Testing Continuous Distributions

Artur Czumaj

DIMAP (Centre for Discrete Maths and its Applications) & Department of Computer Science
University of Warwick

Joint work with Michal Adamaszek & Christian Sohler
Testing probability distributions

• General question:
 – Test if a given probability distribution has a given property

 Distribution is available by accessing only samples drawn from the distribution

Examples:
- is given probability uniform?
- are two prob. distributions identical?
- are two prob. distributions independent?
Trend change analysis

Transactions of 20-30 yr olds

Transactions of 30-40 yr olds

trend change?

(slide due to R. Rubinfeld)
Outbreak of diseases

- Do two diseases follow similar patterns?
- Are they correlated with income level or zip code?
- Are they more prevalent near certain areas?
Is the lottery uniform?

• New Jersey Pick-k Lottery (k =3,4)
 – Pick k digits in order.
 – 10^k possible values.
• Data:
 – Pick 3 - 8522 results from 5/22/75 to 10/15/00
 • χ^2-test gives 42% confidence
 – Pick 4 - 6544 results from 9/1/77 to 10/15/00.
 • fewer results than possible outcomes
 • χ^2-test gives no confidence

(slide due to R. Rubinfeld)
Testing probability distributions

Lots of research in statistics
Some recent research in algorithms

• Typical result:
 – Given a probability distribution on n points, we can test if it’s uniform after seeing $\sim \sqrt{n}$ random samples

 \[\text{Testing} = \text{distinguish between uniform distribution and distributions which are } \epsilon\text{-far from uniform} \]

 ϵ-far from uniform:

 \[\sum_{x \in \Omega} |\Pr[x] - \frac{1}{n}| \geq \epsilon \]

 \[\text{error probab. } \leq \frac{1}{3} \]

 [Batu et al ‘01]
Testing probability distributions

Given a probability distribution on n points, we can test if it’s uniform after seeing \(\sim \sqrt{n} \) random samples [Batu et al ’01]

Testing = distinguish between uniform distribution and distributions which are \(\epsilon \)-far from uniform

\(\epsilon \)-far from uniform: \(\sum_{x \in \Omega} |\Pr[x] - \frac{1}{n}| \geq \epsilon \)

error probab. \(\leq 1/3 \)

Choose \(\Theta(n^{1/2}) \) random samples \(s_1, s_2, \ldots, s_T \)
Count the number of collisions: \(\text{coll} = \#\{i < j: s_i = s_j\} \)
Accept iff \(\text{coll} < T^2 \left(1 + \epsilon/4\right)/2n \)

Let \(p_i \) be the probability that the \(i \)th element is chosen, \(1 \leq i \leq n \).
If distribution is uniform then \(p_i = \frac{1}{n} \) for every \(i \).
For given \(p_1, \ldots, p_n \), we have: \(E[\text{coll}] = \left(\frac{T}{2}\right) \cdot \sum_{i=1}^{n} p_i^2 \)
In particular, if the distribution is uniform then \(E[\text{coll}] = \left(\frac{T}{n}\right) \)

Assuming that \(\sum_{i=1}^{n} |p_i - \frac{1}{n}| \geq \epsilon \), when is \(\sum_{i=1}^{n} p_i^2 \) minimized?
When \(\epsilon n/2 \) elements have zero probability and the remaining are uniform:

\[
\sum_{i=1}^{n} p_i^2 \geq (1 - \epsilon/2)n \cdot \left(\frac{1}{n} \cdot \frac{2}{2 - \epsilon}\right)^2 \approx \frac{1}{n} \cdot (1 + \epsilon/2) .
\]

Hence, \(E[\text{coll}] \geq \left(\frac{T}{n}\right) \cdot (1 + \epsilon/2) \)

Therefore, if we choose \(T = \Theta(\sqrt{n}\log(1/\epsilon)/\epsilon^2) \) then we can distinguish between these two cases with probability \(\geq 0.99 \).
Testing probability distributions

• Typical result:
 – Given a probability distribution on n points, we can test if it’s uniform after seeing $\sim \sqrt{n}$ random samples

[Batu et al ‘01]

• Similar bounds for testing
 • if a distribution is monotone
 • if two distributions are independent
 • …
Testing probability distributions

Lots of research in statistics

Some recent research in algorithms

• Typical result:
 – Given a probability distribution on n points, we can test if it’s uniform after seeing $\sim \sqrt{n}$ random samples

 [Batu et al ‘01]

Many properties of distributions can be tested in time sublinear in the domain/support size
Testing probability distributions

Lots of research in statistics

Some recent research in algorithms

• Typical result:
 – Given a probability distribution on n points, we can test if it’s uniform after seeing $\sim \sqrt{n}$ random samples

[Batu et al ‘01]

• What if distribution has infinite support?
• Continuous probability distributions?
Testing continuous probability distributions

• Typical result:
 – Given a probability distribution on n points, we can test if it’s uniform after seeing $\sim \sqrt{n}$ random samples
 – $\sim \sqrt{n}$ random samples are necessary

Distinguish between

• uniform probability on n points
• uniform probability on $\frac{1}{2}n$ points.

Random sampling won’t repeat any single sample after $o(\sqrt{n})$ draws (“Birthday paradox”)
Testing continuous probability distributions

• Typical result:
 – Given a probability distribution on n points, we can test if it’s uniform after seeing $\sim \sqrt{n}$ random samples
 – $\sim \sqrt{n}$ random samples are necessary

• Given a continuous probability distribution on $[0,1]$, can we test if it’s uniform?

 • Impossible
 • Follows from lower bound for discrete case with $n \to \infty$
More direct proof:

Suppose tester A distinguishes in at most t steps between uniform distribution and ϵ-far from uniform

- D_1 – uniform distribution
- D_2 is $\frac{1}{2}$-far from uniform and is defined as follows:
 - Choose t^3 points from $[0,1]$ independently and uniformly at random
 - D_2 is defined uniformly on the chosen points (D_2 is discrete on t^3 points!)
 - In t steps, no point from support of D_2 will be chosen more than once

A cannot distinguish between D_1 and D_2
Testing continuous probability distributions

• What can be tested?

• First question:
 test if the distribution is indeed continuous
Testing continuous probability distributions

• Dual question:
 Test if a probability distribution is **discrete**

• Prob. distribution D on Ω is discrete on N points if there is a set $X \subseteq \Omega$, $|X| \leq N$, st. $\Pr_D[X]=1$

• D is ϵ-far from discrete on N points if
 \[
 \forall X \subseteq \Omega, |X| \leq N \hspace{1cm} \Pr_D[X] \leq 1-\epsilon
 \]
Testing if distribution is discrete on N points

- We repeatedly draw random points from D
- All what can we see:
 - Count frequency of each point
 - Count number of points drawn

For some D (eg, uniform or close):
- we need $\Omega(\sqrt{N})$ to see first multiple occurrence

Gives a hope that can be solved in sublinear-time
Testing if distribution is discrete on N points

Raskhodnikova et al ’07 (Valiant’08):

Distinct Elements Problem:
- D discrete with each element with prob. $\geq \frac{1}{N}$
- Estimate the support size

$\Omega(N^{1-o(1)})$ queries are needed to distinguish instances with $\leq N/100$ and $\geq N/11$ support size

Key step: two distributions that have identical first $\log^{\Theta(1)} N$ moments
- their expected frequencies up to $\log^{\Theta(1)} N$ are identical
Testing if distribution is discrete on N points

Raskhodnikova et al ’07 (Valiant’08):

Distinct Elements Problem:

• D discrete with each element with prob. \(\geq \frac{1}{N} \)
• Estimate the support size

\(\Omega(N^{1-o(1)}) \) queries are needed to distinguish instances with \(\leq \frac{N}{100} \) and \(\geq \frac{N}{11} \) support size

Corollary:

Testing if a distribution is discrete on N points requires \(\Omega(N^{1-o(1)}) \) samples
Testing if distribution is discrete on N points

• We repeatedly draw random points from D
• All what can we see:
 – Count frequency of each point
 – Count number of points drawn
• Can we get O(N) time?
Testing if a distribution is discrete on N points:

- Draw a sample $S = (s_1, ..., s_t)$ with $t = \frac{cN}{\epsilon}$.
- If S has more than N distinct elements, then REJECT.
- Else ACCEPT.

If D is discrete on N points then we will accept D.

We only have to prove that:

- if D is ϵ-far from discrete on N points, then we will reject with probability $> \frac{2}{3}$.
• Testing if a distribution is discrete on \(N \) points:

\[
\text{Draw a sample } S = (s_1, \ldots, s_t) \text{ with } t = \frac{cN}{\epsilon}
\]

• If \(S \) has more than \(N \) distinct elements then \textbf{REJECT}
else \textbf{ACCEPT}

\(D \) is \(\epsilon \)-far from discrete on \(N \) points, then reject with prob \(>2/3 \)

\(D \) is \(\epsilon \)-far from discrete on \(N \) points \(\Rightarrow \)

\(\forall X \subseteq \Omega, \text{ if } |X| \leq N \text{ then } Pr_D[\Omega \setminus X] \geq \epsilon \)

• Assuming that we haven’t chosen \(n \) points yet, we choose a new point with probability at least \(\epsilon \)

After \((1 + o(1))N/\epsilon \) samples, we choose \(N + 1 \) points with prob. \(\geq 0.99 \)
Testing if a distribution is discrete on N points:

- Draw a sample $S = (s_1, \ldots, s_t)$ with $t = \frac{cN}{\epsilon}$
- If S has more than N distinct elements then REJECT
 else ACCEPT

Can we do better (if we only count distinct elements)?

D: has 1 point with prob. $1 - 4\epsilon$
 2N points with prob. $2\epsilon/N$

D is ϵ-far from discrete on N points

We need $\Omega(N/\epsilon)$ samples to see at least N points
Testing continuous probability distributions

• What can we test efficiently?
 – Complexity for discrete distributions should be “independent” on the support size

• Uniform distribution … under some conditions

• Rubinfeld & Servedio’05:
 – testing monotone distributions for uniformity
Rubinfeld & Servedio’05:

• Testing monotone distributions for uniformity

D: distribution on n-dimensional cube; D: \{0,1\}^n \rightarrow \mathbb{R}

x, y \in \{0,1\}^n, x \preceq y \iff \forall i: x_i \leq y_i

D is monotone if x \preceq y \Rightarrow \Pr[x] \leq \Pr[y]

Goal: test if a monotone distribution is uniform

Rubinfeld & Servedio’05:

Testing if a monotone distribution on n-dimensional binary cube is uniform:

• Can be done with \(O(n \log(1/\epsilon)/\epsilon^2)\) samples
• Requires \(\Omega(n/\log^2 n)\) samples
Rubinfeld & Servedio’05:
• Testing monotone distributions for uniformity

\(\mathbf{D} : \) distribution on n-dimensional cube; \(\mathbf{D} : \{0,1\}^n \rightarrow \mathbb{R} \)

\(x, y \in \{0,1\}^n, x \preceq y \iff \forall i: x_i \leq y_i \)

\(\mathbf{D} \) is monotone if \(x \preceq y \Rightarrow \Pr[x] \leq \Pr[y] \)

Goal: test if a monotone distribution is uniform

\(\mathbf{D} : \) distribution on n-dimensional cube; density function \(f : [0,1]^n \rightarrow \mathbb{R} \)

\(x, y \in [0,1]^n, x \preceq y \iff \forall i: x_i \leq y_i \)

\(\mathbf{D} \) is monotone if \(x \preceq y \Rightarrow f(x) \leq f(y) \)
Rubinfeld & Servedio’05:
Testing if a monotone distribution on n-dimensional binary cube is uniform:
• Can be done with $O(n \log(1/\epsilon)/\epsilon^2)$ samples
• Requires $\Omega(n/\log^2 n)$ samples
D is ϵ-far from uniform if

$$\frac{1}{2} \int_{x \in \Omega} |f(x) - 1| dx \geq \epsilon$$

To test uniformity, we need to characterize monotone distributions that are ϵ-far from uniform.

On the high level:
- we follow approach of Rubinfeld & Servedio’05;
- details are quite different
Testing monotone distributions for uniformity

D is ϵ-far from uniform if

$$\frac{1}{2} \int_{x \in \Omega} |f(x) - 1| dx \geq \epsilon$$

Key Technical Lemma:

Let $g: [0,1]^n \rightarrow \mathbb{R}$ be a monotone function with $\int x \ g(x) \ dx = 0$ then

$$\int x \cdot g(x) dx \geq \frac{1}{4} \int |g(x)| dx$$

Key Lemma:

If D is a monotone distribution on $[0,1]^n$ with density function f and which is ϵ-far from uniform then

$$E_f[\|x\|_1] = \int x \cdot f(x) dx \geq \frac{n}{2} + \frac{\epsilon}{2}$$
Key Lemma:
If D is a monotone distribution on $[0,1]^n$ with density function f and which is ϵ-far from uniform then

$$E_f[\|x\|_1] = \int_x \|x\|_1 \cdot f(x) dx \geq \frac{n}{2} + \frac{\epsilon}{2}$$

Uniform distribution:
If D is uniform on $[0,1]^n$ with density function f then

$$E_f[\|x\|_1] = \int_x \|x\|_1 \cdot f(x) dx = \frac{n}{2}$$
Key Lemma:
If D is a monotone distribution on $[0,1]^n$ with density function f and which is ϵ-far from uniform then

\[E_f[\|x\|_1] = \int_x \|x\|_1 \cdot f(x) dx \geq \frac{n}{2} + \frac{\epsilon}{2} \]

\[s = \frac{cn}{\epsilon^2} \]

Repeat 20 times

 Draw a sample $S=(x_1, \ldots, x_s)$ from $[0,1]^n$

 If $\sum_i \|x_i\|_1 \geq s \left(\frac{n}{2} + \frac{\epsilon}{4} \right)$ then REJECT and exit

ACCEPT
Testing monotone distributions for uniformity

Theorem:
The algorithm below tests if D is uniform. Its complexity is $O(n/\epsilon^2)$.

Slightly better bound than the one by RS'05

$s = cn/\epsilon^2$
Repeat 20 times
 Draw a sample $S=(x_1,...,x_s)$ from $[0,1]^n$
 If $\sum_i ||x_i||_1 \geq s (n/2+\epsilon/4)$ then REJECT and exit
ACCEPT
Testing monotone distributions for uniformity

s = cn/\epsilon^2

Repeat 20 times

Draw a sample S=(x_1,...,x_s) from [0,1]^n

If \sum_i \|x_i\|_1 \geq s(n/2+\epsilon/4) then REJECT and exit

ACCEPT

Lemma 1: If D is uniform then
Pr[\sum_i \|x_i\|_1 \geq s(n/2+\epsilon/4)] \leq 0.01

Easy application of Chernoff bound

Lemma 2: If D is \epsilon-far from uniform then
Pr[\sum_i \|x_i\|_1 < s(n/2+\epsilon/4)] \leq 12/13

By Key Lemma + Feige lemma
Testing monotone distributions for uniformity

$s = cn/\epsilon^2$
Repeat 20 times

Draw a sample $S=(x_1,\ldots,x_s)$ from $[0,1]^n$

If $\sum_i ||x_i||_1 \geq s \left(n/2+\epsilon/4\right)$ then REJECT and exit

Lemma 2: If D is ϵ-far from uniform then
\[\Pr[\sum_i ||x_i||_1 < s(n/2+\epsilon/4)] \leq 12/13 \]

Proof:

D is ϵ-far from uniform \Rightarrow $E[\sum_i ||x_i||_1] \geq s(n+\epsilon)/2$

Markov inequality:
\[\Pr[\sum_i ||x_i||_1 < s(n/2+\epsilon/4)] \geq 1/O(\epsilon) \]

Weak Feige’s lemma: Y_1, \ldots, Y_s independent r.v., $Y_i \geq 0$, $E[Y_i \leq 1] \Rightarrow$
\[\Pr[\sum_i Y_i < s + 1/12] \geq 1/13 \]

Choose $Y_i = 2-2||x_i||_1/(n+\epsilon)$

Then, Feige’s lemma yields the desired claim
Testing monotone distributions for uniformity

\[s = \frac{cn}{\epsilon^2} \]

Repeat 20 times

Draw a sample \(S = (x_1, \ldots, x_s) \) from \([0,1]^n\)

If \(\sum_i ||x_i||_1 \geq s \left(\frac{n}{2} + \frac{\epsilon}{4} \right) \) then REJECT and exit

ACCEPT

Lemma 2: If \(D \) is \(\epsilon \)-far from uniform then

\[\Pr[\sum_i ||x_i||_1 < s(n/2+\epsilon/4)] \leq \frac{12}{13} \]

Proof:

D is \(\epsilon \)-far from uniform \(\Rightarrow \) \(E[\sum_i ||x_i||_1] \geq s(n+\epsilon)/2 \)

Feige’s lemma: \(Y_1, \ldots, Y_s \) independent r.v., \(Y_i \geq 0, E[Y_i \leq 1] \)

\[\Pr[\sum_i Y_i < s + 1/12] \geq \frac{1}{13} \]

Choose \(Y_i = 2-2||x_i||_1/(n+\epsilon) \)

Then, Feige’s lemma yields the desired claim
Testing monotone distributions for uniformity

Key Lemma:
If D is a monotone distribution on $[0,1]^n$ with density function f and which is ϵ-far from uniform then

$$E_f[\|x\|_1] = \int_x \|x\|_1 \cdot f(x) dx \geq \frac{n}{2} + \frac{\epsilon}{2}$$

$s = cn/\epsilon^2$

Repeat 20 times

Draw a sample $S=(x_1,\ldots,x_s)$ from $[0,1]^n$

If $\sum_i \|x_i\|_1 \geq s \left(\frac{n}{2} + \frac{\epsilon}{4}\right)$ then REJECT and exit

ACCEPT
Testing monotone distributions for uniformity

Key Lemma:
If D is a monotone distribution on $[0,1]^n$ with density function f and which is ε-far from uniform then

$$E_f[\|x\|_1] = \int_x \|x\|_1 \cdot f(x) dx \geq \frac{n}{2} + \frac{\varepsilon}{2}$$

Key Technical Lemma:
Let $g:[0,1]^n \rightarrow \mathbb{R}$ be a monotone function with $\int_x g(x) dx = 0$ then

$$\int_x \|x\|_1 \cdot g(x) dx \geq \frac{1}{4} \int_x |g(x)| dx$$
Key Technical Lemma:

Let \(g: [0,1]^n \to \mathbb{R} \) be a monotone function with \(\int g(x) \, dx = 0 \) then

\[
\int_x ||x||_1 \cdot g(x) \, dx \geq \frac{1}{4} \int_x |g(x)| \, dx
\]

Why such a bound:

Tight for \(g(x) = \text{sgn}(x_1 - \frac{1}{2}) \)

\[
\int_{x: x_1 > \frac{1}{2}} ||x||_1 \cdot g(x) \, dx = \frac{1}{2} \int_{x: x_1 > \frac{1}{2}} (x_1 + \ldots + x_n) \, dx = \frac{1}{2} \left(\frac{3}{4} + \frac{1}{2} + \ldots + \frac{1}{2} \right) \, dx = \frac{n+1}{4}.
\]

Similarly,

\[
\int_{x: x_1 < \frac{1}{2}} ||x||_1 \cdot g(x) \, dx = \frac{1}{2} \left(\frac{1}{4} + \frac{1}{2} + \ldots + \frac{1}{2} \right) = \frac{n - 1}{8},
\]

and hence,

\[
\int_x ||x||_1 \cdot g(x) \, dx = \int_{x: x_1 > \frac{1}{2}} ||x||_1 \cdot g(x) \, dx - \int_{x: x_1 < \frac{1}{2}} ||x||_1 \cdot g(x) \, dx = \frac{1}{4} = \frac{1}{4} \cdot \int_x |g(x)| \, dx.
\]
Key Technical Lemma:

Let \(g: [0,1]^n \to \mathbb{R} \) be a monotone function with \(\int_x g(x) \, dx = 0 \) then

\[
\int_x \|x\|_1 \cdot g(x) \, dx \geq \frac{1}{4} \int_x |g(x)| \, dx
\]
Let $P = \{x : g(x) \geq 0\}$ and $N = \{x : g(x) < 0\}$. Consider:

$$
\int_{x \in N} \int_{y \in P} |g(x) - g(y)| \, dy \, dx .
$$

For $g(x) < 0 \leq g(y)$, we have $|g(x) - g(y)| = |g(x)| + |g(y)|$.

Moreover $\int_{x \in N} |g(x)| \, dx = \int_{y \in P} |g(y)| \, dy = \frac{1}{2} \int_{x} |g(x)| \, dx$.

Hence:

$$
\int_{x \in N} \int_{y \in P} (|g(x)| + |g(y)|) = \int_{y \in P} \int_{x \in N} |g(x)| + \int_{x \in N} \int_{y \in P} |g(y)|
$$

$$
= \frac{1}{2} \int_{y \in P} \int_{x} |g(x)| + \frac{1}{2} \int_{x \in N} \int_{y} |g(y)| = \frac{1}{2} \int_{y} \int_{x} |g(x)| = \frac{1}{2} \int_{x} |g(x)| .
$$

Since every pair (x, y) can satisfy at most one of the conditions $(x, y) \in P \times N$ and $(x, y) \in N \times P$, we obtain:

$$
\int_{x \in N} \int_{y \in P} |g(x) - g(y)| \, dy \, dx \leq \frac{1}{2} \int \int_{x,y} |g(x) - g(y)| \, dy \, dx .
$$

Hence:

$$
\frac{1}{2} \int_{x} |g(x)| \, dx = \int_{x \in N} \int_{y \in P} |g(x) - g(y)| \, dx \, dy \leq \frac{1}{2} \int \int_{x,y} |g(x) - g(y)| \, dx \, dy .
$$
Testing monotone distributions for uniformity

Reductions via discrete cubes:

Let $D(\{0,1\}^n)$ be the set of all main diagonals of discrete cube $\{0,1\}^n$:

$$D(\{0,1\}^n) = \{(x, y) \in \{0,1\}^n \times \{0,1\}^n : x_i = 1 - y_i \text{ for every } i\}$$

Let $E_i(\{0,1\}^n)$ be the set of all edges in the ith direction:

$$E_i(\{0,1\}^n) = \{(x, y) \in \{0,1\}^n \times \{0,1\}^n : x_i = 1 - y_i \text{ and } x_j = y_j \text{ for every } j \neq i\}$$

Let $E(\{0,1\}^n) = \bigcup_i E_i(\{0,1\}^n)$.

For any function $g : \{0, 1\}^n \to \mathbb{R}$:

$$\sum_{(x,y) \in D(\{0,1\}^n)} |g(x) - g(y)| \leq \sum_{(x,y) \in E(\{0,1\}^n)} |g(x) - g(y)|.$$
For any $x \preceq y$, define a discrete cube $K_{x,y}$ by the affine transformation sending x to 0^n and y to 1^n

Let $D(x,y)$, $E_i(x,y)$, and $E(x,y)$ denote the diagonals and edges of $K_{x,y}$

By the previous claim, for any function $g:[0,1]^n \to \mathbb{R}$ and any $x \preceq y$:

$$\sum_{(u,v) \in D(x,y)} |g(u) - g(v)| \leq \sum_{(u,v) \in E(x,y)} |g(u) - g(v)| \leq \sum_{i=1}^{n} \sum_{(u,v) \in E_i(x,y)} |g(u) - g(v)| .$$

For any monotone function $g:[0,1]^n \to \mathbb{R}$ and any $i = 1, \ldots, n$ we have

$$\int_{x \preceq y} \left(\sum_{(u,v) \in E_i(x,y)} |g(u) - g(v)| \right) \, dx \, dy = 2 \int_{x} (2x_i - 1)g(x) \, dx$$

Proof by induction on n.
By considering all the possible relative placements of x and y within $[0, 1]^n$ and splitting the domain accordingly, one can see that

\[
\int \int_{x,y} |g(x) - g(y)| \, dy \, dx = \int \int_{x \prec y} \left(\sum_{(u,v) \in D(x,y)} |g(u) - g(v)| \right) \, dy \, dx.
\]
Testing monotone distributions for uniformity

Key Technical Lemma:
Let \(g: [0, 1]^n \to \mathbb{R} \) be a monotone function with \(\int_{\mathbb{R}} g(x) \, dx = 0 \) then

\[
\int_{\mathbb{R}} \|x\|_1 \cdot g(x) \, dx \geq \frac{1}{4} \int_{\mathbb{R}} |g(x)| \, dx
\]

Key inequalities in the proof:
\[
\frac{1}{4} \int_{\mathbb{R}} |g(x)| \, dx \leq \frac{1}{4} \int_{\mathbb{R}} \int_{\mathbb{R}} |g(x) - g(y)| \, dx \, dy
\]
\[
\leq \int_{\mathbb{R}} \int_{\mathbb{R}} \left(\sum_{(u, v) \in D(x, y)} |g(u) - g(v)| \right) \, dx \, dy
\]
\[
\leq \frac{1}{2} \sum_{i=1}^{n} \int_{\mathbb{R}} \int_{\mathbb{R}} \left(\sum_{(u, v) \in E_i(x, y)} |g(u) - g(v)| \right) \, dx \, dy
\]
\[
\leq \frac{1}{2} \sum_{i=1}^{n} \int_{\mathbb{R}} (2x_i - 1)g(x) \, dx
\]
\[
\leq \int_{\mathbb{R}} \|x\|_1 g(x) \, dx
\]
Rubinfeld & Servedio’05:
Testing if a monotone distribution on n-dimensional binary cube is uniform:
• Can be done with $O(n \log(1/\epsilon)/\epsilon^2)$ samples
• Requires $\Omega(n/\log^2 n)$ samples

Here:
Testing if a monotone distribution on n-dimensional continuous cube is uniform:
• Can be done with $O(n/\epsilon^2)$ samples
• (Requires $\Omega(n/\log^2 n)$ samples)
Can be easily extended to $\{0,1,\ldots,k\}^n$ cubes
Conclusions

• Testing continuous distributions or distribution on infinite/uncountable support is different from testing discrete distributions
 – Continuous distributions are harder

• Challenge: understand when it’s possible to test
 – Usually some additional conditions are to be imposed

• Tight(er) bounds?
Conclusions

• Continuous distributions are harder
• Is the L_1-norm the right one?
 – It doesn’t work well for continuous distributions
• Earth mover norm?
 – How much mass have to be moved and how far to obtain a given distribution
 – Testing uniformity on $[0,1]$ can be done in time $f(1/\epsilon)$