Skip to main content

Recognising Egocentric Activities from Gaze Regions with Multiple-Voting Bag of Words

Irwandi Mohamad Hipiny, Walterio Mayol-Cuevas, Recognising Egocentric Activities from Gaze Regions with Multiple-Voting Bag of Words. CSTR-12-003, University of Bristol. August 2012. PDF, 7996 Kbytes.

Abstract

We present a system that aims to recognize activities from an egocentric perspective where the prime source of information are gradient regions around the wearera??s gaze i??xations. Inspired by evidence from Vision re- search on the analysis of gaze patterns of people doing manual tasks, we assess how well an existing real-time method for region description performs on a dataset of about 200 video sequences recorded from a wearable gaze tracker. We evaluate the use of the traditional bag of words classii??cation approach, however we introduce and evaluate a weighted multiple voting scheme. We model an activity as a record of i??xated visual landmarks as the person progresses through the steps. Our method has shown encouraging results on 11 dii??erent classes of manual and household activities, with our multiple voting scheme increasing the hit rate by nearly twofold.

Bibtex entry.

Contact details

Publication Admin