
Markus Jalsenius1, Benny Porat2 and Benjamin Sach3

Parameterized Matching
in the Streaming Model

(1) University of Bristol, UK
(2) Bar-Ilan University, Israel
(3) University of Warwick, UK

Markus Jalsenius1, Benny Porat2 and Benjamin Sach3

Parameterized Matching
in the Streaming Model

(1) University of Bristol, UK
(2) Bar-Ilan University, Israel
(3) University of Warwick, UK

Pattern matching in the streaming model

Benjamin SachPara. Matching in the Streaming Model

aT b c

• Consider a text string, T and a pattern P

• We assume we have P in advance but T arrives online. . .

aP b a

? ? ? ? ? ? ?

Goal: Decide whether P matches the last |P | text characters. . .

before the next character arrives

• We care about worst-case time per text character
and using as little space as possible

• The definition of a match depends on the problem

Pattern matching in the streaming model

Benjamin SachPara. Matching in the Streaming Model

T

• Consider a text string, T and a pattern P

• We assume we have P in advance but T arrives online. . .

P

a b c

a b a

b ? ? ? ? ? ?

Goal: Decide whether P matches the last |P | text characters. . .

before the next character arrives

• We care about worst-case time per text character
and using as little space as possible

• The definition of a match depends on the problem

Pattern matching in the streaming model

Benjamin SachPara. Matching in the Streaming Model

T

• Consider a text string, T and a pattern P

• We assume we have P in advance but T arrives online. . .

P

a b c

a b a

? ? ? ? ?b a

Goal: Decide whether P matches the last |P | text characters. . .

before the next character arrives

• We care about worst-case time per text character
and using as little space as possible

• The definition of a match depends on the problem

Pattern matching in the streaming model

Benjamin SachPara. Matching in the Streaming Model

T b

• Consider a text string, T and a pattern P

• We assume we have P in advance but T arrives online. . .

P

a b c

a b a

? ? ? ?b a

Goal: Decide whether P matches the last |P | text characters. . .

before the next character arrives

• We care about worst-case time per text character
and using as little space as possible

• The definition of a match depends on the problem

Pattern matching in the streaming model

Benjamin SachPara. Matching in the Streaming Model

T

• Consider a text string, T and a pattern P

• We assume we have P in advance but T arrives online. . .

P

ba b c

a b a

a ? ? ?b a

Goal: Decide whether P matches the last |P | text characters. . .

before the next character arrives

• We care about worst-case time per text character
and using as little space as possible

• The definition of a match depends on the problem

Streaming pattern matching in small space

Benjamin SachPara. Matching in the Streaming Model

T

What’s the least space we can get away with?
- Surely, we have to store the pattern?

P

Streaming pattern matching in small space

Benjamin SachPara. Matching in the Streaming Model

T

What’s the least space we can get away with?
- Surely, we have to store the pattern?

P

Porat, Porat FOCS’09

• Exact pattern matching can be solved in
O(log |P |) space and O(log |P |) time per character

Streaming pattern matching in small space

Benjamin SachPara. Matching in the Streaming Model

T

What’s the least space we can get away with?
- Surely, we have to store the pattern?

P

Porat, Porat FOCS’09

• Exact pattern matching can be solved in
O(log |P |) space and O(log |P |) time per character

O(log |P |)

fingerprints

Streaming pattern matching in small space

Benjamin SachPara. Matching in the Streaming Model

T

What’s the least space we can get away with?
- Surely, we have to store the pattern?

P

Porat, Porat FOCS’09

• Exact pattern matching can be solved in
O(log |P |) space and O(log |P |) time per character

The algorithm is randomised,

O(log |P |)

fingerprints

- it might make mistakes but it’s correct with high probability

(at least 1− 1/|T |3)

Streaming pattern matching in small space

Benjamin SachPara. Matching in the Streaming Model

T

What’s the least space we can get away with?
- Surely, we have to store the pattern?

P

Porat, Porat FOCS’09

• Exact pattern matching can be solved in
O(log |P |) space and O(log |P |) time per character

The algorithm is randomised,

O(log |P |)

fingerprints

- it might make mistakes but it’s correct with high probability

Streaming pattern matching in small space

Benjamin SachPara. Matching in the Streaming Model

T

What’s the least space we can get away with?
- Surely, we have to store the pattern?

P

The algorithm is randomised,

O(log |P |)

fingerprints

- it might make mistakes but it’s correct with high probability

Porat, Porat FOCS’09

• Exact pattern matching can be solved in
O(log |P |) space and O(1) time per character

Breslauer, Galil CPM’11

Streaming pattern matching in small space

Benjamin SachPara. Matching in the Streaming Model

T

What’s the least space we can get away with?
- Surely, we have to store the pattern?

P

Porat, Porat FOCS’09

• Exact pattern matching can be solved in
O(log |P |) space and O(1) time per character

Breslauer, Galil CPM’11

Streaming pattern matching in small space

Benjamin SachPara. Matching in the Streaming Model

T

What’s the least space we can get away with?
- Surely, we have to store the pattern?

P

Porat, Porat FOCS’09

• Exact pattern matching can be solved in
O(log |P |) space and O(1) time per character

Breslauer, Galil CPM’11

• Pattern matching with k mismatches can be solved in
O(k3polylog|P |) space and O(k2polylog|P |) time per character

Porat, Porat FOCS’09

Streaming pattern matching in small space

Benjamin SachPara. Matching in the Streaming Model

T

What’s the least space we can get away with?
- Surely, we have to store the pattern?

P

Porat, Porat FOCS’09

• Exact pattern matching can be solved in
O(log |P |) space and O(1) time per character

Breslauer, Galil CPM’11

• Pattern matching with k mismatches can be solved in
O(k3polylog|P |) space and O(k2polylog|P |) time per character

Porat, Porat FOCS’09

(this algorithm is also randomised)

Streaming pattern matching in small space

Benjamin SachPara. Matching in the Streaming Model

T

What’s the least space we can get away with?
- Surely, we have to store the pattern?

P

Porat, Porat FOCS’09

• Exact pattern matching can be solved in
O(log |P |) space and O(1) time per character

Breslauer, Galil CPM’11

• Pattern matching with k mismatches can be solved in
O(k3polylog|P |) space and O(k2polylog|P |) time per character

Porat, Porat FOCS’09

Streaming pattern matching in small space

Benjamin SachPara. Matching in the Streaming Model

T

What’s the least space we can get away with?
- Surely, we have to store the pattern?

P

Porat, Porat FOCS’09

• Exact pattern matching can be solved in
O(log |P |) space and O(1) time per character

Breslauer, Galil CPM’11Porat, Porat FOCS’09

What else can be solved in small space?

• Pattern matching with k mismatches can be solved in
O(k3polylog|P |) space and O(k2polylog|P |) time per character

Porat, Porat FOCS’09

Streaming pattern matching in small space

Benjamin SachPara. Matching in the Streaming Model

Alice Bob

Clifford, Jalsenius, Porat, S. CPM’11

We showed randomised space lower bounds of Ω(|P |) bits for:

Hamming distance, Exact matching with wildcards, L1,
L2and L∞ distances, Edit distance and Swap matching

as well as any algorithm performing convolutions

We did this by showing that better algorithms would give impossibly
good communication protocols

Parameterized matching in a stream

Benjamin SachPara. Matching in the Streaming Model

T

P

1 2 3

a b a

? ? ? ? ?2 ?

• In parameterized matching (p-matching),
the alphabet can be relabelled

• The alphabet mapping can differ for each pattern/text alignment

• The mapping must be one-to-one (injective)

P p-matches T [i, i+ |P | − 1] iff there is
a one-to-one f s.t. f(P [j]) = T [i+ j] for all j

Parameterized matching in a stream

Benjamin SachPara. Matching in the Streaming Model

T

P

1 2 3

a b a

? ? ? ? ?2 ?

• In parameterized matching (p-matching),
the alphabet can be relabelled

a→ 2, b→ 3 gives a mapping

• The alphabet mapping can differ for each pattern/text alignment

• The mapping must be one-to-one (injective)

P p-matches T [i, i+ |P | − 1] iff there is
a one-to-one f s.t. f(P [j]) = T [i+ j] for all j

Parameterized matching in a stream

Benjamin SachPara. Matching in the Streaming Model

• In parameterized matching (p-matching),
the alphabet can be relabelled

T

P

1 2 3

a b a

? ? ? ? ?2 3

a→ 3, b→ 2 gives a mapping

• The alphabet mapping can differ for each pattern/text alignment

• The mapping must be one-to-one (injective)

P p-matches T [i, i+ |P | − 1] iff there is
a one-to-one f s.t. f(P [j]) = T [i+ j] for all j

Parameterized matching in a stream

Benjamin SachPara. Matching in the Streaming Model

• In parameterized matching (p-matching),
the alphabet can be relabelled

T

P

1 2 3

a b a

3 ? ? ? ?2 3

there is no mapping - a can’t map to 2 and 3

• The alphabet mapping can differ for each pattern/text alignment

• The mapping must be one-to-one (injective)

P p-matches T [i, i+ |P | − 1] iff there is
a one-to-one f s.t. f(P [j]) = T [i+ j] for all j

Parameterized matching in a stream

Benjamin SachPara. Matching in the Streaming Model

• In parameterized matching (p-matching),
the alphabet can be relabelled

T

P

1 2 3

a b a

3 3 ? ? ?2 3

there is no mapping - it has to be one-to-one

• The alphabet mapping can differ for each pattern/text alignment

• The mapping must be one-to-one (injective)

P p-matches T [i, i+ |P | − 1] iff there is
a one-to-one f s.t. f(P [j]) = T [i+ j] for all j

Parameterized matching in a stream

Benjamin SachPara. Matching in the Streaming Model

T

P

1 2 3

a b a

? ? ? ? ?2 ?

• In parameterized matching (p-matching),
the alphabet can be relabelled

Parameterized matching can be solved in O(|Σ| log |P |) space and:

• O(1) time per character when |Σ| = {1, 2, 3, . . . , |Σ|}

Our Results

• O(
√

log |Σ|/ log log |Σ|) time per character for general Σ

Σ is the alphabet

Parameterized matching in a stream

Benjamin SachPara. Matching in the Streaming Model

T

P

1 2 3

a b a

? ? ? ? ?2 ?

• In parameterized matching (p-matching),
the alphabet can be relabelled

Parameterized matching can be solved in O(|Σ| log |P |) space and:

Both algorithms are randomised (Monte-Carlo)

We also give an Ω(|Σ|) bit randomised space lower bound

• O(1) time per character when |Σ| = {1, 2, 3, . . . , |Σ|}

Our Results

• O(
√

log |Σ|/ log log |Σ|) time per character for general Σ

Σ is the alphabet

Parameterized matching in a stream

Benjamin SachPara. Matching in the Streaming Model

T

P

1 2 3

a b a

? ? ? ? ?2 ?

• In parameterized matching (p-matching),
the alphabet can be relabelled

Parameterized matching can be solved in O(|Σ| log |P |) space and:

• O(
√

log |Σ|/ log log |Σ|) time per character for general Σ

Our Results
Σ is the alphabet

Parameterized matching in a stream

Benjamin SachPara. Matching in the Streaming Model

T

P

1 2 3

a b a

? ? ? ? ?2 ?

• In parameterized matching (p-matching),
the alphabet can be relabelled

Parameterized matching can be solved in O(|Π| log |P |) space and:

• O(
√

log |Π|/ log log |Π|) time per character for general Π

Our Results

where Π ⊆ Σ is the set of symbols in P
which are allowed to be relabelled

Σ is the alphabet

Parameterized matching in a stream

Benjamin SachPara. Matching in the Streaming Model

T

P

1 2 3

a b a

? ? ? ? ?2 ?

• In parameterized matching (p-matching),
the alphabet can be relabelled

Parameterized matching can be solved in O(|Σ| log |P |) space and:

• O(1) time per character when |Σ| = {1, 2, 3, . . . , |Σ|}

The remainder of the talk will focus on this result
(the others are simple generalisations)

Predecessor Strings

S1 a b a b a b c bc c

Benjamin SachPara. Matching in the Streaming Model

S2 b c b c b c a ca a

Predecessor Strings

S1 a b a b a b c bc c

Benjamin SachPara. Matching in the Streaming Model

S2 b c b c b c a ca a

S1 p-matches S2 with mapping a→ b, b→ c, c→ a (from S1 to S2)

a b a b a b c bc c

b c b c b c a ca a

Predecessor Strings

S1 a b a b a b c bc c

Benjamin SachPara. Matching in the Streaming Model

S2 b c b c b c a ca a

S1 p-matches S2 with mapping a→ b, b→ c, c→ a (from S1 to S2)

a b a b a b c bc c

b c b c b c a ca a

pred(S1) 0 0 2 4 4 2 4 20 1

Predecessor Strings

S1 a b a b a b c bc c

Benjamin SachPara. Matching in the Streaming Model

S2 b c b c b c a ca a

S1 p-matches S2 with mapping a→ b, b→ c, c→ a (from S1 to S2)

a b a b a b c bc c

b c b c b c a ca a

pred(S1) 0 0 2 4 4 2 4 20 1

Predecessor Strings

S1 a b a b a b c bc c

Benjamin SachPara. Matching in the Streaming Model

S2 b c b c b c a ca a

S1 p-matches S2 with mapping a→ b, b→ c, c→ a (from S1 to S2)

a b a b a b c bc c

b c b c b c a ca a

pred(S1) 0 0 2 4 4 2 4 20 1

pred(S2) 0 0 2 4 4 2 4 20 1

Predecessor Strings

S1 a b a b a b c bc c

Benjamin SachPara. Matching in the Streaming Model

S2 b c b c b c a ca a

S1 p-matches S2 with mapping a→ b, b→ c, c→ a (from S1 to S2)

a b a b a b c bc c

b c b c b c a ca a

pred(S1) 0 0 2 4 4 2 4 20 1

pred(S2) 0 0 2 4 4 2 4 20 1

Predecessor Strings

S1 a b a b a b c bc c

Benjamin SachPara. Matching in the Streaming Model

S2 b c b c b c a ca a

S1 p-matches S2 with mapping a→ b, b→ c, c→ a (from S1 to S2)

a b a b a b c bc c

b c b c b c a ca a

pred(S1) 0 0 2 4 4 2 4 20 1

pred(S2) 0 0 2 4 4 2 4 20 1

pred(S1)=pred(S2)

Predecessor Strings

S1 a b a b a b c bc c

Benjamin SachPara. Matching in the Streaming Model

S2 b c b c b c a ca a

a b a b a b c bc c

b c b c b c a ca a

pred(S1) 0 0 2 4 4 2 4 20 1

pred(S2) 0 0 2 4 4 2 4 20 1

S1 p-matches S2 iff pred(S1)=pred(S2)

result due to Baker

Predecessor Strings

Benjamin SachPara. Matching in the Streaming Model

T a b a b a b c bc c

P c b c a c

a b a b a b c bc c

c b c a c

pred(T) 0 0 2 4 4 2 4 20 1

P p-matches T iff pred(P) = pred(T [i, i+ |P | − 1])

result due to Baker

Predecessor Strings

Benjamin SachPara. Matching in the Streaming Model

T a b a b a b c bc c

P c b c a c

a b a b a b c bc c

c b c a c

pred(T) 0 0 2 4 4 2 4 20 1

pred(P) 0 0 2 0 2

P p-matches T iff pred(P) = pred(T [i, i+ |P | − 1])

result due to Baker

Predecessor Strings

Benjamin SachPara. Matching in the Streaming Model

T a b a b a b c bc c

P c b c a c

a b a b a b c bc c

c b c a c

pred(T) 0 0 2 4 4 2 4 20 1

pred(P) 0 0 2 0 2

P p-matches T iff pred(P) = pred(T [i, i+ |P | − 1])

result due to Baker

however, pred(T)[i, i+ |P | − 1] 6= pred(T [i, i+ |P | − 1])

Predecessor Strings

Benjamin SachPara. Matching in the Streaming Model

T a b a b a b c bc c

P c b c a c

a b a b a b c bc c

c b c a c

pred(T) 0 0 2 4 4 2 4 20 1

pred(P) 0 0 2 0 2

P p-matches T iff pred(P) = pred(T [i, i+ |P | − 1])

result due to Baker

however, pred(T)[i, i+ |P | − 1] 6= pred(T [i, i+ |P | − 1])

some values may have to be zeroed

Rabin-Karp fingerprints of strings

Benjamin SachPara. Matching in the Streaming Model

S a b a b a b c bc c

φ(S) =
∑|S|−1

k=0 S[k]rk mod p

Here p = Θ(|T |4) is a prime and 1 ≤ r < p is a random integer

with high probability, S1 = S2 iff φ(S1) = φ(S2)

Rabin-Karp fingerprints of strings

Benjamin SachPara. Matching in the Streaming Model

S a b a b a b c bc c

φ(S) =
∑|S|−1

k=0 S[k]rk mod p

Here p = Θ(|T |4) is a prime and 1 ≤ r < p is a random integer

with high probability, S1 = S2 iff φ(S1) = φ(S2)

Observe that φ(S) fits in an O(log |T |) bit word

Rabin-Karp fingerprints of strings

Benjamin SachPara. Matching in the Streaming Model

S a b a b a b c bc c

φ(S) =
∑|S|−1

k=0 S[k]rk mod p

Here p = Θ(|T |4) is a prime and 1 ≤ r < p is a random integer

with high probability, S1 = S2 iff φ(S1) = φ(S2)

Observe that φ(S) fits in an O(log |T |) bit word

Given φ(S[0, `]) and φ(S[0, r]) we can compute
φ(S[`+ 1, r]) in O(1) time

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

P

power-of-two
length prefixes

Find matches with each power-of-two length prefix

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

The 2j+1 length prefix of P

The 2j length prefix of P

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

a Pj match is reported here

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

a Pj match is reported here

need to check for a Pj+1 match here

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

a Pj match is reported here

need to check for a Pj+1 match here

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

a Pj match is reported here

need to check for a Pj+1 match here

Given φ(T [0, `]) and φ(T [0, r]) we can compute
φ(T [`+ 1, r]) in O(1) time

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

a Pj match is reported here

need to check for a Pj+1 match here

Given φ(T [0, `]) and φ(T [0, r]) we can compute
φ(T [`+ 1, r]) in O(1) time

To decide whether Pj+1 matches,
compare φ(T [`+ 1, r]) to φ(P [2j + . . . 2j − 1])

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

this fingerprint. . .

isn’t used until here

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

Each φ fits in a word but we need to store each one for a long time. . .

this fingerprint. . .

isn’t used until here

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

Each φ fits in a word but we need to store each one for a long time. . .

this fingerprint. . .

isn’t used until here

we may have to store many (Ω(|P |)) at a time.

Exact matching using fingerprints (Porat and Porat)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

Each φ fits in a word but we need to store each one for a long time. . .

this fingerprint. . .

isn’t used until here

we may have to store many (Ω(|P |)) at a time.

the fingerprints themselves have to be stored in a compressed form

Para. matching using fingerprints (this paper)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

a Pj match is reported here

need to check for a Pj+1 match here

Overall approach: Find matches using fingerprints of predecessor strings

Para. matching using fingerprints (this paper)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

a Pj match is reported here

need to check for a Pj+1 match here

Overall approach: Find matches using fingerprints of predecessor strings

Key Problem 1: pred(T)[`+ 1, r] 6= pred(T [`+ 1, r])

Key Problem 2: How do we store all the fingerprints?

Key Problem 3: How do we deamortise the algorithm?

Key Problem 1: Correcting predecessor fingerprints

T

i′+|Pj |−1i′ i′+|Pj+1|−1

a Pj match is reported here

is there a Pj+1 match ending here?

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb d ed faT

i′+|Pj |−1i′ i′+|Pj+1|−1

a Pj match is reported here

is there a Pj+1 match ending here?

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

pred(T)

a Pj match is reported here

is there a Pj+1 match ending here?

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

pred(T)

a Pj match is reported here

is there a Pj+1 match ending here?

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

pred(T)

a Pj match is reported here

is there a Pj+1 match ending here?

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

pred(T)

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

1 2 3 1 3 5 2 5 30 0 030 0 0

pred(T)

pred(T [i′, i′+|Pj+1|−1])

Benjamin SachPara. Matching in the Streaming Model

Pj+1 p-matches iff

pred(T [i′, i′+|Pj+1|−1]) = pred(Pj+1)

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

1 2 3 1 3 5 2 5 30 0 030 0 0

pred(T)

pred(T [i′, i′+|Pj+1|−1])

pred(T [i′, i′+|Pj+1|−1])[|Pj |, |Pj+1| − 1] 5 2 5 30 0 03

Benjamin SachPara. Matching in the Streaming Model

Pj+1 p-matches iff

pred(T [i′, i′+|Pj+1|−1])[|Pj |, |Pj+1| − 1] = pred(Pj+1)[|Pj |, |Pj+1| − 1]

As Pj p-matches,

Compute this online Precompute this

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

1 2 3 1 3 5 2 5 30 0 030 0 0

pred(T)

pred(T [i′, i′+|Pj+1|−1])

pred(T [i′, i′+|Pj+1|−1])[|Pj |, |Pj+1| − 1] 5 2 5 30 0 03

Benjamin SachPara. Matching in the Streaming Model

Pj+1 p-matches iff

pred(T [i′, i′+|Pj+1|−1])[|Pj |, |Pj+1| − 1] = pred(Pj+1)[|Pj |, |Pj+1| − 1]

As Pj p-matches,

Compute this online Precompute this

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

1 2 3 1 3 5 2 5 30 0 030 0 0

pred(T)

pred(T [i′, i′+|Pj+1|−1])

pred(T [i′, i′+|Pj+1|−1])[|Pj |, |Pj+1| − 1] 5 2 5 30 0 03

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

1 2 3 1 3 5 2 5 30 0 030 0 0

pred(T)

pred(T [i′, i′+|Pj+1|−1])

pred(T [i′, i′+|Pj+1|−1])[|Pj |, |Pj+1| − 1] 5 2 5 30 0 03

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

1 2 3 1 3 5 2 5 30 0 030 0 0

pred(T)

pred(T [i′, i′+|Pj+1|−1])

pred(T [i′, i′+|Pj+1|−1])[|Pj |, |Pj+1| − 1] 5 2 5 30 0 03

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

1 2 3 1 3 5 2 5 30 0 030 0 0

pred(T)

pred(T [i′, i′+|Pj+1|−1])

pred(T [i′, i′+|Pj+1|−1])[|Pj |, |Pj+1| − 1] 5 2 5 30 0 03

All these characters have large predecessor values. . . at least |Pj |

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

1 2 3 1 3 5 2 5 30 0 030 0 0

pred(T)

pred(T [i′, i′+|Pj+1|−1])

pred(T [i′, i′+|Pj+1|−1])[|Pj |, |Pj+1| − 1] 5 2 5 30 0 03

All these characters have large predecessor values. . . at least |Pj |

There are O(|Σ|) such characters in an O(|Pj+1|) length text window. . .
so we can store them all

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

1 2 3 1 3 5 2 5 30 0 030 0 0

pred(T)

pred(T [i′, i′+|Pj+1|−1])

pred(T [i′, i′+|Pj+1|−1])[|Pj |, |Pj+1| − 1] 5 2 5 30 0 03

All these characters have large predecessor values. . . at least |Pj |

There are O(|Σ|) such characters in an O(|Pj+1|) length text window. . .
so we can store them all

Modifying the fingerprint in O(|Σ|) time is simple arithmetic. . .

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+|Pj |−1i′ i′+|Pj+1|−1

1 2 3 1 3 5 2 5 30 0 030 0 0

pred(T)

pred(T [i′, i′+|Pj+1|−1])

pred(T [i′, i′+|Pj+1|−1])[|Pj |, |Pj+1| − 1] 5 2 5 30 0 03

All these characters have large predecessor values. . . at least |Pj |

There are O(|Σ|) such characters in an O(|Pj+1|) length text window. . .
so we can store them all

Modifying the fingerprint in O(|Σ|) time is simple arithmetic. . .

Benjamin SachPara. Matching in the Streaming Model

don’t panic about the time complexity - we’ll fix that later

Key Problem 1: Correcting predecessor fingerprints

T

i′+|Pj |−1i′ i′+|Pj+1|−1

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

T

i′+|Pj |−1i′ i′+|Pj+1|−1

a Pj match is reported here

is there a Pj+1 match ending here?

Benjamin SachPara. Matching in the Streaming Model

Key Problem 1: Correcting predecessor fingerprints

T

i′+|Pj |−1i′ i′+|Pj+1|−1

a Pj match is reported here

is there a Pj+1 match ending here?

Benjamin SachPara. Matching in the Streaming Model

we need to store this fingerprint. . .
until it’s used here

Key Problem 2: Storing the fingerprints

Benjamin SachPara. Matching in the Streaming Model

ρ ρ ρ ρ ρ
T

P

The structure of exact matches

either every ρ or far apart

Key Problem 2: Storing the fingerprints

Benjamin SachPara. Matching in the Streaming Model

ρ ρ ρ ρ ρ
T

P

The structure of exact matches

either every ρ or far apart

this allowed the partial exact matches with each Pj to be encoded

as an arithmetic progression in constant space

Key Problem 2: Storing the fingerprints

Benjamin SachPara. Matching in the Streaming Model

ρ ρ ρ ρ ρ
T

P

The structure of exact matches

either every ρ or far apart

this allowed the partial exact matches with each Pj to be encoded

the fingerprints can also be encoded in an analagous manner

as an arithmetic progression in constant space

Key Problem 2: Storing the fingerprints

Benjamin SachPara. Matching in the Streaming Model

ρ ρ ρ ρ ρ

Y A

T

P

|Y | ≤ 6|Σ|

The structure of parameterized matches

this allows the partial parameterized matches with each Pj to be encoded

the fingerprints can also be encoded in an analagous manner

in O(|Σ|) space

Key Problem 3: Deamortising the algorithm

Benjamin SachPara. Matching in the Streaming Model

As described, the algorithm takes O(|Σ|) time per prefix match found.

Using an idea of Breslauer and Galil, this is reduced to O(1) per char.

Key Problem 3: Deamortising the algorithm

Benjamin SachPara. Matching in the Streaming Model

As described, the algorithm takes O(|Σ|) time per prefix match found.

Using an idea of Breslauer and Galil, this is reduced to O(1) per char.

P

The longest prefix P [0, j] with
parameterized period at most c · |Σ| log |P |.

Key Problem 3: Deamortising the algorithm

Benjamin SachPara. Matching in the Streaming Model

As described, the algorithm takes O(|Σ|) time per prefix match found.

Using an idea of Breslauer and Galil, this is reduced to O(1) per char.

Matches with P [0, j + 1] are Ω(|Σ| log |P |) alignments apart.

P

The longest prefix P [0, j] with
parameterized period at most c · |Σ| log |P |.

Key Problem 3: Deamortising the algorithm

Benjamin SachPara. Matching in the Streaming Model

As described, the algorithm takes O(|Σ|) time per prefix match found.

Using an idea of Breslauer and Galil, this is reduced to O(1) per char.

Matches with P [0, j + 1] are Ω(|Σ| log |P |) alignments apart.

P

The longest prefix P [0, j] with
parameterized period at most c · |Σ| log |P |.

We also give a deterministic algorithm which outputs all P [0, j] matches
in O(|Σ| log |P |) space and O(1) time per character.

Key Problem 3: Deamortising the algorithm

Benjamin SachPara. Matching in the Streaming Model

As described, the algorithm takes O(|Σ|) time per prefix match found.

Using an idea of Breslauer and Galil, this is reduced to O(1) per char.

Matches with P [0, j + 1] are Ω(|Σ| log |P |) alignments apart.

P

The longest prefix P [0, j] with
parameterized period at most c · |Σ| log |P |.

We also give a deterministic algorithm which outputs all P [0, j] matches
in O(|Σ| log |P |) space and O(1) time per character.

(in fact it works for any pattern with small parameterized period)

Conclusions

Benjamin SachPara. Matching in the Streaming Model

T

P

1 2 3

a b a

? ? ? ? ?2 ?

• In parameterised matching the alphabet can be relabelled

Parameterized matching can be solved in O(|Σ| log |P |) space and:

Both algorithms are randomised (Monte-Carlo)

• O(1) time per character when |Σ| = {1, 2, 3, . . . , |Σ|}

Our Main Results

• O(
√

log |Σ|/ log log |Σ|) time per character for general Σ

Σ is the alphabet

Thank you for listening

	Title
	Title

