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before the next character arrives

• We care about worst-case time per text character
and using as little space as possible

• The definition of a match depends on the problem
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What else can be solved in small space?

• Pattern matching with k mismatches can be solved in
O(k3polylog|P |) space and O(k2polylog|P |) time per character
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Alice Bob

Clifford, Jalsenius, Porat, S. CPM’11

We showed randomised space lower bounds of Ω(|P |) bits for:

Hamming distance, Exact matching with wildcards, L1,
L2and L∞ distances, Edit distance and Swap matching

as well as any algorithm performing convolutions

We did this by showing that better algorithms would give impossibly
good communication protocols
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• In parameterized matching (p-matching),
the alphabet can be relabelled

Parameterized matching can be solved in O(|Π| log |P |) space and:

• O(
√

log |Π|/ log log |Π|) time per character for general Π

Our Results

where Π ⊆ Σ is the set of symbols in P
which are allowed to be relabelled

Σ is the alphabet
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1 2 3

a b a

? ? ? ? ?2 ?

• In parameterized matching (p-matching),
the alphabet can be relabelled

Parameterized matching can be solved in O(|Σ| log |P |) space and:

• O(1) time per character when |Σ| = {1, 2, 3, . . . , |Σ|}

The remainder of the talk will focus on this result
(the others are simple generalisations)
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T a b a b a b c bc c

P c b c a c

a b a b a b c bc c

c b c a c

pred(T ) 0 0 2 4 4 2 4 20 1

pred(P ) 0 0 2 0 2

P p-matches T iff pred(P ) = pred(T [i, i+ |P | − 1])

result due to Baker

however, pred(T )[i, i+ |P | − 1] 6= pred(T [i, i+ |P | − 1])

some values may have to be zeroed
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S a b a b a b c bc c

φ(S) =
∑|S|−1

k=0 S[k]rk mod p

Here p = Θ(|T |4) is a prime and 1 ≤ r < p is a random integer

with high probability, S1 = S2 iff φ(S1) = φ(S2)

Observe that φ(S) fits in an O(log |T |) bit word

Given φ(S[0, `]) and φ(S[0, r]) we can compute
φ(S[`+ 1, r]) in O(1) time
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T

Pj+1

Pj

a Pj match is reported here

need to check for a Pj+1 match here

Given φ(T [0, `]) and φ(T [0, r]) we can compute
φ(T [`+ 1, r]) in O(1) time

To decide whether Pj+1 matches,
compare φ(T [`+ 1, r]) to φ(P [2j + . . . 2j − 1])
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T

Pj+1

Pj

Each φ fits in a word but we need to store each one for a long time. . .

this fingerprint. . .

isn’t used until here

we may have to store many (Ω(|P |)) at a time.

the fingerprints themselves have to be stored in a compressed form



Para. matching using fingerprints (this paper)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

a Pj match is reported here

need to check for a Pj+1 match here

Overall approach: Find matches using fingerprints of predecessor strings



Para. matching using fingerprints (this paper)

Benjamin SachPara. Matching in the Streaming Model

T

Pj+1

Pj

a Pj match is reported here

need to check for a Pj+1 match here

Overall approach: Find matches using fingerprints of predecessor strings

Key Problem 1: pred(T )[`+ 1, r] 6= pred(T [`+ 1, r])

Key Problem 2: How do we store all the fingerprints?

Key Problem 3: How do we deamortise the algorithm?
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don’t panic about the time complexity - we’ll fix that later
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a Pj match is reported here

is there a Pj+1 match ending here?
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we need to store this fingerprint. . .
until it’s used here
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Key Problem 2: Storing the fingerprints
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ρ ρ ρ ρ ρ

Y A

T

P

|Y | ≤ 6|Σ|

The structure of parameterized matches

this allows the partial parameterized matches with each Pj to be encoded

the fingerprints can also be encoded in an analagous manner

in O(|Σ|) space
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As described, the algorithm takes O(|Σ|) time per prefix match found.

Using an idea of Breslauer and Galil, this is reduced to O(1) per char.

Matches with P [0, j + 1] are Ω(|Σ| log |P |) alignments apart.

P

The longest prefix P [0, j] with
parameterized period at most c · |Σ| log |P |.

We also give a deterministic algorithm which outputs all P [0, j] matches
in O(|Σ| log |P |) space and O(1) time per character.

(in fact it works for any pattern with small parameterized period)



Conclusions
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T

P

1 2 3

a b a

? ? ? ? ?2 ?

• In parameterised matching the alphabet can be relabelled

Parameterized matching can be solved in O(|Σ| log |P |) space and:

Both algorithms are randomised (Monte-Carlo)

• O(1) time per character when |Σ| = {1, 2, 3, . . . , |Σ|}

Our Main Results

• O(
√

log |Σ|/ log log |Σ|) time per character for general Σ

Σ is the alphabet

Thank you for listening
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