Dictionaries

- In a dictionary data structure we store (key, value)-pairs such that for any key there is at most one pair (key, value) in the dictionary.
- Often we want to perform the following three operations:
 - \(add(x, v) \) Add the pair \((x, v)\).
 - \(lookup(x) \) Return \(v\) if \((x, v)\) is in dictionary, or NULL otherwise.
 - \(delete(x) \) Remove pair \((x, v)\) (assuming \((x, v)\) is in dictionary).

- There are many data structures that will do this job, e.g.:
 - Linked lists
 - Binary search trees
 - B-trees
 - Red-black trees
 - Skip lists
 - More elaborate tree structures, e.g. van Emde Boas trees (which we will cover in this course) that also allow other operations than the three listed here.

Hash tables

- We want to store \(n\) elements from the universe in the dictionary.

- Typically \(u\) is much, much larger than \(n\).

- Universe \(U\) containing \(u\) keys. Array \(T\) of size \(m\).

- \(h: U \rightarrow [m]\) maps a key to a position in \(T\).

- \(T\) is referred to as a hash table.

- We want to avoid collisions: \(h(x) = h(y)\) for \(x \neq y\).

Hash tables

- Collisions can be resolved with chaining, i.e. linked list.

- Do not confuse hash functions here with cryptographic hash functions.

- A hash function \(h: U \rightarrow [m]\) maps a key to a position in \(T\).

- We write \([m]\) to denote the set \([0, \ldots, m-1]\).

- \(T\) is referred to as a hash table.

Time complexity

- We cannot avoid collisions entirely since \(u > m\); some keys are bound to be mapped to the same position.

- Using chaining, we have the following time complexities:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Worst case time</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(add(x, v))</td>
<td>(O(1))</td>
<td>Simply add item to the list link if necessary.</td>
</tr>
<tr>
<td>(lookup(x))</td>
<td>(O(\text{length of linked list}))</td>
<td>We might have to search through the whole list.</td>
</tr>
<tr>
<td>(delete(x))</td>
<td>(O(1))</td>
<td>Constant time if we have already located the element in the linked list.</td>
</tr>
</tbody>
</table>

True randomness

Theorem

Consider any \(n\) fixed inputs to the hash table, i.e. sequence of add/lookup/delete operations. Pick \(h\) uniformly at random from the set of all functions \(U \rightarrow [m]\). The expected run-time per operation is \(O(1 + \frac{n}{m})\), or simply \(O(1)\) if \(n = m\).

Proof

- Let \(x, y\) be two distinct keys from \(U\).
- Let indicator r.v. \(I_{x,y}\) be 1 if \(h(x) = h(y)\).
- \(Pr(h(x) = h(y)) = \frac{1}{m}\) since \(h(x)\) and \(h(y)\) are chosen uniformly and independently from \([m]\).
- Thus, \(E(I_{x,y}) = \frac{1}{m}\).
- Let \(N_x\) be the number of keys stored in \(T\) that are hashed to \(h(x)\).
- Thus, in worst case it takes \(N_x\) time to look up \(x\) in \(T\).
- \(N_x = \sum_{y \in T} I_{x,y}\).
- \(E(N_x) = \sum_{y \in T} E(I_{x,y}) = n \cdot \frac{1}{m} = \frac{n}{m}\) (linearity of expectation).
Weakly universal hashing

- A set H of hash functions is weakly universal if for any two keys $x, y \in U$ (such that $x \neq y$),
 \[\Pr(h(x) = h(y)) \leq \frac{1}{m} \]
 where h is chosen uniformly at random from H.

Theorem

Consider any n fixed inputs to the hash table, i.e. sequence of add/lookup/delete operations. Pick h uniformly at random from a weakly universal set H of hash functions. The expected run-time per operation is $O(1)$ if $m \geq n$.

Proof

Analogous to the previous proof. Go through it and verify.

Constructing a weakly universal family of hash functions

- Suppose $U = [u]$, i.e. the keys in the universe are integers 0 to $u - 1$.
- Let $p > u$ be any prime.
- For $a, b \in [p]$, let
 \[H_{p,m} = \{h_{a,b} \mid a \in [1, \ldots, p - 1], b \in [0, \ldots, p - 1]\} \]

Theorem

$H_{p,m}$ is a weakly universal set of hash functions.

Proof

See CLRS, Theorem 11.5, page 267.

True randomness vs. weakly universal hashing

- For both
 - true randomness (h is picked uniformly from the set of all possible hash functions) and
 - weakly universal hashing (h is picked uniformly from a weakly universal set of hash functions),

 we have seen on previous slides that when $m = n$ then the expected lookup time in the hash table is $O(1)$.

- Since constructing a weakly universal set of hash functions seems easier than obtaining true randomness, this is all good news! Or...?
- What about the longest chain?

 If it is very long, then every now and then a lookup could take very long time.

Longest chain – true randomness

Lemma

If h is selected uniformly at random from all functions $U \to [m]$ then, over m fixed inputs,

\[\Pr(\text{any chain has length } \geq 3\log m) \leq \frac{1}{m}. \]

Observe

In this lemma we insert m keys, i.e. $n = m$.

Proof

The problem is equivalent to showing that if we randomly throw m balls into m bins, the probability of having a bin with at least $3 \log m$ balls is at most $\frac{1}{m}$.

Longest chain – weakly universal hashing

The conclusion from previous slides is that with true randomness, the longest chain is very short (at most $3 \log m$) with high probability.

Lemma

If h is picked uniformly at random from a weakly universal set of all functions $U' \to [m]$ then, over m fixed inputs,

\[\Pr(\text{any chain has length } \geq 1 + \sqrt{2m}) \leq \frac{1}{2}. \]

Observe

This rubbish upper bound of $\frac{1}{2}$ does not necessarily rule out the possibility that the tightest upper bound is indeed very small. However, the upper bound of $\frac{1}{2}$ is in fact tight!
Proof

- For any two keys \(x, y\), let indicator r.v. \(I_{x,y}\) be 1 iff \(h(x) = h(y)\).
- Let r.v. \(C\) be the total number of collisions: \(C = \sum_{x,y \in T, x < y} I_{x,y}\).
- Using linearity of expectation and \(E(I_{x,y}) = \frac{1}{m}\) (weakly universal),
 \[
 E(C) = E\left(\sum_{x,y \in T, x < y} I_{x,y} \right) = \sum_{x,y \in T, x < y} E(I_{x,y}) = \binom{m}{2} \cdot \frac{1}{m} \leq \frac{m}{2}.
 \]
- Markov's inequality: \(\Pr(C \geq m) \leq \frac{E(C)}{m} \leq \frac{1}{2}\).
- Let r.v. \(L\) be the length of the longest chain. Then \(\left(\frac{L}{2}\right) \leq C\). Why?
- Now, \(\Pr\left(\frac{(L-1)^2}{2} \geq m\right) \leq \Pr\left(\frac{L}{2} \geq m\right) \leq \Pr(C \geq m) \leq \frac{1}{2}\).
- This implies that \(\Pr(L \geq 1 + \sqrt{2m}) \leq \frac{1}{2}\), and we are done.