SIPping from the firehose: Streaming Interactive Proofs for verifying computations

Graham Cormode
graham@research.att.com

Amit Chakrabarti (Dartmouth)
Andrew McGregor (U Mass Amherst)
Michael Mitzenmacher (Harvard)
Justin Thaler (Harvard)
Ke Yi (HKUST)
Data Streams

- The data stream model requires computation in small space with a single pass over input data
 - Models large network data, database transactions
- Fundamental challenge of data stream analysis: Too much information to store or transmit
- So process data as it arrives: one pass, small space: the data stream approach.
- Approximate answers to many questions are OK, if there are guarantees of result quality
 - Parameters: space needed, time per update as function of approximation accuracy, probability of error
Data Stream Algorithms

- Many problems solved efficiently in streaming model
 - F_0: How many distinct items (out of 10^{12} possible)?
 - HH: Which items occur most frequently?
 - H: What is the (empirical) entropy of the observed dbn?

- But many other natural problems are “hard” in this model
 - Hardness means large amount of space is needed
 - E.g. Was a particular item in the stream?
 - E.g. What is inner product of two vectors?

- Lower bounds proved via communication complexity
 - Independent of any assumptions on computational power
Streaming Interactive Proofs

- “Practical” solution: outsource to a more powerful “helper”
 - Fundamental problem: how to be sure that the helper is being honest?
- Helper provides “proof” of the correct answer
 - Ensure that “verifier” has very low probability of being fooled
 - Related to communication complexity Arthur-Merlin model, and Algebrization, with additional streaming constraints
Motivating Applications

- **Cloud Computing**
 - To save money, and energy, outsource data to a 3rd party
 - But want to know they are honest, without duplicating!
 - Use a streaming interactive proof to verify computation

- **Trusted Hardware**
 - Hardware components within a (distributed) system (e.g. video card, additional computing cores)
 - Use streaming interactive proofs for (mutual) trust
One Round Model

- One-round model [Chakrabarti, C, McGregor 09]
 - Define protocol with help function h over input length N
 - Maximum length of h over all inputs defines *help cost*, H
 - Verifier has V bits of memory to work in
 - Verifier uses randomness so that:
 - For all help strings, $\Pr[\text{output} \neq f(x)] \leq \delta$
 - Exists a help string so that $\Pr[\text{output} = f(x)] \geq 1-\delta$
 - $H = 0$, $V = N$ is trivial; but $H = N$, $V = \text{polylog } N$ is not

Data Stream

Annotations in Data Streams

“Proof”
Index Problem

- Fundamental (hard) problem in data streams
 - Input is a length N binary string x followed by index y
 - Desired output is $x[y]$
 - Requires $\Omega(N)$ space even probabilistically

- Result: can obtain protocols for $HV = O(N \log N)$
 - E.g. $H = O(\sqrt{N})$, $V = O(\sqrt{N} \log N)$
 - $HV = \Omega(N)$ is necessary
Lower Bound

- Show that a protocol implies solution in traditional model
- Pick k so that $\text{Pr}[\text{Binomial}(k,1/3) > k/2] < 2^{-H/3}$
- Start protocol independently $k = \Theta(H)$ times in parallel
 - Cost in bits is $k \times V = O(HV)$
- Search for a H bit help string so that majority of instances output 0 or 1, and output that value.
- If protocol is correct with $\delta < 1/3$, must exist some help string that does not ‘fail’ w/prob $2/3$
 - And low probability that it leads to the wrong output value
- By choice of k, 2^H strings each fail with prob $2^{-H/3}$
 - Gives a traditional protocol with cost $O(HV)$, must be $\Omega(N)$
Divide the bit string into blocks of H bits
Verifier remembers a hash on each block
After seeing index, Helper replays its block
Verifier checks hash agrees, and outputs $x[y]$

Cost: H bits of help, $V = N/H$ hashes
 - So $HV = O(N \log N)$, any point on tradeoff is possible
Median Finding

- Similar ideas allow tracking any vector
- Use to find median of \(m \) items \(\in \{1 \ldots N\} \)

- Define rank vector s.t. \(\text{rank}[i] = \text{number of items seen} < i \)
- Arrival of item \(j \) means \(\text{rank}[i] \leftarrow \text{rank}[i] + 1 \) for all \(i > j \)
- Divide \(\text{rank}[\cdot] \) into blocks of \(H \) counters
 - Can update hash of a block without knowing value of \(\text{rank}[i] \)
- Helper claims median is \(M \), and shows \(\text{rank}[M], \text{rank}[M+1] \)
 - Verifier checks that \(\text{rank}[M] \leq N/2, \text{rank}[M+1] \geq N/2 \)

- Gives solution for any \(HV \) s.t. \(HV = \Omega(N \log N) \)
Frequency Moments

- Given a sequence of \(m \) items, let \(w_i \) denote frequency of item \(i \)
- Define \(F_k = \sum_i |w_i|^k \)
 - Core computation in data streams
 - Requires \(\Omega(N) \) space to compute exactly
 - Need polynomial space to approximate for \(k > 2 \)

- Results: for \(h, v \) s.t. \((hv) > N \), exists a protocol with \(H = k^2 h \log m, V = O(k v \log m) \) to compute \(F_k \)
 - Lower bounds: \(HV = \Omega(N) \) necessary for exact, and \(HV = \Omega(N^{1-5/k}) \) for approximate \(F_k \) computation
Frequency Moments

- Map \([N]\) to \(h \times v\) array
- Interpolate entries in array as a polynomial \(f(x,y)\)
- Verifier picks random \(r\), evaluates \(f(r, j)\) for \(j \in [v]\)
- Helper sends \(s(x) = \sum_{j \in [v]} f(x, j)^k\) (degree \(kh\))
 - Verifier checks \(s(r) = \sum_{j \in [v]} f(r,j)^k\)
 - Output \(F_k = \sum_{i \in [h]} s(i)\) if test passed
- Probability of failure small if evaluated over large enough field
Streaming Computation

- Must evaluate $f(r,i)$ incrementally as $f()$ is defined by stream.
- Structure of polynomial means updates to (a,b) cause

\[f(r,i) \leftarrow f(r,i) + p_{a,b}(r,i) \]

where

\[p_{a,b}(x,y) = \prod_{i \in [h]\backslash\{a\}} (x-i)(a-i)^{-1} \cdot \prod_{j \in [v]\backslash\{b\}} (y-j)(b-j)^{-1} \]

- Can be computed quickly, using appropriate precomputed look-up tables.
Applications of Frequency Moments

- Inner products: \(x \cdot y = \frac{1}{2} (F_2(x+y) - (F_2(x) + F_2(y))) \)
 - Adapt previous protocol to verify directly

- Approximate \(F_2 \):
 - Methods known to \((1 \pm \varepsilon)\) approximate \(F_2 \) by computing \(F_2 \) of a random projection
 - Random projection computable in small space
 - Gives \(HV = \Theta(1/\varepsilon^2) \) tradeoff

- Approximate \(F_\infty = \max_i m_i \):
 - Observe that \(F_\infty^t \leq F_t \leq N F_\infty^t \)
 - Pick \(t = \log N/\log (1+\varepsilon) \) to get \((1+\varepsilon)\) approx to \(F_\infty \)
 - Gives \(HV = \Theta(1/\varepsilon^3 \text{ poly-log } N) \) tradeoff
Multi-Round Protocol

- **Advantage of one-round protocols**: Helper can provide proof without direct interaction (e.g. publish + go offline)
- **Disadvantage**: Resources still polynomial in input size
- Multi-round protocol can improve exponentially [C, Yi 10]:
 - Helper and Verifier follow communication protocol
 - \(H \) now denotes upper bound on total communication
 - \(V \) is verifier’s space, study tradeoff between \(H \) and \(V \) as before
Multi-Round Index Protocol

- **Basic idea**: V keeps hash of whole stream, use helper to help check hash of stream containing claimed answer
 - Verifier imposes a binary tree, and a (secret) hash for each level
 - **Round 1**: Helper sends answer, and its sibling
 Verifier sends hash for leaf level
 - **Round 2**: Helper sends hash of answer’s parent’s sibling
 Verifier sends hash for next level...
 - **Round log N**: Verifier checks root hash

- **Correctness**: Helper can only cheat via hash collisions—but doesn’t know hash function until too late to cheat
 - Small chance over log N levels

![Diagram of a binary tree representing the Multi-Round Index Protocol](Image)
Multi-Round Index Protocol

- **Challenge**: Verifier must compute hash of root in small space
 \[
 h(\text{root}) = h_{\log N} (h_{\log N - 1} (\text{left half}), h_{\log N - 1} (\text{right half})) \\
 = h_{\log N} (h_{\log N} \ldots h_2 (h_1 (x_1, x_2) \ldots)))
 \]

- **Solution**: appropriate choice of each hash function
 - \(h_i(x, y) = x + r_i y \mod p\) gives sufficient security (1/p \(\log N\) error)
 - Then \(h(\text{root}) = \sum_i (w_i \prod_{j=1}^{\log N} r_j^{\text{bit}(j,i)})\) where \(\text{bit}(j,i) = i^{\text{th}}\) bit of \(j\)
 - So each update requires only \(\log N\) field multiplications

- **Final bounds**: \(O(\log^2 N)\) communication, \(O(\log^2 N)\) space
Multi-Round Frequency Moments

Now index data using \(\{0,1\}^d\) in \(d = \log N\) dimensional space

- Verifier picks one \((r_1 \ldots r_d) \in [p]^d\), and evaluates \(f^k(r_1, r_2, \ldots r_d)\)
- Round 1: Helper sends \(g_1(x_1) = \sum_{x_2 \ldots x_d} f^k(x_1, x_2 \ldots x_d)\), V sends \(r_1\)
- Round i: Helper sends \(g_i(x_i) = \sum_{x_{i+1} \ldots x_d} f^k(r_1, \ldots r_{i-1}, x_i, x_{i+1} \ldots x_d)\)
 Verifier checks \(g_{i-1}(r_{i-1}) = g_i(0) + g_i(1)\), sends \(r_i\)
- Round d: Helper sends \(g_d(x_d) = f^k(r_1, \ldots r_{d-1}, x_d)\)
 Verifier checks \(g_d(r_d) = f^k(r_1, r_2, \ldots r_d)\)
Multi-Round Frequency Moments

- **Correctness**: helper can’t cheat last round without knowing \(r_d \)
- Then can’t cheat round \(i \) without knowing \(r_i \)...
 - Similar to protocols from “traditional” Interactive Proofs
- Inductive proof, conditioned on each later round succeeding
- **Bounds**: \(O(k^2 \log N) \) total communication, \(O(k \log N) \) space
- \(V \)’s incremental computation possible in small space, via
 \[\prod_{j=1}^{d} (r_j + \text{bit}(j,i)(1-2r_j)) \]
- Intermediate polynomials relatively cheap for helper to find
Graph Problems

- Count the number of triangles in a graph [CCM09]
 - $HV = \Omega(N^2)$ is necessary in one round
 - $H = O(N^2), V = O(\log N)$ via verifying matrix multiplication
 - $HV = O(N^3)$ tradeoff via Frequency Moments in one round

- Connectivity and Bipartite Perfect Matchings with $V = O(\log N)$ space in one round
 - Different witnesses presented for positive/negative answers
 - No tradeoffs known
Graph Problems

- $H = |E|$, $V = \log |E|$ graph protocols [C, Mitzenmacher, Thaler 10]
 - **BFS**: List edges in BFS order, nodes with depth information
 - **DFS**: List edges in DFS order, with information about stack
 - **MST**: List edges in weight order, with component information
 - **Maximum matching**: prove matching upper and lower bounds

- Connection to unimodular integer programs
 - Can formulate many flow problems as unimodular IPs
 - Use verification on matching feasible solutions for primal/dual
Vector Problems

- Find and verify frequent items with $V = O(\log N)$ space
 - Complexity comes from verifying none are missing
- F_0: Count the number of distinct items
 - $HV = O(N^{2/3})$ by extension of arguments for F_k
 - In parallel use HH protocol to remove very high frequency items
- F_∞: Find the most frequently occurring item
 - “Harder” than finding just items above a frequency threshold
 - $HV = O(N^{2/3})$, solution similar to F_0 approach
Open Challenges

- **Lower bounds** for multi-round versions of the protocols
 - May need new communication complexity models

- **Characterize problems** that can be solved in this model
 - NP is known to be solvable with $H = \text{poly}(N)$, $V = \log N$ [Lipton 90]
 - But we want $H=O(N)$, and ideally $H=o(N)$

- **Use** these protocols
 - Protocols seem practical, but are they compelling?
 - For what problems are protocols most needed?