Hamming distance - considering symbols separately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

$$T = \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 \sigma_6 \sigma_7 \sigma_8 \sigma_9$$

$$P = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6 \alpha_7 \alpha_8 \alpha_9$$

Replace all $$\alpha$$ symbols with 1 and everything else with 0

Hamming distance - considering symbols separately

Imagine that the alphabet contains only a small number of different symbols, which we consider individually...

$$T_n = \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 \sigma_6 \sigma_7 \sigma_8 \sigma_9$$

$$P_n = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6 \alpha_7 \alpha_8 \alpha_9$$

Replace all $$\alpha$$ symbols with 1 and everything else with 0

We denote these new strings $$T_n$$ and $$P_n$$ and consider...

$$(T_n \otimes P_n)_i = \sum_{j=0}^{m-1} P_n[j] T_n[i+j]$$

This is the number of matching $$\alpha$$s at the i-th alignment, which we can compute (for all i) in $$O(n \log m)$$ time via cross-correlations

Hamming distance - considering symbols separately

We saw how to find all matches with a single symbol in $$O(n \log m)$$ time

Let $$\Sigma$$ denote the set of alphabet symbols and $$|\Sigma|$$ be its size

Algorithm Summary

- Construct $$T_n$$ and $$P_n$$ for every symbol $$\sigma$$ in $$\Sigma$$ ($$O(n|\Sigma|)$$ time)
- Compute $$T_n \otimes P_n$$ (for every symbol $$\sigma$$ in $$\Sigma$$) ($$O(n|\Sigma| \log m)$$ time)

For every i, compute,

$$\text{Ham}(i) = m - \sum_{\sigma \in \Sigma} (T_n \otimes P_n)[i]. \quad (O(n|\Sigma|) \text{ time})$$

This takes $$O(n|\Sigma| \log m)$$ total time and $$O(n)$$ space

However, $$|\Sigma|$$ could be as big as $$m$$... what should we do instead?

The frequent/infrequent symbols trick

Definition: A symbol is frequent if it occurs at least $$\sqrt{m}$$ times in $$P$$.

$$P = \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 \sigma_6 \sigma_7 \sigma_8 \sigma_9$$

$$\alpha$$ is frequent, $$b$$ is frequent, $$c$$ and $$d$$ are not frequent

Step 1: Count all matches involving frequent symbols.

Consider each frequent symbol separately in $$O(n \log m)$$ time (per symbol), using cross-correlations

How many frequent symbols can there be?

Assume that there are at least $$\sqrt{m}$$ frequent symbols each occurs at least $$\sqrt{m}$$ times... ($$\sqrt{m} + 1)^2 > m$$ Contradiction!

so there are at most $$\sqrt{m}$$ frequent symbols

So Step 1 takes $$O(n \sqrt{m} \log m)$$ time.
The infrequent/frequent symbols trick

Definition: A symbol is **inrequent** if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent α is frequent, b is frequent c and d are infrequent.

The infrequent/frequent symbols trick

Definition: A symbol is *inrequent* if it occurs fewer than \sqrt{m} times in P.

Every symbol is either frequent or infrequent:
- α is frequent,
- b is frequent,
- c and d are infrequent.

<table>
<thead>
<tr>
<th>T</th>
<th>d</th>
<th>a</th>
<th>X</th>
<th>a</th>
<th>d</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>d</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2: Count all matches involving infrequent symbols.

Construct an array A of length $(n - m + 1)$ which is initially all zeros.

- Make a single pass through T.
- For each character $T[k]$, where $0 \leq k < n$.
 - If $T[k]$ is infrequent:
 - Increase $A[k - j]$ by one for all j such that $T[k] = P[j]$.
 - Store a list for each infrequent symbol.
 - Each list has length less than \sqrt{m}.

Overall, we obtain a time complexity of $O(n\sqrt{m} \log m)$.

Pattern matching with mismatches: putting it all together

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent ($O(m \log m)$ time)

Step 1: Count all matches involving frequent symbols. ($O(n\sqrt{m} \log m)$ time)

Step 2: Count all matches involving infrequent symbols. ($O(n\sqrt{m} \log m)$ time)

at any alignment the number of mismatches is just m minus the total number of matches.

Overall, we obtain a time complexity of $O(n\sqrt{m} \log m)$.

Pattern matching with few mismatches (k-mismatch)

Input A text string T (length n), a pattern string P (length m) and a positive integer k

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>d</th>
<th>a</th>
<th>c</th>
<th>c</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\text{Ham}_k(8) = X$

Goal: For all i, output:

<table>
<thead>
<tr>
<th>$\text{Ham}_k(i)$</th>
<th>$\text{Ham}(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i < k$</td>
<td>$\text{Ham}(i)$</td>
</tr>
<tr>
<td>$i > k$</td>
<td>X</td>
</tr>
</tbody>
</table>

Output the number of mismatches... unless it's more than k (we interpret the output X to mean ‘too many mismatches’)

- We could use the $O(n\sqrt{m} \log m)$ time algorithm for Hamming distance... but when k is small we can do much better
LCP - the Longest Common Prefix

For any pair of locations i in T and j in P, $\text{LCP}(i, j)$ is the largest d such that $T[i \ldots i + d - 1] = P[j \ldots j + d - 1]$

it's the furthest you can go before hitting a mismatch

For any pair of locations i in T and j in P', $\text{LCP}(i, j)$ is the largest d such that $T[i \ldots i + d - 1] = P'[j \ldots j + d - 1]$

it's the furthest you can go before hitting a mismatch

Fact: We'll see that LCP queries can be used to calculate $\text{Ham}_k(i)$ in $O(k)$ time

Algorithm summary

We can use LCP queries to solve k-mismatch, as well as Ham_k...

k-mismatch using frequent/infrequent symbols

Definition: A symbol is frequent if it occurs at least \sqrt{k} times in P, and infrequent otherwise

$$k = 4 \quad (\sqrt{k} = 2)$$

a is frequent, b is frequent, d is frequent
c is infrequent

How many frequent symbols can there be? Lots! there could be $\frac{2k}{\sqrt{k}} = \sqrt{k}$ frequent symbols

Case 1: There are fewer than $2\sqrt{k}$ frequent symbols in P. - $O(n\sqrt{k} \log m)$ total time

Algorithm summary

Step 0: Classify each symbol as frequent or infrequent - $O(m \log m)$ time

Step 1: Count all matches involving frequent symbols (using convolutions) - $O(n\sqrt{k} \log m)$ time

Step 2: Count all matches involving infrequent symbols (as before) - $O(n\sqrt{k})$ time

Case 2: There are at least $2\sqrt{k}$ frequent symbols

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in P.

This gives us $2k$ interesting pattern locations, denoted J

$$J = \{0, 2, 3, 4, 5, 7, 9, 10\}$$

$k = 4$

Let $d_k(i)$ be the number of $j \in J$ such that $P[j] = T[i + j]$

i.e. the number of (single character) matches involving interesting pattern locations

Fact: If $d_k(i) < k$ then there are more than k mismatches (i.e. $\text{Ham}_k(i) = X$) because there are $2k$ interesting positions... and fewer than k of them match

Fact: There are at most n/\sqrt{k} values of i with $d_k(i) \geq k$

this follows from a counting argument
Case 2: There are at least $2\sqrt{k}$ frequent symbols

Pick any $2\sqrt{k}$ frequent symbols and for each symbol pick \sqrt{k} occurrences in P.

This gives us $2k$ interesting pattern locations, denoted J.

$$J = \{0, 2, 3, 4, 5, 7, 9, 10\}$$

$k = 4$

P

\[\begin{array}{cccccccccc}
\text{a} & \text{b} & \text{b} & \text{a} & \text{c} & \text{d} & \text{b} & \text{d} & \text{f} & \text{b} & \text{d} \\
\hline
\text{a} & \text{c} & \text{c} & \text{a} & \text{b} & \text{a} & \text{c} & \text{d} & \text{f} & \text{f} & \text{b} & \text{c}
\end{array}\]

$i = 4$

$d_k(i) = 3$

Let $d_k(i)$ be the number of $j \in J$ such that $P[j] = T[i + j]$

i.e. the number of (single character) matches involving interesting pattern locations

Fact There are at most n/\sqrt{k} values of i with $d_k(i) \geq k$

For any location i', $T[i'] = P[j]$ for either 0 or \sqrt{k} distinct $j \in J$

This implies that $\sum_i d_k(i) \leq \sum_{i'} \sum_{j \in J} \text{Eq}(T[i'], P[j]) \leq n/\sqrt{k}$

Algorithm summary

Preprocess P, T for LCP queries - $O(n)$ time

Count the number of frequent symbols in P - $O(m \log m)$ time

Case 1: P has at most $2\sqrt{k}$ frequent symbols

Count matches with frequent symbols using convolution - $O(n/\sqrt{k} \log m)$ time

Count matches with infrequent symbols directly - $O(n/\sqrt{k})$ time

Case 2: P has more than $2\sqrt{k}$ frequent symbols

Filter the text, leaving n/\sqrt{k} alignments - $O(n/\sqrt{k})$ time

Count mismatches at these alignments using LCP queries - $O(n/\sqrt{k})$ time

Overall, we obtain a time complexity of $O(n/\sqrt{k} \log m)$.

- This can be improved to $O(n/\sqrt{k} \log k)$