Skip to main content

Detecting Communities in Networks by Merging Cliques

Bowen Yan, Steve Gregory, Detecting Communities in Networks by Merging Cliques. 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2009). ISBN 978-1-4244-4737-1, pp. 832–836. November 2009. PDF, 98 Kbytes.

Abstract

Many algorithms have been proposed for detecting disjoint communities (relatively densely connected subgraphs) in networks. One popular technique is to optimize modularity, a measure of the quality of a partition in terms of the number of intracommunity and intercommunity edges. Greedy approximate algorithms for maximizing modularity can be very fast and effective. We propose a new algorithm that starts by detecting disjoint cliques and then merges these to optimize modularity. We show that this performs better than other similar algorithms in terms of both modularity and execution speed.

Bibtex entry.

Contact details

Publication Admin