Declarative Machine Learning for Energy Efficient Compiler Optimizations

Craig Blackmore
Kerstin Eder
Oliver Ray
1000 Random Configurations

✗ Exhaustive search infeasible
✗ Random sampling (iterative compilation) slow
✔ Predictive approaches
Inductive Logic Programming

- Declarative inductive learning method

- Requires:
 - Factual examples \(E \) represented as components together with their relationships, and
 - Background knowledge \(B \) describing these relations.

- Finds a single (or multiple) hypothesis \(H \)
 - expressed in terms of the relations given in \(B \)
 - such that every positive and (ideally)
 - no negative example in \(E \) is covered by \(H \).
ILP for MAGEEC

Specific examples → General Rules
Identifying Good/Bad Flags

1000 random configurations for each benchmark

Good flag = appears frequently in top configurations

Bad flag = not a good flag 😊

Examples E for Progol:

goodFlag(program1, -finline-functions).

Positive Example

:- badFlag(program1, -finline-functions).

Negative Example
Feature Extraction

Prolog queries regarding the program features + utility functions:

Ft1 - Number of basic blocks

\[
\text{featlstn.P : ft(ft1,N) :- findall(B,bb_p(B),L), count_lst(L,N).}
\]

Ft5 - Number of basic blocks with a single predecessor

\[
\text{featlstn.P : }
\begin{align*}
\text{edge_dest_pr2(B,N) :- bb_p(B), findall(E,edge_dest(E,B),L), count_lst(L,N).} \\
\text{edge_dest_pr2_sel1(B) :- edge_dest_pr2(B,N), N = 1.} \\
\text{ft(ft5,N) :- findall(B,edge_dest_pr2_sel1(B),L), count_lst(L,N).}
\end{align*}
\]
Feature Extraction

- Ft15 - Number of basic blocks with number of instructions greater than 500
 - featStmt.P:
 - bb_stmt_in(B,ST) : bb_stmt_f(B,ST).
 - bb_stmt_in(B,ST) : bb_stmt_n(B,_,ST).
 - bb_stmt_in_pr1(B,N) : bb_p(B), findall(ST,bb_stmt_in(B,ST),L), count_lst(L,N).
 - bb_stmt_in_pr1_sel3(B) : bb_stmt_in_pr1(B,N), N > 500.
 - ft(ft15,N) : findall(B,bb_stmt_in_pr1_sel3(B),L), count_lst(L,N).
Background Knowledge

Feature 1 = 0.5
Feature 2 = 0.7
Feature 3 = 0.32

...

Background relations:

quartile(P,Ft,1) :- ft(Ft,P,N), qt1(Ft,Q1), N=<Q1.
quartile(P,Ft,2) :- ft(Ft,P,N), qt1(Ft,Q1), qt2(Ft,Q2), N>Q1, N=<Q2.
quartile(P,Ft,3) :- ft(Ft,P,N), qt2(Ft,Q2), qt3(Ft,Q3), N>Q2, N=<Q3.
quartile(P,Ft,4) :- ft(Ft,P,N), qt3(Ft,Q3), N>Q3.

...
Background Knowledge

Feature 1 = 0.5
Feature 2 = 0.7
Feature 3 = 0.32
...

Background relations:

quartile(P,Ft,1) :- ft(Ft,P,N), qt1(Ft,Q1), N=<Q1.
quartile(P,Ft,2) :- ft(Ft,P,N), qt1(Ft,Q1), qt2(Ft,Q2), N>Q1, N=<Q2.
quartile(P,Ft,3) :- ft(Ft,P,N), qt2(Ft,Q2), qt3(Ft,Q3), N>Q2, N=<Q3.
quartile(P,Ft,4) :- ft(Ft,P,N), qt3(Ft,Q3), N>Q3.

Learning Results

goodFlag(A,-finline-small-functions).
badFlag(A,-fsection-anchors) :- quartile(A,ft22,3).
Preliminary Results: Leave-One-Out Cross Validation
ILP for MAGEEC

1. Identify examples of good and bad flags
2. Training programs
3. Extract program features
4. Progol4
5. Learned rules
6. Backgroud knowledge

Specific examples → General Rules
Future Work

Specific examples → General Rules

1. Identify examples of good and bad flags
2. Training programs
3. Progol4
4. Intermediate structured representation
5. New program features
6. Learned rules
7. Background knowledge

EXAMPLES E
HYPOTHESES H
Questions?

Craig Blackmore, Kerstin Eder and Oliver Ray
“Declarative Machine Learning for Energy Efficient Compiler Optimization”

Accepted for presentation at the
24th International Conference on Inductive Logic Programming
14-16 September 2014