Lecture 19
Approximation Algorithms (part four)
Asymptotic Polynomial Time Approximation Schemes

Benjamin Sach
Approximation Algorithms Recap

A polynomial time algorithm A is an α-approximation for problem P if, it always outputs a solution s with

$$\frac{\text{Opt}}{\alpha} \leq s \leq \text{Opt} \quad \text{(for a maximisation problem)}$$

$$\text{Opt} \leq s \leq \alpha \cdot \text{Opt} \quad \text{(for a minimisation problem)}$$

A poly-time approximation scheme (PTAS) is a family of algorithms:

For any constant $\epsilon > 0$, A_ϵ is a $(1 + \epsilon)$-approximation for P

- A PTAS can have A_ϵ which takes $O(n^{1/\epsilon})$ time
 - which is polynomial in n (for any constant ϵ)

- It is a (fully) FPTAS if A_ϵ takes time polynomial in both n and $1/\epsilon$ i.e. $O((n/\epsilon)^c)$
Approximation Algorithms Recap

A polynomial time algorithm A is an α-approximation for problem P if, it always outputs a solution s with

$$\frac{\text{Opt}}{\alpha} \leq s \leq \text{Opt} \quad \text{(for a maximisation problem)}$$

$$\text{Opt} \leq s \leq \alpha \cdot \text{Opt} \quad \text{(for a minimisation problem)}$$

- Various c-approximations with constant c

- We saw an FPTAS for SUBSETSUM

A poly-time approximation scheme (PTAS) is a family of algorithms:

For any constant $\epsilon > 0$, A_ϵ is a $(1 + \epsilon)$-approximation for P

- A PTAS can have A_ϵ which takes $O(n^{1/\epsilon})$ time
 - which is polynomial in n (for any constant ϵ)

- It is a (fully) FPTAS if A_ϵ takes time polynomial in both n and $1/\epsilon$ i.e. $O((n/\epsilon)^c)$
The **SUBSET Sum** problem

\[t = 12 \]
The **SUBSET**Sum problem

- Let S be a (multi) set of integers and t be a positive integer

 here $S = \{4, 2, 4, 7, 2, 3\}$ and $t = 12$
Let S be a (multi) set of integers and t be a positive integer. Here $S = \{4, 2, 4, 7, 2, 3\}$ and $t = 12$.

Decision Problem Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = t$?
The SubsetSum problem

- Let S be a (multi) set of integers and t be a positive integer

> here $S = \{4, 2, 4, 7, 2, 3\}$ and $t = 12$

Decision Problem Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = t$?

where $\text{SIZE}(S') = \sum_{a \in S'} a$
The **SubsetSum** problem

- Let S be a (multi) set of integers and t be a positive integer

 Here $S = \{4, 2, 4, 7, 2, 3\}$ and $t = 12$

Decision Problem Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = t$?

where $\text{SIZE}(S') = \sum_{a \in S'} a$
The **SubsetSum** problem

- Let S be a (multi) set of integers and t be a positive integer

 $$S = \{4, 2, 4, 7, 2, 3\} \text{ and } t = 12$$

Decision Problem Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = t$?

where $\text{SIZE}(S') = \sum_{a \in S'} a$
The **SubsetSum** problem

- Let S be a (multi) set of integers and t be a positive integer

 here $S = \{4, 2, 4, 7, 2, 3\}$ and $t = 12$

Decision Problem Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = t$?

 where $\text{SIZE}(S') = \sum_{a \in S'} a$

The decision version is **NP**-complete

(last lecture we discussed the **NP**-hard optimisation version)
The **PARTITION** problem

- The **PARTITION** problem is a special case of **SUBSET SUM**

![Image of the PARTITION problem with numbers 4, 2, 4, 7, 2, 3]
The **PARTITION** problem

- The **PARTITION** problem is a special case of **SUBSET SUM**
• The **PARTITION** problem is a special case of **SUBSETSUM**

• Let S be a (multi) set of integers
The **PARTITION** problem

- The **PARTITION** problem is a special case of **SUBSET SUM**
- Let S be a (multi) set of integers
 - but t is always half the sum of item sizes
The PARTITION problem

- The PARTITION problem is a special case of SUBSETSUM
- Let S be a (multi) set of integers
 but t is always half the sum of item sizes

$4 \ 2 \ 4 \ 7 \ 2 \ 3$

$t = 11$
The **PARTITION** problem

- The **PARTITION** problem is a special case of **SUBSETSUM**

- Let S be a (multi) set of integers

 but t is always half the sum of item sizes

 $$t = \frac{\text{SIZE}(S)}{2} = \sum_{a \in S'} \frac{a}{2}$$
The **PARTITION** problem

- The **PARTITION** problem is a special case of **SUBSET SUM**

- Let S be a (multi) set of integers

 but t is always half the sum of item sizes

 \[t = \frac{\text{SIZE}(S)}{2} = \sum_{a \in S'} \frac{a}{2} \]

Decision Problem Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = \frac{\text{SIZE}(S)}{2}$?
The **PARTITION** problem

- The **PARTITION** problem is a special case of **SUBSETSUM**

- Let S be a (multi) set of integers

 but t is always half the sum of item sizes

 \[
 t = \frac{\text{SIZE}(S)}{2} = \sum_{a \in S'} \frac{a}{2}
 \]

Decision Problem Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = \frac{\text{SIZE}(S)}{2}$?
The \textsc{Partition} problem

- The \textsc{Partition} problem is a special case of \textsc{SubsetSum}
- Let S be a (multi) set of integers
 but t is always half the sum of item sizes
 \[t = \text{SIZE}(S)/2 = \sum_{a \in S'} \frac{a}{2} \]

\textbf{Decision Problem} Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = \text{SIZE}(S)/2$?
The **PARTITION** problem

- The **PARTITION** problem is a special case of **SubsetSum**

- Let S be a (multi) set of integers

 but t is always half the sum of item sizes

 \[t = \text{SIZE}(S)/2 = \sum_{a \in S'} \frac{a}{2} \]

Decision Problem Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = \text{SIZE}(S)/2$?
The **PARTITION** problem

- The **PARTITION** problem is a special case of **SUBSETSUM**

- Let S be a (multi) set of integers

 but t is always half the sum of item sizes

 $$ t = \frac{\text{SIZE}(S)}{2} = \sum_{a \in S'} \frac{a}{2} $$

Decision Problem Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = \frac{\text{SIZE}(S)}{2}$?
The **PARTITION** problem

- The **PARTITION** problem is a special case of **SUBSETSUM**

- Let S be a (multi) set of integers

 but t is always half the sum of item sizes

 $$t = \text{SIZE}(S)/2 = \sum_{a \in S'} \frac{a}{2}$$

Decision Problem Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = \text{SIZE}(S)/2$?

Alternatively... Can we pack S into two bins of size $\text{SIZE}(S)/2$?
The **PARTITION** problem

- The **PARTITION** problem is a special case of **SUBSETSUM**

- Let S be a (multi) set of integers

 but t is always half the sum of item sizes

 $$t = \text{SIZE}(S)/2 = \sum_{a \in S'} \frac{a}{2}$$

Decision Problem Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = \text{SIZE}(S)/2$?

Alternatively... Can we pack S into two bins of size $\text{SIZE}(S)/2$?
The **PARTITION** problem

- The **PARTITION** problem is a special case of **SUBSETSUM**

- Let S be a (multi) set of integers
 but t is always half the sum of item sizes
 \[t = \frac{\text{SIZE}(S)}{2} = \sum_{a \in S'} \frac{a}{2} \]

Decision Problem Is there a subset, $S' \subseteq S$ with $\text{SIZE}(S') = \frac{\text{SIZE}(S)}{2}$?

Alternatively... Can we pack S into two bins of size $\frac{\text{SIZE}(S)}{2}$?
The **PARTITION** problem

- The **PARTITION** problem is a special case of **SUBSETSUM**

- Let \(S \) be a (multi) set of integers
 but \(t \) is always half the sum of item sizes

\[
t = \frac{\text{SIZE}(S)}{2} = \sum_{a \in S'} \frac{a}{2}
\]

Decision Problem Is there a subset, \(S' \subseteq S \) with \(\text{SIZE}(S') = \frac{\text{SIZE}(S)}{2} \)?

Alternatively... Can we pack \(S \) into two bins of size \(\frac{\text{SIZE}(S)}{2} \)?

The **PARTITION** problem is also **NP**-complete.
PARTITION and BINPACKING

Key Idea Solve the PARTITION problem by approximating BINPACKING
PARTITION and BINPACKING

Key Idea Solve the PARTITION problem by approximating BINPACKING

4 2 4 7 2 3
Key Idea Solve the **PARTITION** problem by approximating **BINPACKING**

- Convert the **PARTITION** instance into a **BINPACKING** problem by dividing all item and bin sizes by $t = \text{SIZE}(S)/2$
PARTITION and **BinPacking**

Key Idea Solve the **PARTITION** problem by approximating **BinPacking**

- Convert the **PARTITION** instance into a **BinPacking** problem by dividing all item and bin sizes by \(t = \frac{\text{SIZE}(S)}{2} \)
PARTITION and **BinPacking**

Key Idea Solve the **PARTITION** problem by approximating **BinPacking**

- Convert the **PARTITION** instance into a **BinPacking** problem by dividing all item and bin sizes by $t = \text{SIZE}(S)/2$
- Now all items are have size at most 1 and the bins have size 1
PARTITION and BINPACKING

Key Idea Solve the PARTITION problem by approximating BINPACKING

- Convert the PARTITION instance into a BINPACKING problem by dividing all item and bin sizes by $t = \text{SIZE}(S)/2$
- Now all items are have size at most 1 and the bins have size 1
- The optimal number of bins Opt_b is 2 iff the answer to the PARTITION instance is ‘yes’
PARTITION and **BinPacking**

Key Idea Solve the **PARTITION** problem by approximating **BinPacking**

- Convert the **PARTITION** instance into a **BinPacking** problem by dividing all item and bin sizes by \(t = \text{SIZE}(S)/2 \)
- Now all items are have size at most 1 and the bins have size 1
- The optimal number of bins \(\text{Opt}_b \) is 2 iff the answer to the **PARTITION** instance is ‘yes’
- What does this tell us about approximating **BinPacking**?
PARTITION and BINPACKING

Key Idea Solve the **PARTITION** problem by approximating **BINPACKING**

- Assume A is an α-approximation for **BINPACKING** with $\alpha < 3/2$
PARTITION and BINPACKING

Key Idea Solve the PARTITION problem by approximating BINPACKING

- Assume A is an α-approximation for BINPACKING with $\alpha < \frac{3}{2}$

 A outputs a solution with $\text{Opt}_b \leq s \leq \alpha \cdot \text{Opt}_b$
PARTITION and BINPACKING

Key Idea Solve the PARTITION problem by approximating BINPACKING

- Assume A is an α-approximation for BINPACKING with $\alpha < 3/2$
 - A outputs a solution with $\text{Opt}_b \leq s \leq \alpha \cdot \text{Opt}_b$
- If $\text{Opt}_b > 2$ then $s > 2$
PARTITION and **BinPacking**

Key Idea Solve the **PARTITION** problem by approximating **BinPacking**

- Assume A is an α-approximation for **BinPacking** with $\alpha < \frac{3}{2}$

 A outputs a solution with $\text{Opt}_b \leq s \leq \alpha \cdot \text{Opt}_b$

- If $\text{Opt}_b > 2$ then $s > 2$

- If $\text{Opt}_b = 2$ then $2 \leq s \leq \alpha \cdot \text{Opt}_b < \left(\frac{3}{2}\right) \cdot \text{Opt}_b = 3$
PARTITION and BINPACKING

Key Idea Solve the PARTITION problem by approximating BINPACKING

- Assume A is an α-approximation for BINPACKING with $\alpha < 3/2$

 A outputs a solution with $\text{Opt}_b \leq s \leq \alpha \cdot \text{Opt}_b$

- If $\text{Opt}_b > 2$ then $s > 2$

- If $\text{Opt}_b = 2$ then $2 \leq s \leq \alpha \cdot \text{Opt}_b < (3/2) \cdot \text{Opt}_b = 3$
PARTITION and BINPACKING

Key Idea Solve the PARTITION problem by approximating BINPACKING

- Assume A is an α-approximation for BINPACKING with $\alpha < 3/2$

 A outputs a solution with $\text{Opt}_b \leq s \leq \alpha \cdot \text{Opt}_b$

- If $\text{Opt}_b > 2$ then $s > 2$

- If $\text{Opt}_b = 2$ then $2 \leq s \leq \alpha \cdot \text{Opt}_b < (3/2) \cdot \text{Opt}_b = 3$ so $s = 2$
Key Idea Solve the **PARTITION** problem by approximating **BINPACKING**

- Assume A is an α-approximation for **BINPACKING** with $\alpha < 3/2$

 A outputs a solution with $\text{Opt}_b \leq s \leq \alpha \cdot \text{Opt}_b$

- If $\text{Opt}_b > 2$ then $s > 2$

- If $\text{Opt}_b = 2$ then $2 \leq s \leq \alpha \cdot \text{Opt}_b < (3/2) \cdot \text{Opt}_b = 3$ so $s = 2$

- So A can solve the **NP**-complete **PARTITION** problem in polynomial time!
PARTITION and BINPACKING

Key Idea Solve the **PARTITION** problem by approximating **BINPACKING**

- Assume A is an α-approximation for **BINPACKING** with $\alpha < 3/2$

 A outputs a solution with $\text{Opt}_b \leq s \leq \alpha \cdot \text{Opt}_b$

- If $\text{Opt}_b > 2$ then $s > 2$

- If $\text{Opt}_b = 2$ then $2 \leq s \leq \alpha \cdot \text{Opt}_b < (3/2) \cdot \text{Opt}_b = 3$ so $s = 2$

- So A can solve the **NP**-complete **PARTITION** problem in polynomial time!
 which implies that $P = NP$
Key Idea Solve the **PARTITION** problem by approximating **BINPACKING**

Lemma There is no α-approximation for **BINPACKING** with $\alpha < \frac{3}{2}$ unless $P = NP$
PARTITION and BINPACKING

Key Idea: Solve the PARTITION problem by approximating BINPACKING.

Lemma: There is no α-approximation for BINPACKING with $\alpha < \frac{3}{2}$ unless $P = NP$.

- We saw that First Fit Decreasing (FFD) is a $\frac{3}{2}$-approximation.
PARTITION and BINPACKING

Key Idea Solve the **PARTITION** problem by approximating **BINPACKING**

![Diagram showing fractions and bins]

Lemma There is no α-approximation for **BINPACKING** with $\alpha < \frac{3}{2}$ unless $P = NP$

- We saw that First Fit Decreasing (FFD) is a $\frac{3}{2}$-approximation

 so this is the best we can do?
PARTITION and BINPACKING

Key Idea Solve the PARTITION problem by approximating BINPACKING

Lemma There is no α-approximation for BINPACKING with $\alpha < 3/2$ unless $P = NP$

- We saw that First Fit Decreasing (FFD) is a $3/2$-approximation

 so this is the best we can do?

- In fact, FFD gives a solution with

$$\text{Opt}_b \leq s \leq \frac{11}{9} \cdot \text{Opt}_b + 1$$
An asymptotic polynomial time approximation scheme (APTAS) for problem P is a family of algorithms:

There is a constant c such that

For any constant $\epsilon > 0$, A_ϵ runs in poly-time and outputs a solution s with $\text{Opt} \leq s \leq (1 + \epsilon) \cdot \text{Opt} + c$
An asymptotic polynomial time approximation scheme (APTAS) for problem P is a family of algorithms:

There is a constant c such that

For any constant $\epsilon > 0$, A_ϵ runs in poly-time and outputs a solution s with $\text{Opt} \leq s \leq (1 + \epsilon) \cdot \text{Opt} + c$

- This is the minimisation version of the definition
An asymptotic polynomial time approximation scheme (APTAS) for problem P is a family of algorithms:

There is a constant c such that

For any constant $\epsilon > 0$, A_ϵ runs in poly-time and outputs a solution s with $\text{Opt} \leq s \leq (1 + \epsilon) \cdot \text{Opt} + c$

- This is the minimisation version of the definition
- An APTAS does not have to have running time polynomial in $1/\epsilon$
An asymptotic polynomial time approximation scheme (APTAS) for problem \(P \) is a family of algorithms:

There is a constant \(c \) such that

For any constant \(\epsilon > 0 \), \(A_\epsilon \) runs in poly-time

and outputs a solution \(s \) with \(\text{Opt} \leq s \leq (1 + \epsilon) \cdot \text{Opt} + c \)

- This is the minimisation version of the definition
- An APTAS does not have to have running time polynomial in \(1/\epsilon \)
- An asymptotic fully PTAS (AFPTAS) is also polynomial in \(1/\epsilon \)
An asymptotic polynomial time approximation scheme (APTAS) for problem \(P \) is a family of algorithms: There is a constant \(c \) such that for any constant \(\epsilon > 0 \), \(A_\epsilon \) runs in poly-time and outputs a solution \(s \) with \(\text{Opt} \leq s \leq (1 + \epsilon) \cdot \text{Opt} + c \).

- This is the minimisation version of the definition
- An APTAS does not have to have running time polynomial in \(1/\epsilon \)
- An asymptotic fully PTAS (AFPTAS) is also polynomial in \(1/\epsilon \)
- We will see an APTAS for BinPacking
A special case of BinPacking

We will now see a special case of BinPacking which we can solve in polynomial time.
A special case of **BinPacking**

We will now see a special case of **BinPacking** which we can solve in polynomial time.

- We have n items but
A special case of BinPacking

We will now see a special case of BinPacking which we can solve in polynomial time.

- We have n items but
 - There are c_s (a constant) number of different item sizes
A special case of **BinPacking**

We will now see a special case of **BinPacking** which we can solve in polynomial time.

- We have n items but
 - There are c_s (a constant) number of different item sizes
 - At most c_b (another constant) items fit in each bin
A special case of BinPacking

We will now see a special case of BinPacking which we can solve in polynomial time.

We have n items but

- There are c_s (a constant) number of different item sizes
- At most c_b (another constant) items fit in each bin

Here $c_s = 3$ and $c_b = 2$.
A special case of BinPacking

We will now see a special case of BinPacking which we can solve in polynomial time

Here \(c_s = 3 \) and \(c_b = 2 \)

- We have \(n \) items but
 - There are \(c_s \) (a constant) number of different item sizes
 - At most \(c_b \) (another constant) items fit in each bin

How many different ways are there to fill a bin?
A special case of BinPacking

- We can describe any packing of items into a single bin by its *type*.

<table>
<thead>
<tr>
<th>Type:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>4/8</td>
<td></td>
<td></td>
<td>7/8</td>
<td></td>
<td>3/8</td>
<td></td>
<td>4/8</td>
</tr>
<tr>
<td>4/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/8</td>
<td></td>
<td>4/8</td>
</tr>
</tbody>
</table>
A special case of BinPacking

- We can describe any packing of items into a single bin by its *type*.
- The *type* of a packed bin determines how many of each item is packed.
We can describe any packing of items into a single bin by its type. The type of a packed bin determines how many of each item is packed.

We ignore rearrangement of items.
A special case of **BINPACKING**

- We can describe any packing of items into a single bin by its **type**
- The **type** of a packed bin determines how many of each item is packed

We ignore rearrangement of items
A special case of BinPacking

- We can describe any packing of items into a single bin by its type.
- The type of a packed bin determines how many of each item is packed. We ignore rearrangement of items.
We can describe any packing of items into a single bin by its type.

The type of a packed bin determines how many of each item is packed.

We ignore rearrangement of items.

How many types can there be?
We can describe any packing of items into a single bin by its type. The type of a packed bin determines how many of each item is packed. We ignore rearrangement of items.

How many types can there be?

There are between 0 and c_b items of any one size.
We can describe any packing of items into a single bin by its type. The type of a packed bin determines how many of each item is packed, and we ignore rearrangement of items. How many types can there be? There are between 0 and \(c_b \) items of any one size. There are \(c_s \) different sizes.
A special case of **BINPACKING**

- We can describe any packing of items into a single bin by its *type*.
- The *type* of a packed bin determines how many of each item is packed.

 we ignore rearrangement of items

- How many types can there be?

 There are between 0 and c_b items of any one size.

 There are c_s different sizes.

 The number of types \leq
We can describe any packing of items into a single bin by its \textit{type}.

The \textit{type} of a packed bin determines how many of each item is packed.

\textit{We ignore rearrangement of items.}

How many types can there be?

There are between 0 and c_b items of any one size.

There are c_s different sizes.

The number of types $\leq (c_b + 1) \times (c_b + 1) \times \ldots \times (c_b + 1)$.
We can describe any packing of items into a single bin by its type.
The type of a packed bin determines how many of each item is packed.

How many types can there be?

There are between 0 and c_b items of any one size.

There are c_s different sizes.

The number of types $\leq (c_b + 1) \times (c_b + 1) \times \ldots \times (c_b + 1) = (c_b + 1)^{c_s}$
A special case of BinPacking

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.
We can describe any packing S into $b \leq n$ bins by the number of bins of each type.
A special case of \textsc{BinPacking}

\begin{itemize}
\item We can describe any packing S into $b \leq n$ bins by the number of bins of each type.
\end{itemize}

we ignore rearrangement of bins
A special case of **BinPacking**

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.

 - We ignore rearrangement of bins.

- c_b items fit in each bin

- c_s diff. item sizes

- Type 1: 0
- Type 2: 0
- Type 3: 1
- Type 4: 2
- Type 5: 3
- Type 6: 1
- Type 7: 0
A special case of **BinPacking**

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.

- we ignore rearrangement of bins
A special case of **BinPacking**

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.

- How *different* packings can there be?
A special case of **BinPacking**

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.

 - **we ignore rearrangement of bins**

- How *different* packings can there be?

 There are between 0 and n bins of any type.
A special case of **BinPacking**

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type. *We ignore rearrangement of bins.*

- How different packings can there be?

 There are between 0 and n bins of any type.
 There are at most $(c_b + 1)^{c_s}$ different types.
A special case of **BINPACKING**

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.
- We ignore rearrangement of bins.

- How different packings can there be?
 - There are between 0 and n bins of any type.
 - There are at most $(c_b + 1)^{c_s}$ different types.
 - Number of packings \leq
We can describe any packing S into $b \leq n$ bins by the number of bins of each type we ignore rearrangement of bins.

How different packings can there be?

There are between 0 and n bins of any type.
There are at most $(c_b + 1)^{c_s}$ different types.

Number of packings $\leq (n + 1) \times (n + 1) \times \ldots \times (n + 1)\overline{(c_b + 1)^{c_s}}$
A special case of **BINPACKING**

- **c_b** items fit in each bin
- **c_s** diff. item sizes

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.

 we ignore rearrangement of bins

- How *different* packings can there be?

 There are between 0 and n bins of any type.

 There are at most $(c_b + 1)^{c_s}$ different types.

 \[
 \text{number of packings} \leq (n + 1) \times (n + 1) \times \ldots \times (n + 1) = (n+1)^{(c_b+1)^{c_s}}
 \]

\[
= (c_b + 1)^{c_s}
\]
A special case of **BinPacking**

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.

<table>
<thead>
<tr>
<th>Items of Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/8</td>
<td>3/8</td>
</tr>
<tr>
<td>3/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/8</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/8</td>
</tr>
</tbody>
</table>

c_b items fit in each bin
c_s diff. item sizes

- $0 \times$ Type 1
- $0 \times$ Type 2
- $1 \times$ Type 3
- $2 \times$ Type 4
- $3 \times$ Type 5
- $1 \times$ Type 6
- $0 \times$ Type 7
A special case of **BinPacking**

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.
- However, not all these different packings are *valid*.
A special case of **BinPacking**

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.

- However, not all these different packings are **valid**. Many of them use too few or many items of a size.
A special case of **BinPacking**

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.
- However, not all these different packings are *valid*. Many of them use too few or many items of a size.
- We check each of the different packings to see if it is valid.
A special case of **BinPacking**

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.

- However, not all these different packings are **valid**. Many of them use too few or many items of a size.

- We check each of the different packings to see if it is valid and output the valid one which uses the fewest bins.
A special case of \textsc{BinPacking}

- We can describe any packing S into $b \leq n$ bins by the number of bins of each type.

- However, not all these different packings are valid. Many of them use too few or many items of a size.

- We check each of the different packings to see if it is valid and output the valid one which uses the fewest bins.

- This takes $O(n \cdot (n + 1)^{(c_b+1)c_s})$ time and exactly solves \textsc{BinPacking} (it outputs an optimal packing).
Towards an APTAS

The APTAS for BINPACKING will use a three step process:

Step 1 Remove all the small items

- Only a constant number of the remaining large items will fit into a single bin
- The small items will be packed after (greedily)

Step 2 Divide the items into groups

- Sizes of items in each group are then rounded up to match the size of the largest member
- This will leave a constant number of item sizes

Step 3 Use the poly-time algorithm for the remaining special case

the constants will depend on ϵ
Towards an APTAS

The APTAS for B\textsc{inpacking} will use a three step process:

\textbf{Step 1} Remove all the \textit{small} items

\begin{itemize}
 \item Only a constant number of the remaining large items will fit into a single bin
 \item The small items will be packed after (greedily)
\end{itemize}

\textbf{Step 2} Divide the items into groups

\begin{itemize}
 \item Sizes of items in each group are then rounded up to match the size of the largest member
 \item This will leave a constant number of item sizes
\end{itemize}

\textbf{Step 3} Use the poly-time algorithm for the remaining special case

the \textit{constants} will depend on ϵ
Remove the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon / 2$ into b bins, in *polynomial time* we can find a packing of *all items* in S which either uses:

$$b \text{ bins } \text{ or } (1 + \epsilon)\text{Opt} + 1 \text{ bins}$$
Removing the small items

Lemma Let $0 < \varepsilon < 1$. Given a packing of the items $a \in S$ with size $a > \varepsilon/2$ into b bins, in *polynomial time* we can find a packing of *all items* in S which either uses:

- b bins
- $(1 + \varepsilon)\text{Opt} + 1$ bins

- Take the packing of large items ($> \varepsilon/2$)
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in *polynomial time* we can find a packing of *all items* in S which either uses:

\[b \text{ bins} \quad \text{or} \quad (1 + \epsilon)\text{Opt} + 1 \text{ bins} \]

- Take the packing of large items ($> \epsilon/2$)
- Pack the small items ($\leq \epsilon/2$) on top of the large items greedily
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in *polynomial time* we can find a packing of *all items* in S which either uses:

$$b \text{ bins} \quad \text{or} \quad (1 + \epsilon)\text{Opt} + 1 \text{ bins}$$

- Take the packing of large items ($> \epsilon/2$)
- Pack the small items ($\leq \epsilon/2$) on top of the large items greedily
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in *polynomial time* we can find a packing of *all items* in S which either uses:

\[b \text{ bins} \quad \text{or} \quad (1 + \epsilon)\text{Opt} + 1 \text{ bins} \]

... anywhere you like - just but don’t use an extra bin unless you have to...

- Take the packing of large items ($> \epsilon/2$)
- Pack the small items ($\leq \epsilon/2$) on top of the large items greedily
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in polynomial time we can find a packing of all items in S which either uses:

$$b \text{ bins} \quad \text{or} \quad (1 + \epsilon)\text{Opt} + 1 \text{ bins}$$

- Take the packing of large items ($> \epsilon/2$)
- Pack the small items ($\leq \epsilon/2$) on top of the large items greedily
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in *polynomial time* we can find a packing of all items in S which either uses:

\[b \text{ bins} \quad \text{or} \quad (1 + \epsilon)\text{Opt} + 1 \text{ bins} \]

- Take the packing of large items ($> \epsilon/2$)
- Pack the small items ($\leq \epsilon/2$) on top of the large items greedily

Either: We don’t use any extra bins
or every bin (except possibly the last) is $1 - (\epsilon/2)$ full
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in *polynomial time* we can find a packing of *all items* in S which either uses:

\[b \text{ bins} \quad \text{or} \quad (1 + \epsilon)\text{Opt} + 1 \text{ bins} \]

- Take the packing of large items ($> \epsilon/2$)
- Pack the small items ($\leq \epsilon/2$) on top of the large items greedily

Either: We don’t use any extra bins

or every bin (except possibly the last) is $1 - (\epsilon/2)$ full
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in *polynomial time* we can find a packing of *all items* in S which either uses:

- b bins
- $(1 + \epsilon)\text{Opt} + 1$ bins

- Take the packing of large items ($> \epsilon/2$)
- Pack the small items ($\leq \epsilon/2$) on top of the large items greedily

Either: We don’t use any extra bins

or every bin (except possibly the last) is $1 - (\epsilon/2)$ full
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in polynomial time we can find a packing of all items in S which either uses:

- b bins
- $(1 + \epsilon)\text{Opt} + 1$ bins

- Take the packing of large items ($> \epsilon/2$)
- Pack the small items ($\leq \epsilon/2$) on top of the large items greedily

Either: We don’t use any extra bins

or every bin (except possibly the last) is $1 - (\epsilon/2)$ full
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in *polynomial time* we can find a packing of *all items* in S which either uses:

\[b \text{ bins} \quad \text{or} \quad (1 + \epsilon) \text{Opt} + 1 \text{ bins} \]

- small items don’t fit in here (so they are very well packed)
- Take the packing of large items ($> \epsilon/2$)
- Pack the small items ($\leq \epsilon/2$) on top of the large items greedily

Either: We don’t use any extra bins

or every bin (except possibly the last) is $1 - (\epsilon/2)$ full
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in polynomial time we can find a packing of all items in S which either uses:

b bins or $(1 + \epsilon) \text{Opt} + 1$ bins

- Take the packing of large items ($> \epsilon/2$)
- Pack the small items ($\leq \epsilon/2$) on top of the large items greedily

Either: We don’t use any extra bins

or every bin (except possibly the last) is $1 - (\epsilon/2)$ full
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in polynomial time we can find a packing of all items in S which either uses:

\[b \text{ bins} \quad \text{or} \quad (1 + \epsilon)\text{Opt} + 1 \text{ bins} \]

We can now ignore all the small items and focus on finding a good packing of the large items.
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in polynomial time we can find a packing of all items in S which either uses:

$$b \text{ bins} \quad \text{or} \quad (1 + \epsilon) \text{Opt} + 1 \text{ bins}$$

We can now ignore all the small items and focus on finding a good packing of the large items.

How many large items fit in a single bin?
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in polynomial time we can find a packing of all items in S which either uses:

$$b \text{ bins \ or \ } (1 + \epsilon)\text{Opt} + 1 \text{ bins}$$

We can now ignore all the small items and focus on finding a good packing of the large items.

How many large items fit in a single bin?

Each is larger than $\epsilon/2$...
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in *polynomial time* we can find a packing of all items in S which either uses:

b bins \hspace{1cm} or \hspace{1cm} (1 + \epsilon)\text{Opt} + 1$ bins

We can now ignore all the small items and focus on finding a good packing of the large items

How many large items fit in a single bin?

Each is larger than $\epsilon/2$. . .

so at most $2/\epsilon$
Removing the small items

Lemma Let $0 < \epsilon < 1$. Given a packing of the items $a \in S$ with size $a > \epsilon/2$ into b bins, in *polynomial time* we can find a packing of *all items* in S which either uses:

\[
b \text{ bins} \quad \text{or} \quad (1 + \epsilon) \text{Opt} + 1 \text{ bins}
\]

We can now ignore all the small items and focus on finding a good packing of the large items.

How many large items fit in a single bin?

Each is larger than $\epsilon/2$... so at most $2/\epsilon$ which is a constant :)
Reducing the number of item sizes

- We divide the items by size, into groups of size k

 the smallest group might contain fewer than k items
Reducing the number of item sizes

- We divide the items by size, into groups of size k

 the smallest group might contain fewer than k items

- We define a new set of items S' where each item is rounded up

 so each item in a group has the same size
Reducing the number of item sizes

- We divide the items by size, into groups of size k

 the smallest group might contain fewer than k items

- We define a new set of items S' where each item is rounded up

 so each item in a group has the same size
Reducing the number of item sizes

- We divide the items by size, into groups of size k
 - the smallest group might contain fewer than k items

- We define a new set of items S' where each item is rounded up
 - so each item in a group has the same size
 - and the largest group is removed
Reducing the number of item sizes

- We divide the items by size, into groups of size k
 - the smallest group might contain fewer than k items

- We define a new set of items S' where each item is rounded up
 - so each item in a group has the same size
 - and the largest group is removed

- Notice that S' contains only n/k distinct item sizes
Reducing the number of item sizes

- We divide the items by size, into groups of size k

 the smallest group might contain fewer than k items

- We define a new set of items S' where each item is rounded up

 so each item in a group has the same size

 and the largest group is removed

- Notice that S' contains only n/k distinct item sizes

 (k will be big enough so that $n/k \leq 4/\epsilon^2$ - which is a constant)
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Further, any packing of S' can be converted into a packing of S in polynomial time by using at most k extra bins.
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Further, any packing of S' can be converted into a packing of S in polynomial time by using at most k extra bins.

- Here $\text{Opt}(S)$ is the fewest bins required to pack S
- Similarly $\text{Opt}(S')$ is the fewest bins required to pack S'
Reducing the number of item sizes

Lemma Let \(S' \) be \(S \) after linear grouping (with groups of size \(k \)).

\[
\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.
\]

Further, any packing of \(S' \) can be converted into a packing of \(S \) in polynomial time by using at most \(k \) extra bins.
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Proof
Reducing the number of item sizes

Lemma Let \(S' \) be \(S \) after linear grouping (with groups of size \(k \)).

\[
\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.
\]

Proof

If you can pack \(S \) into \(b \) bins, you can pack \(S' \) into \(b \) bins.
Reducing the number of item sizes

Lemma Let \(S' \) be \(S \) after linear grouping (with groups of size \(k \)).

\[
\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.
\]

Proof

If you can pack \(S \) into \(b \) bins,
you can pack \(S' \) into \(b \) bins

Take the packing of \(S \)
and replace each item as shown
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Proof

If you can pack S into b bins, you can pack S' into b bins.

Take the packing of S and replace each item as shown:

Each item from S is replaced with one no larger from S'.

unpack these
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Proof

If you can pack S into b bins,
you can pack S' into b bins.

Take the packing of S
and replace each item as shown.

Each item from S is replaced
with one no larger from S'

So the packing is valid and hence
$$\text{Opt}(S') \leq \text{Opt}(S).$$
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

\[
\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.
\]

Proof

If you can pack S' into b bins,
you can pack S into $b + k$ bins
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Proof

If you can pack S' into b bins,
you can pack S into $b + k$ bins

Take the packing of S'
and replace each item as shown
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Proof

If you can pack S' into b bins,
you can pack S into $b + k$ bins

Take the packing of S'
and replace each item as shown
Reducing the number of item sizes

Lemma Let \(S' \) be \(S \) after linear grouping (with groups of size \(k \)).

\[
\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.
\]

Proof

If you can pack \(S' \) into \(b \) bins,

you can pack \(S \) into \(b + k \) bins

Take the packing of \(S' \)

and replace each item as shown

Each item from \(S' \) is replaced

with one no larger from \(S \)
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

\[\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k. \]

Proof

If you can pack S' into b bins,
you can pack S into $b + k$ bins

Take the packing of S'
and replace each item as shown

Each item from S' is replaced
with one no larger from S

The k largest items are
given their own extra bins
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Proof

If you can pack S' into b bins,
you can pack S into $b + k$ bins
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Proof

If you can pack S' into b bins, you can pack S into $b + k$ bins.

This gives a valid packing of S.

![Diagram of item sizes and packing into bins](image-url)
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

\[
\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.
\]

Proof

If you can pack S' into b bins,
you can pack S into $b + k$ bins

This gives a valid packing of S

Hence,

\[
\text{Opt}(S) \leq \text{Opt}(S') + k
\]
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Proof

If you can pack S' into b bins, you can pack S into $b + k$ bins.

This gives a valid packing of S.

Hence,

$$\text{Opt}(S) \leq \text{Opt}(S') + k.$$

Note that both transformations take polynomial time.
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

\[
\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.
\]

Further, any packing of S' can be converted into a packing of S in polynomial time by using at most k extra bins.
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Further, any packing of S' can be converted into a packing of S in polynomial time by using at most k extra bins.

We set $k = \lfloor n \cdot (\epsilon^2/2) \rfloor$ and let S be the set of large items which implies that...
Reducing the number of item sizes

Lemma Let \(S' \) be \(S \) after linear grouping (with groups of size \(k \)).

\[
\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.
\]

Further, any packing of \(S' \) can be converted into a packing of \(S \) in polynomial time by using at most \(k \) extra bins.

We set \(k = \lfloor n \cdot (\epsilon^2/2) \rfloor \) and let \(S \) be the set of large items which implies that...

\[
k \leq \epsilon \cdot \text{Opt}(S)
\]
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Further, any packing of S' can be converted into a packing of S in polynomial time by using at most k extra bins.

We set $k = \lfloor n \cdot (\epsilon^2/2) \rfloor$ and let S be the set of large items which implies that...

$$k \leq \epsilon \cdot \text{Opt}(S') \quad \text{(because each of the n items in S have size at least $\epsilon/2$)}$$
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Further, any packing of S' can be converted into a packing of S in polynomial time by using at most k extra bins.

We set $k = \lfloor n \cdot (\epsilon^2/2) \rfloor$ and let S be the set of large items which implies that...

$$k \leq \epsilon \cdot \text{Opt}(S) \quad \text{(because each of the } n \text{ items in } S \text{ have size at least } \epsilon/2)$$

If we can find the optimal packing of S', which uses $\text{Opt}(S')$ bins

we can convert it into a packing of S which uses

$$\text{Opt}(S') + k \leq (1 + \epsilon)\text{Opt}(S) \text{ bins}$$
Reducing the number of item sizes

Lemma Let S' be S after linear grouping (with groups of size k).

$$\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.$$

Further, any packing of S' can be converted into a packing of S in polynomial time by using at most k extra bins.

We set $k = \lfloor n \cdot (\epsilon^2/2) \rfloor$ and let S be the set of large items which implies that...

$$k \leq \epsilon \cdot \text{Opt}(S) \quad \text{(because each of the n items in S have size at least $\epsilon/2$)}$$

If we can find the optimal packing of S', which uses $\text{Opt}(S')$ bins we can convert it into a packing of S which uses

$$\text{Opt}(S') + k \leq (1 + \epsilon)\text{Opt}(S)$$

S' contains $4/\epsilon^2$ distinct item sizes and only $2/\epsilon$ items fit in each bin...
Reducing the number of item sizes

Lemma Let \(S' \) be \(S \) after linear grouping (with groups of size \(k \)).

\[
\text{Opt}(S') \leq \text{Opt}(S) \leq \text{Opt}(S') + k.
\]

Further, any packing of \(S' \) can be converted into a packing of \(S \) in polynomial time by using at most \(k \) extra bins.

We set \(k = \lfloor n \cdot (\epsilon^2/2) \rfloor \) and let \(S \) be the set of large items which implies that.

\[
k \leq \epsilon \cdot \text{Opt}(S)
\]

(because each of the \(n \) items in \(S \) have size at least \(\epsilon/2 \))

If we can find the optimal packing of \(S' \), which uses \(\text{Opt}(S') \) bins

we can convert it into a packing of \(S \) which uses

\[
\text{Opt}(S') + k \leq (1 + \epsilon)\text{Opt}(S)
\]

bins

\(S' \) contains \(4/\epsilon^2 \) distinct item sizes

and only \(2/\epsilon \) items fit in each bin.

I.e. we can optimally pack \(S' \) in polynomial time.
The overall APTAS

Step 1 Remove all the small items (those with size $\leq \epsilon/2$)

- At most $2/\epsilon$ of the remaining large items will fit into a single bin
- The small items will be packed after (using First-Fit)

Step 2 Divide the items into $k = \lfloor n \cdot (\epsilon^2/2) \rfloor$ groups

- Items in each group are then rounded up and the largest group is removed
- This leaves at most $4/\epsilon^2$ distinct item sizes

Step 3 Use the poly-time algorithm for the remaining special case

- This takes $O \left(n \cdot (n + 1)^{(4/\epsilon^2+1)^{2/\epsilon}} \right)$ time

 as $c_s = 4/\epsilon^2$ and $c_b = 2/\epsilon$.
The overall APTAS

Step 1 Remove all the small items (those with size $\leq \epsilon/2$)

- At most $2/\epsilon$ of the remaining large items will fit into a single bin
- The small items will be packed after (using First-Fit)

Step 2 Divide the items into $k = \lfloor n \cdot (\epsilon^2/2) \rfloor$ groups

- Items in each group are then rounded up and the largest group is removed
- This leaves at most $4/\epsilon^2$ distinct item sizes

Step 3 Use the poly-time algorithm for the remaining special case

- This takes $O \left(n \cdot (n + 1) \left(\frac{4}{\epsilon^2} + 1 \right)^{2/\epsilon} \right)$ time as $c_s = 4/\epsilon^2$ and $c_b = 2/\epsilon$.
The overall APTAS

Step 1 Remove all the small items (those with size $\leq \epsilon/2$)

- At most $2/\epsilon$ of the remaining large items will fit into a single bin
- The small items will be packed after (using First-Fit)

Step 2 Divide the items into $k = \lfloor n \cdot (\epsilon^2/2) \rfloor$ groups

- Items in each group are then rounded up and the largest group is removed
- This leaves at most $4/\epsilon^2$ distinct item sizes

Step 3 Use the poly-time algorithm for the remaining special case

- This takes $O \left(n \cdot (n + 1)^{\left(4/\epsilon^2 + 1\right)^{2/\epsilon}} \right)$ time

as $c_s = 4/\epsilon^2$ and $c_b = 2/\epsilon$.
The overall APTAS

Step 1 Remove all the small items (those with size \(\leq \frac{\epsilon}{2} \))
- At most \(\frac{2}{\epsilon} \) of the remaining large items will fit into a single bin
- The small items will be packed after (using First-Fit)

Step 2 Divide the items into \(k = \left\lfloor n \cdot \left(\frac{\epsilon^2}{2} \right) \right\rfloor \) groups
- Items in each group are then rounded up and the largest group is removed
- This leaves at most \(\frac{4}{\epsilon^2} \) distinct item sizes

Step 3 Use the poly-time algorithm for the remaining special case
- This takes \(O \left(n \cdot (n + 1)^{\left(\frac{4}{\epsilon^2} + 1 \right)^{2/\epsilon}} \right) \) time as \(c_s = \frac{4}{\epsilon^2} \) and \(c_b = \frac{2}{\epsilon} \).

Theorem For any \(0 < \epsilon < 1 \), the algorithm presented runs in polynomial time and returns a packing of any set of items using at most \((1 + \epsilon)\text{Opt} + 1\) bins.
Conclusions

- There is no α-approximation for BinPacking with $\alpha < 3/2$ unless $P = NP$.
- We saw an APTAS for BinPacking.
- There is a poly-time algorithm which outputs a solution using at most,
 \[
 \frac{11}{9} \cdot \text{Opt} + 1 \text{ bins}
 \]
- The First Fit Decreasing algorithm uses at most,
 \[
 \boxed{\frac{11}{9} \cdot \text{Opt} + 1} \text{ bins}
 \]
- This in turn implies that there is no PTAS for BinPacking unless $P = NP$.
- There is also an AFPTAS for bin packing.
- There is a poly-time algorithm which outputs a solution using at most,
 \[
 \text{Opt} + O(\log^2 \text{Opt}) = \left(1 + \frac{O(\log^2 \text{Opt})}{\text{Opt}}\right) \cdot \text{Opt} \text{ bins}
 \]
Conclusions

• There is no α-approximation for \textsc{BinPacking} with $\alpha < 3/2$ unless $P = NP$

• This in turn implies that there is no PTAS for \textsc{BinPacking} unless $P = NP$

• The First Fit Decreasing algorithm uses at most,

$$\frac{11}{9} \cdot \text{Opt} + 1 \text{ bins}$$

• We saw an APTAS for \textsc{BinPacking}.

 \textit{there is also an AFPTAS for bin packing}

• There is a poly-time algorithm which outputs a solution using at most,

$$\text{Opt} + O(\log^2 \text{Opt}) = \left(1 + \frac{O(\log^2 \text{Opt})}{\text{Opt}} \right) \cdot \text{Opt} \text{ bins}$$

• A poly-time algorithm which uses at most $\text{Opt} + 1$ bins is open