Round-Preserving Parallel Composition of Probabilistic-Termination Protocols

Ran Cohen (TAU)
Sandro Coretti (NYU)
Juan Garay (Yahoo Research)
Vassilis Zikas (RPI)
Broadcast is Good

Given a broadcast channel, every function f can be computed with full security (honest majority)

- Round complexity depends only on f (unconditional)
- Constant-round protocols (OWF)
- Optimal three-round protocols (FHE)
Broadcast is Very Good

Parallel composition preserves round complexity

If r-round π is secure under parallel composition

\Rightarrow poly-many parallel executions of π in r rounds
What if Broadcast Doesn’t Exist?
Use Broadcast Protocols

- Trusted setup (PKI/information-theoretic signatures)
- Protocols with **simultaneous termination** require $t + 1$ rounds [FL’82, DRS’90]
- Exp. constant round \Rightarrow **probabilistic termination** [FM’88, FG’03, KK’06, Micali’17]
 - Non-simultaneous termination
 - Termination round not a priori known
- Naïve parallel composition is **not** round preserving
Naïve Parallel Composition

Protocol with *expected* $O(1)$ rounds (geometric dist.)

\Rightarrow n parallel instances take $\Theta(\log n)$ rounds

Example: Coin flipping

- Stand-alone coin flip: $\Pr(\text{heads}) = 1/2$
 \Rightarrow output is *heads* in expected 2 rounds

- Flipping in parallel n coins, each coin until *heads*
 \Rightarrow expected $\log n$ rounds
Parallel Composition of Broadcast

• Expected constant round parallel broadcast [BE’03, FG’03, KK’06]

• Composable parallel broadcast [CGZ’16]

⇒ Recipe for MPC:

1) Construct protocol in the broadcast model

2) Instantiate bcast channel using PT parallel bcast
Parallel Composition of Broadcast

• Expected constant round parallel broadcast [BE’03, FG’03, KK’06]

• Composable parallel broadcast [CGZ’16]

⇒ Recipe for MPC:

1) Construct protocol in the broadcast model

2) Instantiate bcast channel using PT parallel bcast

Problem:
The MPC protocol has probabilistic termination
(Naïve parallel composition not round preserving)
Main Question

Can parallel composition of arbitrary PT protocols be round-preserving?
Main Question

Can parallel composition of arbitrary PT protocols be round-preserving?
In a black-box way?

BB w.r.t. **functionality**
[Rosulek’12, IKPSY’16]

BB w.r.t. **protocol**
(next-message function)
Common Terminology
(1) Secure Multiparty Computation
(2) Synchronous MPC [KMTZ‘13, CCGZ‘16]

- Ideal world captures round complexity of π
- Trusted party samples $r_{term} \leftarrow D = D(\pi)$
- Parties continuously ask for output (receive by r_{term})
- S can instruct early delivery for specific parties
(3) Functionally BB Protocols

- Traditional MPC: all parties know f
(3) Functionally BB Protocols

- Traditional MPC: all parties know f
- FBB protocol is defined for function class $\mathcal{F} = \{f_1, \ldots, f_N\}$
- Parties have oracle access to $f \in \mathcal{F}$ ($\mathcal{Z}, \mathcal{A}, \mathcal{S}$ know f)
(3) Functionally BB Protocols

Protocol π is **FBB protocol** for \mathcal{F}

if $\forall f \in \mathcal{F}$ protocol π^f securely computes f
Functionally BB Protocols

Theorem [IKPSY’16]:

\[\exists 2\text{-party function class } \mathcal{F} \text{ such that no FBB protocol computes } \mathcal{F} \text{ facing semi-honest adversary} \]

Proof intuition:

The function class \(\mathcal{F} = \{f_\alpha\}_{\alpha \in \{0, 1\}^\kappa} \) defined as

\[
f_\alpha(x_1, x_2) = \begin{cases}
1, & x_1 \oplus x_2 = \alpha \\
0, & x_1 \oplus x_2 \neq \alpha
\end{cases}
\]
Given n-party functions f_1, f_2, \ldots, f_m denote by $f_1 \parallel f_2 \parallel \cdots \parallel f_m$ the following function:

- Each P_i has input $x_i = (x_i^1, x_i^2, \ldots, x_i^m)$
- Output is $y = (y_1, y_2, \ldots, y_m)$
FBB Parallel Composition
Semi-Honest FBB Protocol

Theorem:

• Let F_1, \ldots, F_m be deterministic function classes

• Consider (F_1, \ldots, F_m)-hybrid model that $\forall j$ computes the function $f_j \in F_j$ with expected constant round complexity μ

• Then \exists FBB protocol for $F_1 \parallel \cdots \parallel F_m$ with expected constant round complexity
1) Parties invoke ℓ instances of each f_j

2) Each P_i sends x_{i}^{j} to all instances of f_j and asks output for r rounds

3) If some P_i received output y_j for each f_j distribute (y_1, \ldots, y_m) and halt, otherwise restart
Semi-Honest FBB Protocol

Proof intuition:

✓ Correctness
✓ Privacy: corrupt parties always use the same input values (semi-honest)
✓ Round complexity: for \(\ell = \Omega(\log m) \) and constant \(r > \mu \), the expected number of “restarts” is constant (Markov)
What About Malicious?

• The previous protocol is not secure for malicious
• The adversary can send different x_i^j and \tilde{x}_i^j to f_j and learn multiple outputs
• This is inherent for **batched-parallel composition protocols**
 - Parties use $\left(x_1^k, \ldots, x_n^k\right)$ as input for two calls to the trusted party
 - Possibly in different rounds ρ and ρ'
 - Possibly for computing different f_j and f_j'
Malicious FBB Protocol

Theorem: Let \(m = O(\kappa) \)

\(\exists n \)-party function classes \(\mathcal{F}_1, \ldots, \mathcal{F}_m \) s.t.

if \(\pi \) computes \(\mathcal{F}_1 \parallel \cdots \parallel \mathcal{F}_m \) in \((\mathcal{F}_1, \ldots, \mathcal{F}_m) \)-hybrid model (with exp. 2 rounds, geometric dist.)

then, facing a **single** malicious corrupted party:

- \(\pi \) must call each \(\mathcal{F}_i \) at least once
- If \(\pi \) is naïve parallel composition
 \(\Rightarrow \) not round preserving (\(\log \kappa \))
- \(\pi \) is not batched-parallel composition protocol

until some get output

call each \(\mathcal{F}_j \) until all

parties get output

using same inputs in two calls
Proof Intuition

Define $\mathcal{F}_1 = \cdots = \mathcal{F}_m = \{f_\alpha\}_{\alpha \in \{0,1\}^k}$ where

$$f_\alpha(x_1, x_2, \lambda, \ldots, \lambda) = \begin{cases} (x_2, x_1, \alpha, \ldots, \alpha), & x_1 \oplus x_2 = \alpha \\ (0^k, 0^k \ldots, 0^k), & x_1 \oplus x_2 \neq \alpha \end{cases}$$

- Naïve composition fails for geometric dist.
- No FBB protocol (without invoking trusted party) – extending [IKPSY’16]
- No batched-parallel protocol

See the paper for details
Protocol-BB Parallel Composition
Protocol-BB Parallel Composition

Theorem:

• Let PT protocols π_1, \ldots, π_m realizing f_1, \ldots, f_m
• Then $\pi = \text{compiler}(\pi_1, \ldots, \pi_m)$ realizes $f_1 \parallel \cdots \parallel f_m$

➤ Round preserving $\mathbb{E}(\pi) = O\left(\max_i \mathbb{E}(\pi_i)\right)$

➤ Black-box w.r.t. protocols π_1, \ldots, π_m

The compiler doesn’t know the code of π_i
(oracle access to next-message function)
Protocol Compiler

π_1

π_2

π_m
Protocol Compiler

\[\pi_1 \quad \cdots \quad \pi_2 \quad \cdots \quad \pi_m \]
Prevent Multiple Inputs

Use **Setup, Commit, then Prove** functionality with a tweak [CLOS’02, IOZ’14]
Prevent Multiple Inputs

Use **Setup, Commit, then Prove** functionality with a tweak [CLOS’02, IOZ’14]
Prevent Multiple Inputs

Setup (correlated randomness)

Use **Setup, Commit, then Prove** functionality with a tweak [CLOS’02, IOZ’14]
Prevent Multiple Inputs

Use **Setup, Commit, then Prove** functionality with a tweak [CLOS’02, IOZ’14]
Prevent Multiple Inputs

Use **Setup, Commit, then Prove** functionality with a tweak [CLOS’02, IOZ’14]
Some Challenges

• Recover from invalid ZK proofs without:
 1) Breaching privacy (\mathcal{A} might have learned output)
 2) Blowing up round complexity

• Implement the Setup in constant rounds (use only correlated randomness for broadcast)

• Reactive functionalities with probabilistic termination

See the paper for details
Summary

We study parallel composition of PT protocols

Functionally black-box (FBB) protocols
- No round-preserving FBB parallel composition (using known techniques)
- Round-preserving FBB parallel composition with semi-honest security

Black-box w.r.t. protocols
- Round-preserving compiler for parallel composition

Thank You