Multi-threaded, multi-core embedded systems energy modelling

From instruction set modelling to network & communications modelling
In this talk

• XMOS XS1
 – Multi-threading
 – Modelling
 – Current work

• Multi-core
 – Challenges
 – Approaches
 – Current work
Multi-threaded modelling

MODELLING THE XS1
XS1 architecture

- **Four-stage** pipeline, **round-robin** execution.
 - Time-deterministic.
- **Single-cycle** memory.
 - No caches.
- Dedicated instructions for I/O & networking.
 - Low latency comms.
Modelling a multi-threaded pipeline

\[E = a \]
\[E = b \]
\[E = c \]
\[E = d \]

\[E \neq a + b + c + d \]
\[E = ? \]
ISA Characterization

- Idle power
 ~95mW
- Cheapest instructions
 ~110mW
- Most expensive
 ~200mW
- Worst case
 ~250mW
- Threading level
 1.5x power increase, 4x performance increase.

Model

\[P = P_{\text{static}} + P_{\text{dynamic}} \]

\[P_{\text{static}} = I_{\text{leak}} \times V_{\text{core}} \]

\[P_{\text{dynamic}} = \left(C_{\text{idle}} + (C_{\text{instr}} \times S_N \times O) \right) \times V_{\text{core}}^2 \times F \]

Pipeline fullness
\[N = \min (N_{\text{threads}}, 4) \]

\[E = \frac{P \times T}{N} \]

- Express frequency, voltage, thread activity, instruction costs and time consumption.
Preliminary results

Model accuracy
Normalised against measured energy

- XMOS mixer
- Sha2
- Scalar add
- 6x basic mix
- 4x basic mix
- Matrix multiply
- LZWK
- 1xDhrystone
- 2xDhrystone
- Array multiply
- Idle

Accuracy
What can we do?

• Modelling of various benchmarks
 – Up to 8 threads (1 core)
• Voltage/frequency parameterised model

• Apply model to different levels:
 – Execution statistics
 – Trace (full or partial)
 – Static analysis
 • ISA
 • LLVM-IR
Modelling and analysis considerations

MULTI-THREADED & MULTI-CORE
Considerations

• Core-local multi-threading
 – Very fast (<10 clocks)
 – Lots of bandwidth

• Chip-local multi-core
 – Quite fast (10s of clocks)
 – Multiple lanes

• Multi-chip multi-core
 – Fairly fast (10s-100s clocks)
 – More bandwidth contention

Swallow, 16x XS1 processors per board
Modelling

2-tile XMOS network with USB

16-tile XMOS board (UoB project Swallow)

Modelling components and interconnects.
Biquad filter

- N-stage biquad filter
- Each stage is a thread
 - Channel communication
- Pipeline construction

Samples in Stage 1 → Stage 2 → ... → Final stage Samples out
Biquad filter

- Implemented in various configurations on Swallow.
- Each implementation’s placement is colour coded.
Comms example: Biquad filter

- Active cores, latency, contention and under/over-allocation all affect total energy.
- Power, time & energy a valuable triple.
Biggest impacts

- Task placement in a multi-core system
 - Determines V/F of cores, speed of comms, switching costs.
- Latency between communications
 - Having idle, powered on cores is bad
 - Excessive synchronisation is bad
- Core execution is time-deterministic only in-between I/O and events!
Visualising MTMC energy consumption
Current work

• Evaluating benchmarks & test cases for a multi-core network model against real hardware.
• Working towards utilising this information in static analysis.