Exact pattern matching

Input: A text string \(T \) (length \(n \)) and a pattern string \(P \) (length \(m \))

\[
\begin{array}{c}
\text{T} \\
\text{a b c d a b a b a c b a} \\
\hline
\text{4} \\
\text{6} \\
\text{10}
\end{array}
\quad
\begin{array}{c}
\text{P} \\
\text{a b c d a b a b a c b a} \\
\hline
\text{8} \\
\text{6}
\end{array}
\]

Goal: Find all the locations where \(P \) matches in \(T \)

\(P \) matches at location \(i \) iff for all \(0 \leq j \leq m \) we have that \(P[j] = T[i + j] \)

- A naive algorithm takes \(O(nm) \) time
- Many \(O(n) \) time algorithms are known (for example, KMP)

Text indexing

Preprocess a text string \(T \) (length \(n \)) to answer pattern matching queries...

\[
\begin{array}{c}
\text{T} \\
\text{a b c d a b a b a c b a} \\
\hline
\text{4} \\
\text{6} \\
\text{10}
\end{array}
\]

After preprocessing, a query is a pattern \(P \) (length \(m \)), the output is a list of all matches in \(T \):

\[
\begin{array}{c}
\text{P} \\
\text{a b c d a b a b a c b a} \\
\hline
\text{8} \\
\text{6}
\end{array}
\]

- A naive algorithm takes \(O(n) \) query time (using KMP)
- We want a query time which depends only on \(m \) and \(\text{occ} \)
 - \(\text{occ} \) is the number of occurrences (matches)
- We also want \(O(n) \) space and fast preprocessing (prep.) time

Searching in an atomic suffix tree

How do you find a pattern?
- start at the root and walk down the tree
 - matches occur at the leaves of the subtree
 - matches occur at the leaves of the subtree

We can decide whether \(P \) matches somewhere in \(O(m) \) time

(we’ll worry about outputting the matches later)
There are at most \(n \) leaves.

Unfortunately there can be lots of internal nodes.

- 7 characters, 23 nodes. That’s not so bad, right?
- 9 characters, 36 nodes. This is far too big!

Main Idea: replace each non-branching path with a single edge.
- Edges are now labelled with substrings (instead of single characters).

Compacted suffix trees

1. There are at most \(n \) leaves.
2. Every internal node has two or more children.
 - So there are \(O(n) \) edges.
3. Don’t the edges take up lots of space?
 - We only store the end points.
 - We actually store \((4, 6)\).

Compacted suffix tree of \(T \)

- A rooted tree with \(n \) leaves.
- Every internal node has two or more children.
- Every edge is labelled with a substring.
- No two edges leaving the same node have the same first character.
- Each leaf is labelled with a location in \(T \).
- Any root-to-leaf path spells out the corresponding suffix.

Uses \(O(n) \) space.

Normally just called a suffix tree

Step one: Add a \(\$ \) (unique symbol) to \(T \).

Uses \(O(n) \) space.

Searching in a compacted suffix tree

To find a pattern in \(P \):

1. Start at the root and walk down the tree.
2. Matches occur at the leaves of the subtree.
3. How big is this subtree?
 - \(O(\text{occ}) \) because it has \(\text{occ} \) leaves.

We can find all the matches in \(O(m + \text{occ}) \) time (by looking at the whole subtree).
Naively constructing a compacted suffix tree

Insert the suffixes one at a time (longest first)
- Search for the new suffix in the partial suffix tree (as if you were matching a pattern)
- Add a new edge and leaf for the new suffix (this may require you to break an edge in two)

This takes $O(n)$ time per suffix... so $O(n^2)$ time in total.

Suffix tree summary

- The (compacted) suffix tree of a (length n) text uses $O(n)$ space
- Finding all matches of a pattern P of length m takes $O(m + \text{occ})$
 where occ is the number of matches
- We saw how to build a suffix tree in $O(n^2)$ time
 in fact they can be build in $O(n)$ time - but the method is much more involved
 we assumed that the alphabet contained a constant number of symbols

Multiple text indexing

How can we index multiple texts?
- build a generalised suffix tree in $O(n_1 + n_2)$ space
- using the linear time method (which we omitted), this takes $O(n_1 + n_2)$ time
- Finding all matches of a pattern P of length m still takes $O(m + \text{occ})$ time
 where occ is the number of matches