Skip to main content

HMM based Archive Film Defect Detection with Spatial and Temporal Constraints

Xiaosong Wang, Majid Mirmehdi, HMM based Archive Film Defect Detection with Spatial and Temporal Constraints. Proceedings of the 20th British Machine Vision Conference, Winner of the Best Industrial Paper Prize. September 2009. PDF, 1920 Kbytes.

Abstract

We propose a novel probabilistic approach to detect defects in digitized archive film, by combining temporal and spatial information across a number of frames. An HMM is trained for normal observation sequences and then applied within a framework to detect defective pixels by examining each new observation sequence and its subformations via a leave-one-out process. A two-stage false alarm elimination process is then applied on the resulting defect maps, comprising MRF modelling and localised feature tracking, which impose spatial and temporal constraints respectively. The proposed method is compared against state-of-the-art and industry-standard methods to demonstrate its superior detection rate.

Bibtex entry.

Contact details

Publication Admin