) given that \(p \) is prime, and since \(x \cdot a + y \cdot M = 1 \) and \(y \cdot M = 0 \pmod{M} \), then \(b = x \).

- First we make sure both \(a \) and \(b \) are odd and then iteratively apply our set of rules.
GCD and XGCD

- The algorithm takes the same structure as the original Euclidean algorithm:
 - The basic idea is to keep track of the factors of \(a\) and \(b\) we are eliminating.

\[
\text{XGCD}(a,b) \begin{align*}
\text{if } b = 0 & \text{ then return } (a, 1, 0) \\
\text{else } & (g', x', y') \leftarrow \text{XGCD}(b, a \mod b) \\
& \text{return } (g', y', x' - \lfloor \frac{a}{b} \rfloor \cdot y')
\end{align*}
\]

- Clearly we can do the same sorts of optimisation to produce a binary version ...

If we run the algorithm on the same example as before, we get:

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(a \mod b)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1071</td>
<td>1029</td>
<td>42</td>
<td>-24</td>
<td>25</td>
</tr>
<tr>
<td>1029</td>
<td>42</td>
<td>21</td>
<td>1</td>
<td>-24</td>
</tr>
<tr>
<td>42</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table is a little confusing but when the recursion unwinds we find that \(g = 21\), \(x = -24\) and \(y = 25\).

- We can verify this using the formula \(a \cdot x + b \cdot y = g\) and substituting our results to get \(1071 \cdot (-24) + 1029 \cdot 25 = 21\).

Primality Testing (1)

- A prime number \(n\) can only be exactly divided by 1 and \(n\).
 - Otherwise the number is termed composite and is the product of some factors.

- In cryptography, we need to generate and use very large prime numbers.
 - Your system parameters used for RSA encryption within SSL are such numbers.

- There are two ways we might try and go about finding large primes:
 - Somehow construct the number so that we know that it will definitely be prime.
 - Generate and test random numbers until we come across one that is prime.

Primality Testing (2)

- The generate and test method turns out to be much more viable.

- Given we can generate random numbers, a naive way to test for primality is:

\[
\text{TRIAL-DIVISION}(n) \begin{align*}
\text{begin} \\
\text{for } i = 2 \text{ upto } \lfloor \sqrt{n} \rfloor \text{ do} \\
\text{if } n \equiv 0 \text{ (mod } i \text{) then return } n \text{ is composite} \\
\text{return } n \text{ is prime}
\end{align*}
\]

- This is called trial division and is slow for large values of \(n\).
A more advanced approach is due to Fermat and uses the following theorem he discovered in about 1636. For some prime \(n \) and \(1 < b \leq n \):

\[b^{n-1} \equiv 1 \pmod{n} \]

and is called Fermat’s little theorem to differentiate it from the more famous Fermat’s last theorem.

The value \(b \) is called the base of the Fermat test.

If we want to test the primality of some number \(n \) then we perform lots of iterations of the following steps:

1. Select a random value \(1 < b \leq n \) and test if the theorem holds for \(b \) and \(n \).
2. If the theorem doesn’t hold, \(n \) is definitely composite.
3. If the theorem does hold, \(n \) might be prime.

By doing this, we have constructed a Monte Carlo algorithm.

For each \(b \) we test, we decrease the probability that \(n \) is composite.

Values of \(n \) that passes a given number of tests are called pseudo-prime or probably prime.

Actually, they are base-\(b \) pseudo-primes since their passing the test relates to the choice of \(b \).

So the overall algorithm is very simple to write down:

```plaintext
FERMAT-TEST(n, k)
begin
for i = 1 upto k do
b ← random
if \( b^{n-1} \not\equiv 1 \pmod{n} \) then
return \( n \) is composite
return \( n \) is probably prime
end
end
```

Note that we need efficient exponentiation, a topic covered elsewhere...

Actually, in reality we can use a combined algorithm:

1. For large values of \(n \), use the Fermat method or something even better called Miller-Rabin.
2. For small values of \(n \), use trial division or even a look-up table.

You can think of this as a similar sort of approach as quick-sort:

1. For large lists use the text-book quick-sort algorithm.
2. When the recursion in quick-sort needs to sort small lists, bail out and use insertion-sort.

Combining algorithms in this way allows us to utilise the best properties of both ...
A natural question is how many iterations of the Fermat test do we need?
- It obviously depends on how sure we need to be that \(n \) is prime.
- However, after as few as 10 to 20 iterations the probability of error starts to get quite small.

However, you should beware: there are some problems with the Fermat method:
- There are some composite values of \(n \) for which all values of \(b \) say \(n \) is pseudoprime.
- These are called Carmichael numbers and are quite rare, \(n = 561 \) is one example.

We have looked at just two number theoretic algorithms:
- You can think of this as an application of the work we did previously.
- From the point of view of software engineering, there are a few key points to note about what we did and how we did it:
 - Reusing algorithmic techniques like randomised algorithms helped us improve performance.
 - Reusing optimisation techniques like \(w \)-ary exponentiation helped us improve performance.
 - Reusing the idea of combined algorithms like quick-sort helped us improve performance.

Further Reading
- **Introduction to Algorithms**
 - Chapter 31 – Number Theoretic Algorithms
- **A Computational Introduction to Number Theory and Algebra**
 V. Shoup.
 - Chapter 4 – Euclid’s Algorithm
 - Chapter 10 – Probabilistic Primality Testing
 - Chapter 22 – Deterministic Primality Testing