The one-to-many node-disjoint paths problem in certain interconnection networks

Iain A. Stewart

Department of Computer Science
Durham University, U.K.

May 2009

1 Joint work with Yonghong Xiang, Durham University.
Parallel computers

Parallel computers are usually

- shared-memory machines, or
- distributed-memory machines.

The dominant factor inhibiting faster global computations is inter-processor communication:

- routing mechanisms (how paths are determined)
- flow control (how buffers/channels are assigned to packets)
- switching (how a packet is moved)
- network topology.
IBM Blue Gene

Introduction

(n, k)-stars and our problem

Our solution

The one-to-many node-disjoint paths problem
Some design parameters

There are often conflicting demands on an interconnection network:

- symmetry (to aid programming and analysis)
- small diameter (to reduce message latency)
- recursive decomposability (to aid scalability)
- low degree (to reduce communication overheads)
- support rapid, easy and efficient inter-processor communication
- support the simulation of other machines
- ...

There is no one network to optimise all parameters and trade-offs have to be made.
Some popular topologies

The n-dimensional hypercube Q_n

- Vertex set consists of $\{0, 1\}^n$.
- There is an edge (u, v) iff u and v differ in exactly one bit.

The hypercube Q_n has a number of desirable properties:

- it is a Cayley graph and so node-transitive
- it is edge-transitive
- it has diameter n
- it is recursively decomposable
- it has a trivial node-to-node routing algorithm
- it can efficiently simulate many other networks, e.g., trees, meshes, hexagonal graphs, ...
Some popular topologies

The n-star S_n [Akers, Harel, Krishnamurthy, Proc. ICPP 87]

- Vertex set consists of
 $$\{(v_1, v_2, \ldots, v_n) : v_i, v_j = 1, 2, \ldots, n, \text{ and } v_i \neq v_j, \text{ for } i \neq j\}.$$

- There is an edge joining (u_1, u_2, \ldots, u_n) and (v_1, v_2, \ldots, v_n) if $u_1 = v_i$ and $v_1 = u_i$, for some $i \in \{2, 3, \ldots, n\}$, with $u_j = v_j$, for $j \in \{2, 3, \ldots, n\} \setminus \{i\}$.

Iain A. Stewart, Durham University, U.K.

The one-to-many node-disjoint paths problem
The n-star S_n has a number of desirable properties too (in the context of parallel computation):

- it has degree and diameter $O(\log(n)/\log \log(n))$
- it is recursively decomposable
- it is a Cayley graph and so node-transitive
- it is tolerant of faulty nodes and links in a number of scenarios.

In general, star graphs compare favourably with hypercubes.
(n, k)-stars

A drawback of n-stars is that the ‘gap’ between the sizes of S_n and S_{n+1} (that is, $n!$ and $(n + 1)!$) is considerable.

The (n, k)-star $S_{n,k}$ is defined as follows [Chiang, Chen, IPL 95].

- The node set is $\{(u_1, u_2, \ldots, u_k) : \text{each } u_i \in \{1, 2, \ldots, n\} \text{ with } u_i \neq u_j, \text{ for } i \neq j\}$.
- There is an edge $((u_1, u_2, \ldots, u_k), (v_1, v_2, \ldots, v_k))$ if:
 - $u_1 \neq v_1$ and $u_j = v_j$, for all $j = 2, 3, \ldots, k$ (a 1-edge); or
 - $u_1 = v_i$ and $v_1 = u_i$, for some i, with $u_j = v_j$, for all $j \in \{2, 3, \ldots, k\} \setminus \{i\}$ (an i-edge).

So, $S_{n,k}$ has $\frac{n!}{(n-k)!}$ nodes, $\frac{(n-1)}{2} \times \frac{n!}{(n-k)!}$ edges, and is regular of degree $n - 1$.

In particular, $S_{n,n-1}$ is isomorphic to the star S_n, and $S_{n,1}$ is a clique on n nodes.
A \((5, 3)\)-star

\[(5,3)\text{-star}

Iain A. Stewart, Durham University, U.K.
The one-to-many node-disjoint paths problem
Some properties of \((n, k)\)-stars

- They can be recursively decomposed in a number of ways [Chiang, Chen, IPL 95].
- They are node-symmetric [Chiang, Chen, IPL 95].
- They have a simple shortest path routing algorithm [Chiang, Chen, IJFCS 98].
- \(S_{n,k}\) has connectivity \(n - 1\) [Chiang, Chen, IJFCS 98].
- They have reasonably good embedding and connectivity properties, even in the presence of faults [Chang, Kim, Proc. ICPADS 01], [Hsu, Hsieh, Tan, Hsu, Networks 03], [Hsu, Lin, Hung, Hsu, IJFCS 06].
- The wide-diameter of \(S_{n,k}\) is either \(\Delta(S_{n,k}) + 1\) or \(\Delta(S_{n,k}) + 2\), depending upon \(k\) and \(n\). [Chiang, Chen, IJFCS 98], [Lin, Duh, Cheng, Proc. CCCT 04], [Lin, Duh, Inf. Sci. 08].
Our problem

The one-to-many node-disjoint paths problem for $S_{n,k}$ is:

- given: the graph $S_{n,k}$; a source node u; and some distinct target nodes $v_1, v_2, \ldots, v_{n-1}$
- find: $n - 1$ node-disjoint paths from the source to the targets so that the path-lengths are minimized.

Notes:

- an instance to the problem has size $O(kn \log n)$, even though $S_{n,k}$ has exponentially many (in n) nodes
- the criterion regarding path-length is satisfied if the length of the longest path is as small as possible
- we cannot cater for more target nodes as $S_{n,k}$ has degree and connectivity $n - 1$
- Menger’s Theorem tells us that our paths exist but tells us nothing about their lengths.
Disjoint paths in other networks

▶ In 1989, Rabin [Rabin, JACM 89] showed that given a source node and n distinct target nodes in an n-dimensional hypercube Q_n, there is an $O(n^2)$ time algorithm that builds node-disjoint paths from the source to the targets such that each path has length at most the diameter of Q_n plus 1 (this is optimal).

▶ In 1997, Gu and Peng [Gu, Peng, IPL 97] showed that given a source node and $n-1$ distinct target nodes in an n-star graph S_n, there is an $O(n^2)$ time algorithm that builds node-disjoint paths from the source to the targets such that each path has length at most the diameter of S_n plus 2.

▶ It is open as to whether this is optimal as the only lower bound known is the diameter of S_n plus 1.
Recursive decomposability

- If we fix any component of the nodes of $S_{n,k}$, apart from the first, at some $w \in \{1, 2, \ldots, n\}$:

 $$(v_1, v_2, \ldots, v_{i-1}, w, v_{i+1}, \ldots, v_k)$$

 then we get n disjoint copies of $S_{n-1,k-1}$ (joined by additional edges).

- Thus, there is scope for us to partition $S_{n,k}$ over some dimension.

- In fact, there is always a dimension over which we can partition $S_{n,k}$ so that we obtain n disjoint copies of $S_{n-1,k-1}$ so that no more than $n-2$ target nodes lie in any of these copies (thus setting up a recursive algorithm).

- Further, because $S_{n,k}$ is node-symmetric then we may always assume that our source node is $I_k = (1, 2, \ldots, k)$.
The basic set-up

Here, we assume that we partition over dimension k.
The case for $k = 2$

- Paths in S_2 are reserved first (marked in red).
- Other paths from targets go ‘directly’ to I_k or via a copy S_i containing no target nodes and which is not ‘blocked’.
- A ‘counting/structural’ argument is used to verify that the basic construction is always possible.
The result for $k = 2$

Theorem

When T is a set of $n - 1$ distinct nodes in $S_{n,2}$ and when I is a node not in T, there is an algorithm that finds $n - 1$ node-disjoint paths from the nodes in T to the node I. Furthermore, all paths found have length at most 5, which is optimal, and the time complexity of the algorithm is $O(n^2)$.
The general case

- First, we (recursively) find node-disjoint paths from the target nodes in S_k to I_k (if any such target nodes exist); these paths lie wholly within S_k and are not changed throughout the subsequent execution of the algorithm.

- We set neighbours of I_k to be temporary target nodes to keep as much scope as possible for building other paths through sets of transit nodes and on to I_k.

![Diagram showing the general case with nodes and paths labeled as S_k, I_k, temporary target nodes, and target nodes.]

Iain A. Stewart, Durham University, U.K. The one-to-many node-disjoint paths problem
Next, we work through the other S_i’s in turn and via recursive calls establish paths from the target nodes in each S_i to I_i. We then amend and extend these paths so that they ultimately lead to I_k.
Next, we work through the other S_i’s in turn and via recursive calls establish paths from the target nodes in each S_i to I_i. We then amend and extend these paths so that they ultimately lead to I_k.
The resulting algorithm

What results is a recursive algorithm on $S_{n,k}$ that can be shown to

- make at most $(k - 1)(n - 2)^2$ recursive calls
- with each recursive call taking $O(k^2 n^2)$ time
- so that the longest path constructed from the source to a target node is $6k - 7$ (solving $p_k \leq p_{k-1} + 6$ and $p_2 = 5$).

Theorem

When T is a set of $n - 1$ distinct nodes in $S_{n,k}$ and when I is a node not in T, there is an algorithm that finds $n - 1$ node-disjoint paths from the nodes in T to the node I. Furthermore, all paths found have length at most $6k - 7$ and the time complexity of the algorithm is $O(k^3 n^4)$.
A comparison with Q_n and S_n

- Rabin’s $O(n^2)$ time algorithm for finding n node-disjoint paths from a source to n targets in Q_n with the longest of length at most 1 plus the diameter.

- Gu and Peng’s $O(n^2)$ time algorithm for finding $n - 1$ node-disjoint paths from a source to $n - 1$ targets in S_n with the longest of length at most 2 plus the diameter.

- Our algorithm takes longer to run and the length of the longest path is at most roughly 3 times the diameter.

- In order to obtain an improvement using our techniques, we would need to increase the length of our paths by at most 2 at each recursive call and this seems extremely unlikely/difficult.

- Of course, the more complex structure of $S_{n,k}$ could very well mean that our result is, in fact, near optimal.