Approximation Algorithms Recap

An algorithm A is an α-approximation for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s within an α factor of Opt

- Here P is an optimisation problem with optimal solution of value Opt

- If P is a maximisation problem, $\frac{Opt}{\alpha} \leq s \leq Opt$
- If P is a minimisation problem, $Opt \leq s \leq \alpha \cdot Opt$

We have seen:

- A 2-approximation for Max Sat
- A $\frac{1}{2}$-approximation for Bin Packing
- A 2-approximation for k-centers
- A $\frac{3}{2}$-approximation for scheduling multiple machines

The Subset Sum problem

Let S be a multi-set of positive integers and t be a positive integer.

Decision Problem Is there a subset, $S' \subseteq S$ with size t?

Optimisation Problem Find the size of the largest subset of S which is no larger than t

The optimisation version is NP-hard and the decision version is NP-complete.

An exact solution

Let $S = \{s_1, s_2, s_3, \ldots, s_m\}$ be the set of items and $S_i = \{s_1, s_2, \ldots, s_i\}$

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- $S = \{2, 4, 4, 7, 2, 3\}$
- $t = 12$

- $S_4 = \{2, 4, 4, 7, 2, 3\}$
- $L_4 = \{0, 2, 4, 6, 7, 8, 9, 11\}$

- The largest subset of S (of size at most t) is the largest number in L_m
- We compute L_i from L_{i-1}:
 - $L_i = L_{i-1} \cup (L_{i-1} + s_i)$
 - $L_5 = \{0, 2, 4, 6, 7, 8, 9, 10, 11\}$

An exact solution

The algorithm:

- For $i = 1 \ldots m$:
 - Compute ($L_{i-1} + s_i$) from L_{i-1}
 - Compute $L_i = L_{i-1} \cup (L_{i-1} + s_i)$
 - Output the largest number in L_m

- $L_0 = \{0\}$
- $|L_{i-1}|$ time
- $O(|L_i|)$ time
- $O(|L_m|)$ time

- n is the length of the input (measured in words)
- a is bit word
- n words
- $\Theta(\log n)$

The overall time complexity is therefore $O(mt)$.
An exact solution

\[|S| = m \]

The algorithm

- Let \(L_0 = \{0\} \)
- For \(i = 1 \) \(\ldots \) \(m \):
 - Compute \(L_{i-1} + s_i \) from \(L_{i-1} \)
 - Compute \(L_i = L_{i-1} \cup (L_{i-1} + s_i) \)
- Output the largest number in \(L_m \)

Pseudo-polynomial time algorithms

- We say that an algorithm is pseudo-polynomial time if it runs in poly-time when all the numbers are integers \(\leq n^c \) for some constant \(c \).
- The algorithm for Subset Sum gives \(O(nt) \in O(n^{c+1}) \) time in this case.
- We say that an NP-complete problem is weakly NP-complete if there is a pseudo-polynomial time solution for it.
- We say that an NP-complete problem is strongly NP-complete if it is NP-complete when all the numbers are integers \(\leq n^c \).
- So Subset Sum is weakly NP-complete.
- Bin packing is strongly NP-complete.

Polynomial time approximation schemes

A polynomial time approximation scheme (PTAS) for problem \(P \)

- A PTAS is a family of algorithms:
 - For any constant \(\epsilon > 0 \) there is an algorithm in the family, \(A_\epsilon \)
 - such that \(A_\epsilon \) is a \((1+\epsilon)\)-approximation for \(P \)
- If we had a PTAS for Subset Sum,
 - Let \(\epsilon = 0.1 \) and so \(A_{0.1} \) runs in polynomial time and
 - outputs a subset of size at least \(\text{Out} \geq 0.9 \cdot \text{Opt} \)
 - Let \(\epsilon = 0.01 \) and so \(A_{0.01} \) also runs in polynomial time and
 - outputs a subset of size at least \(\text{Out} \geq 0.99 \cdot \text{Opt} \)
 - Let \(\epsilon = 0.001 \) and so \(A_{0.001} \) also runs in polynomial time and
 - outputs a subset of size at least \(\text{Out} \geq 0.999 \cdot \text{Opt} \)

A polynomial time approximation scheme (PTAS) for problem \(P \)

- A PTAS for problem \(P \) is a family of algorithms:
 - For any constant \(\epsilon > 0 \) there is an algorithm in the family, \(A_\epsilon \)
 - such that \(A_\epsilon \) is a \((1+\epsilon)\)-approximation for \(P \)
- If we had a PTAS for Subset Sum,
 - Let \(\epsilon = 0.1 \) and so \(A_{0.1} \) runs in polynomial time and
 - outputs a subset of size at least \(\text{Out} \geq 0.9 \cdot \text{Opt} \)
 - A PTAS does not have to have running time polynomial in \(1/\epsilon \)
 - A fully PTAS (FPTAS) is also polynomial in \(1/\epsilon \)
 - i.e. the time complexity is \(O((\epsilon/n)^c) \) for some constant \(c \)
 - In our example \(O((100m)^c) = O((100n)^c) = O((10000n)^c) = O(n^c) \)

A PTAS for Subset Sum

Let \(L_i \) be the sets of sizes of all \(S' \subseteq S \), which are not larger than \(i \)

- The exact algorithm for Subset Sum was slow (in general) because
 each list of possible subset sizes \(L_i \) could become very large

Key Idea

- Constructed a **trimmed** version of \(L_i \) (denoted \(L'_i \)) so that
 - The length of \(L'_i \) is polynomial in the input length
 - \(L'_i \subseteq L_i \) and for every \(y \in L_i \), there is a \(z \in L'_i \) which
 is almost as big
 - \(L'_i = \{0, 2, 4, 6, 7, 8, 9, 10, 11\} \)

Trim(\(L_i, \delta \))

- Include \(L_i[j] \) in \(L'_i \) if \(L_i[j] > (1 + \delta) \cdot \text{prev} \)
 - where \(\text{prev} \) is the previous thing we included in \(L'_i \)
 - for \(\delta = 1 \) we include \(L'_2 = \{0, 2, 6\} \)
 - we will pick \(\delta \) later (and it will be much smaller than 1)
S = \{4, 2, 4, 7, 2, 3\} \quad t = 11

A PTAS for Subset Sum

\[S_4 = (4, 2, 4) \]

Let \(L_t \) be the set of sizes of all \(S' \subseteq S_t \) which are not larger than \(t \)

- \(L_t' \) is the trimmed version of \(L_t \)

Algorithm

- Let \(L_0' = \{0\}, \delta = \epsilon/(2m) \)
- For \(i = 0 \ldots m: \)
 - Compute \((L_{i-1}') + s_i \) from \(L_{i-1}' \)
 - Compute \(L_i = L_{i-1}' \cup (L_{i-1}' + s_i) \)
 - Let \(L_i' = \text{Trim}(L_i, \delta) \)
 - Output the largest number in \(L_i' \)

- This process throws away some subsets, but it outputs a valid solution

- Two questions remain... How big is \(|L_t'| \)? How good is the solution given?

Lemma

For any \(y \in L_t \), there is an \(z \in L_t' \) with \[
\frac{y}{(1+\delta)^t} \leq z \leq y
\]

- By setting \(i = m \) and \(\delta = \epsilon/2m \) we have that,
 - For any \(y \in L_m \), there is a \(z \in L_m' \) with \[
 \frac{y}{(1+\delta)^m} \leq z \leq y
\]
 - Further, \(\text{Opt} \in L_m \), meaning there is a \(z \in L_m' \) with
 \[
 \frac{\text{Opt}}{(1+\delta)^m} \leq z \leq \text{Opt}
 \]

We only need to show that \((1 + \frac{\epsilon}{2m})^m \leq 1 + \epsilon \ldots \)

Lemma

For any \(y \in L_i \), there is an \(z \in L_i' \) with \[
\frac{y}{(1+\delta)^i} \leq z \leq y
\]

- By setting \(i = m \) and \(\delta = \epsilon/2m \) we have that,
 - For any \(y \in L_m \), there is a \(z \in L_m' \) with \[
 \frac{y}{(1+\delta)^m} \leq z \leq y
\]
 - Further, \(\text{Opt} \in L_m \), meaning there is a \(z \in L_m' \) with
 \[
 \frac{\text{Opt}}{(1+\delta)^m} \leq z \leq \text{Opt}
 \]

We only need to show that \((1 + \frac{\epsilon}{2m})^m \leq 1 + \epsilon \ldots \)

Proof (by induction)

Base Case: \(L_0 = \{0\} \)

Inductive step: Assume that the lemma holds for \((i-1) \)

As \(y \in L_i \) we have that either \(y \in L_{i-1} \) or \((y-s_i) \in L_{i-1} \)

- If \(y \in L_{i-1} \) then there is a \(x \in L_{i-1}' \) with
 \[
 \frac{y}{(1+\delta)^{i-1}} \leq x \leq y
 \]
 By the definition of Trim there is some \(z \in L_i' \) with \[
 z \leq x \leq \frac{y}{(1+\delta)^i} \leq z \leq y
 \]
 i.e. that there is an \(z \in L_i' \) with \[
 \frac{y}{(1+\delta)^i} \leq z \leq y
 \]

The case that \((y-s_i) \in L_{i-1} \) is almost identical (we omit it for brevity)

Lemma

We need to show that \((1 + \frac{\epsilon}{2m})^m \leq 1 + \epsilon \) for \(0 < \epsilon \leq 1 \)

\[
\left(1 + \frac{\epsilon}{2m}\right)^m \leq e^{\epsilon/2} \leq 1 + \frac{\epsilon}{2} + \left(\frac{\epsilon}{2}\right)^2 \leq 1 + \epsilon
\]

This follows from:

\[
e^x \geq (1 + \frac{x}{m})^m \text{ for all } x, m > 0
\]

\[
e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!} \leq 1 + x + x^2
\]

How big is \(|L_t'| ? \)

The time complexity depends on \(|L_t'| \)

- By the definition of Trim we have that, any two successive elements, \(z, z' \) of \(L_t' \) have
 \[
 \frac{z'}{z} \geq 1 + \delta = 1 + \frac{\epsilon}{2m}
 \]
 - Further, all elements are no greater than \(t \)
 - So \(L_t' \) contains at most \(O(\log(1+\delta) t) \) elements

\[
\ln(1 + x) > \frac{x}{2m} \quad \text{(here } x = \epsilon/2m) \]

\[
\log(1+\delta) t = \frac{\ln t}{\ln(1 + (\epsilon/2m))} \leq \frac{2m(1 + (\epsilon/2m))}{\ln t} \leq 2m \frac{\ln t}{\epsilon} = O\left(\frac{m \log t}{\epsilon}\right)
\]
A PTAS for Subset Sum

The algorithm

- Let $L'_0 = \{0\}, \delta = \epsilon/(2m)$
- For $i = 0, \ldots, m$
 - Compute $(L'_{i-1} + s_i)$ from L'_{i-1}
 - Compute $U = L'_{i-1} \cup (L'_{i-1} + s_i)$
 - Let $L'_i = \text{Trim}(U, \delta)$
- Output the largest number in L'_m

- As $|L'_i| \in O(m \log t/\epsilon)$, the algorithm runs in $O(m \log t/\epsilon) \in O(n^3/\epsilon)$ time
- The solution outputted is at least $\frac{\text{Opt}}{1+\epsilon} \leq z \leq \text{Opt}$
- So this is in fact an FPTAS for Subset Sum