Hashing with chaining

Instead of a linked list, throw colliding elements into a bucket!

We will describe a rather unusual type of bucket in this lecture.

If, for distinct x, y, the probability they are in the same bucket is $O(\frac{1}{m})$.

The time for an operation on key x is bounded by the number of items in its bucket.

The expected time per operation is $O(1) (m \geq n)$.

For any two distinct keys x and y, $Pr(h(x) = h(y)) = O(\frac{1}{m})$.

We want:

- $O(1)$ worst case lookup time (like with static perfect hashing).
- No static keys (i.e. we do not know the keys in advance).
- Good expected performance for insertions.

Cuckoo hashing is the answer:

- Two hash functions: h_1 and h_2.
- Key x is stored at either position $h_1(x)$ or $h_2(x)$.
- At most one key per position in the hash table (i.e. no chaining).
- Looking up a key x always takes $O(1)$ time; check if the key is at either $h_1(x)$ or $h_2(x)$.
- Removing a key is also constant time.
- Adding a key could take more time...

Dynamic perfect hashing

- When adding a new key x, add it to $h_1(x)$ if that position is empty.
- If $h_1(x)$ is not empty, then there is another key y there already.
- Replace y with x and reinsert y at its other position (i.e. $h_1(y)$ or $h_2(y)$).
- Repeat by relocating other keys if necessary.

Cuckoo hashing

- $O(1)$ expected performance for insertions.
- No static keys (i.e. we do not know the keys in advance).
- Good expected performance for insertions.

Pseudocode

```
add(x):
    pos ← h_1(x)
    loop n times:
        If T[pos] is empty then T[pos] ← x. Done!
        Otherwise,
            y ← T[pos],
            T[pos] ← x,
            pos ← the other possible location for y.
            (i.e. if $y$ was evicted from $h_1(y)$ then pos ← $h_2(y)$, otherwise pos ← $h_1(y)$.)
            x ← y.
    Repeat (at most $n$ times).
    Rehash the whole table, then make a new attempt to add $x$.
```

Rehashing

- If we fail to insert a new key x (i.e. we still have a “free” key that has to go back into the table after moving around keys n times) then we declare the table “rubbish” and rehash.
- Suppose the table contains the k keys x_1, \ldots, x_k at the time of insertion of key x.
- Rehashing means:
 - Randomly pick two new hash functions h_1 and h_2. (More about this in a minute.)
 - Build a new, empty, hash table of the same size m.
 - Reinsert the keys x_1, \ldots, x_k.
 - If we fail to insert these k keys, scrap the hash table and construct a new one with new hash functions and try again.
 - Now try to insert x again.
- If we fail, rehash and try to insert x again. Repeat until it succeeds.
Assumptions

- In the following we will analyse the running time of this hashing scheme.
- We will follow the analysis presented in the paper "Cuckoo hashing for undergraduates, 2006," by Pagh (see link on unit web page).
- We make the following assumptions:
 - \(h_1 \) and \(h_2 \) are truly random, i.e. a key is mapped to a particular position in the hash table with probability \(1/m \).
 - True randomness is not feasible, so similarly to weakly universal hashing, we will use a property that, for our purposes, is like true randomness.
 - \(h_1 \) and \(h_2 \) are independent, i.e. \(h_1(x) \) says nothing about \(h_2(x) \), and vice versa.
 - Computing the value of \(h_1(x) \) and \(h_2(x) \) takes constant time (not necessarily true, but more about this later.)
 - At most \(n \) keys are stored simultaneously in the hash table.

Cuckoo graph

- A cycle is a path from a vertex \(x \) to \(y \), including the edge from \(x \) we are trying to insert. Why?
- Including key \(x_0 \) causes a cycle.
- Cycles are dangerous...
- Inserting the key \(x_0 \) will cause a rehash, as keys will be moved around in an infinite loop (recall that we stop after \(n \) steps).
- We will analyse the probability of having a cycle when inserting \(n \) keys.

Paths in the cuckoo graph

Lemma

For any positions \(i \) and \(j \), and any constant \(c > 1 \), if \(m > 2cn \) then the probability that in the undirected cuckoo graph there exists a path from \(i \) to \(j \) of length \(\ell \geq 1 \), which is a shortest path from \(i \) to \(j \), is at most \(\frac{1}{c \cdot m} \).

Proof continued:

- Inductive step: assume lemma is true for lengths \(1, 2, \ldots, \ell - 1 \).
- If there is a path between \(i \) and \(j \) of length \(\ell \) but not shorter than \(\ell \) then there must be a position \(k \) such that:
 - \(A \): there is a shortest path of length \(\ell - 1 \) from \(i \) to \(k \) that does not go through \(j \), and
 - \(B \): there is an edge from \(k \) to \(j \).
- By the induction hypothesis, \(\Pr(A) \leq \frac{1}{c \cdot m} \).
- Given that \(A \) is true, the probability that \(B \) holds as well is upper bounded by \(\sum_{x \in K} \frac{2}{m^2} \leq \frac{1}{c \cdot m} \) (Union bound like on the previous slide over keys in \(K \).)
- \(\Pr(AB) = \Pr(A) \cdot \Pr(B | A) \leq \frac{1}{c \cdot m} \cdot \frac{1}{c \cdot m} = \frac{1}{c^2 \cdot m^2} \).
- Union bound over all \(k \) gives an upper bound on the probability of a shortest path between \(i \) and \(j \) of length \(\ell \): \(m \cdot \frac{1}{c^2 \cdot m^2} = \frac{1}{c^2 \cdot m} \).

Back to buckets

- Two keys \(x, y \) are in the same bucket if there is a path between \(\{h_1(x), h_2(x)\} \) and \(\{h_1(y), h_2(y)\} \) in the cuckoo graph.
- For two distinct keys \(x, y \), the probability that they are in the same bucket is therefore upper bounded by:
 \[
 \sum_{\ell=1}^{\infty} \frac{1}{c^\ell \cdot m} = \frac{4}{m(c-1)} = O(\frac{1}{m})
 \]
 where \(c > 1 \) is a constant.
 (Union bound of all possible path lengths. Why factor 4?)
- The time for an operation on \(x \) is bounded by the number of items in the bucket. (Assuming there are no cycles.)
- Thus, following the analysis from last week, we have that the expected time per operation is \(O(1) \).

Rehashing

- The previous analysis on the expected running time applies when there are no cycles.
- However, we would expect there to be cycles every now and then, causing a rehash.
- How often does this happen?
- For simplicity, let us assume that there are \(n \) keys in the table and we want to insert another \(n \) keys.
- We assume that the table size \(m > 2c \cdot 2n = 4cn \), where \(c > 1 \) is the constant from the previous slides.
- A cycle is a path from a vertex \(i \) back to itself.
 - We can use previous result where \(i = j \).
 - Recall the previous lemma...

Lemma

For any positions \(i \) and \(j \), and any constant \(c > 1 \), if \(m > 2cn \) then the probability that in the undirected cuckoo graph there exists a path from \(i \) to \(j \) of length \(\ell \geq 1 \), which is a shortest path from \(i \) to \(j \), is at most \(\frac{1}{c^2 \cdot m} \).
Rehashing

- The probability that a position \(i \) is involved in a cycle is upper bounded, using the union bound, by
 \[
 \sum_{\ell=1}^{\infty} \frac{1}{c^\ell \cdot m} = \frac{1}{m(c-1)}.
 \]

- The probability that there is at least one cycle is upper bounded, using the union bound over all positions, by
 \[
 m \cdot \frac{1}{m(c-1)} = \frac{1}{c-1}.
 \]

- For \(c = 3 \), the probability is at most \(\frac{1}{2} \) that a cycle occurs (that there is a rehash) during the \(n \) insertions.

- The probability that there are two rehashes (two independent cycles) is therefore \(\frac{1}{4} \), and so on.

- Thus, the expected number of rehashes during \(n \) insertions is therefore at most \(\sum_{i=1}^{\infty} \left(\frac{1}{2} \right)^i = 1 \).

Rehashing

- If the expected time for one rehash is \(O(n) \) then the expected time for all rehashes is also \(O(n) \) (since we expect there to be only one rehash).

- Thus, the amortised time for the rehashes over the \(n \) insertions is \(O(1) \) per insertion (i.e. divide the total cost with \(n \)).

- To see why the expected time per rehash is \(O(n) \):

 - First pick random \(h_1 \) and \(h_2 \) and construct the cuckoo graph. Working out whether there is a cycle or not can be done in \(O(n) \) time. How? The probability of there being a cycle is at most \(\frac{1}{2} \).

 - If there is no cycle, insert all the elements, which takes \(O(n) \) in expectation (as we have seen).

Global rebuilding

- We can use a technique called **global rebuilding** to adapt the size of the hash table to the number of keys inserted:

 - If the number of stored keys drops below a certain level then we may get away with a smaller hash table than we currently have and still have good performance.

 - More precisely, if the number of keys drop below a certain threshold then we **half** the size of the table and rehash.

 - Similarly, if the number of keys go above a certain threshold then we **double** the size of the table and rehash.

 - One can show that the amortised cost of rebuilding the hash table is constant time per operation.

A word about the assumptions

- We have assumed true randomness. As we have seen, this is not realistic.

- Similarly to the property of a weakly universal hash family, where any two keys \(x, y \) are independent, we can define a property called \(k \)-independence. Here the hash values of any choice of \(k \) keys are independent.

- With \(k = \log n \) it is feasible to construct a family of hash functions that are \(k \)-independent. It is not obvious though how the value of a hash function can be computed in constant time.

- By changing the cuckoo hashing algorithm to perform a rehash if a new key cannot be inserted after \(k = \log n \) steps (instead of \(n \) as in the previous slides), we can show that the expected performance is still good when using the \(k \)-independent family of hash functions.