Skip to main content

Naive Bayesian Classification of Structured Data

Peter A. Flach, Nicolas Lachiche, Naive Bayesian Classification of Structured Data. Machine Learning, 57(3). ISSN 0885-6125, pp. 233–269. December 2004. PDF, 266 Kbytes.

Abstract

In this paper we present 1BC and 1BC2, two systems that perform naive Bayesian classification of structured individuals. The approach of 1BC is to project the individuals along first-order features. These features are built from the individual using structural predicates referring to related objects (e.g., atoms within molecules), and properties applying to the individual or one or several of its related objects (e.g., a bond between two atoms). We describe an individual in terms of elementary features consisting of zero or more structural predicates and one property; these features are treated as conditionally independent in the spirit of the naive Bayes assumption. 1BC2 represents an alternative first-order upgrade to the naive Bayesian classifier by considering probability distributions over structured objects (e.g., a molecule as a set of atoms), and estimating those distributions from the probabilities of its elements (which are assumed to be independent). We present a unifying view on both systems in which 1BC works in language space, and 1BC2 works in individual space. We also present a new, efficient recursive algorithm improving upon the original propositionalisation approach of 1BC. Both systems have been implemented in the context of the first-order descriptive learner Tertius, and we investigate the differences between the two systems both in computational terms and on artificially generated data. Finally, we describe a range of experiments on ILP benchmark data sets demonstrating the viability of our approach.

Bibtex entry.

Contact details

Publication Admin