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Abstract

A mobile device that adapts its behaviour to complement #er experience has long been a goal for
the pervasive and ubiquitous research communities. Knaveomstext-awarenesshis enables behaviours
such as diverting incoming phone calls to an answer phonamadifree-kit if the carrier of the phone is
currently driving. Another example is the automatic ltegi of content to show only relevant data, e.g. the
locations of the closest restaurants.

Traditionally, positional information has been deterndinga the use of GPS receivers; everyday ac-
tivities such as walking and driving have been recognisédgusiachine learning techniques to classify
patterns of accelerometer data. Both of these sensorgeeapditional hardware and in terms of power
consumption, are computationally expensive to run.

In this thesis we demonstrate how a similar level of contax&reness can be achieved without the use
of quantitative positioning techniques involving a GPSereer and without the user of an accelerometer to
recognise everyday activities such as walking, travelling car and remaining stationary. We show how
patterns of signal strength uctuation can be classi ed aswring whilst undertaking activities such as
walking and driving, and show how this behaviour enableglatometer free activity recognition. A quali-
tative approach is presented for modelling the spatiarenment that shields the user from inconsistencies
in positioning system performance. We demonstrate howtiposand activity data can be used to improve
the performance of both the activity sensing and positigsrvices. In conclusion this thesis argues that

for many applications this level of context-awareness fs&nt.






Declaration

The work in this thesis is original and no portion of the woekarred to here has been submitted in support

of an application for another degree or quali cation of tbisany other university or institution of learning.

Signed: Date:

lan Anderson






Acknowledgements

I would like to thank Henk Muller for his patience, guidancelaupport. | would like to thank Mike, Paul

and ClIiff for the conversations during thearables lakera. Finally many thanks to Arthur.






This work is dedicated to Jim Fraser and Emma Curtin.






Contents

1 Introduction
1.1 Contributions . . . . . . . e e
1.2 ThesisStructure . . . . . . . . L e
2 Background
2.1 Context-AWarenesS . . . . . . . . o i e e e e e
211 POSItION . . . . o
2.1.2 Activity Recognition . . . . . . . ..
2.2 MachinelLearning . . . . . . . . . e e
221 BayesianNetworks . . . . . . . . L e
222 MarkovChain . . . . . . ..
2.2.3 Hidden MarkovModel . . . ... ... .
224 Clustering . . . . . .
3 Characterising Wireless Data
31 GSM. . . e
3.1.1 Method . . . . .
3.1.2 Density . . ..
3.1.3 Signal strength stability . . . . ... ... ... ... ... o
3.1.4 Spatial Signal strengthvariance . . . . . .. .. .. ... ...

11
13
13
28
29
30
34
35
38

41

A3



CONTENTS CONTENTS
3.1.5 Motion Effects: Signal Strength . . . . . .. ... ... ... L. 49
3.1.6 Motion Effects: MonitoredCells . . . . . . . . . ... ..o 51
3.1.7 EnvironmentTransitions . . . . . . . . . . .. ... e e 52
3.1.8 UsingCellHistory . . . . . . . . . . e 54
3.1.9 RelatedWork . . . . . . . 58
3.1.10 SummMary . ... e e e e e e e 59

3.2 IEEE802.11. . . . . . . e e 59
321 Stability . . . . 60
3.22 UsingHistory . . . . . . . . e 61
3.23 Availability . . ... e 62
3.24 RelatedWork . . . . . . . 64
325  Summary . ... e e e 66

3.3 SUMMANY . . . e e e e 66

4 Qualitative Positioning 69

4.1 Qualitative Managementof Space . . . . . . . . . ... oo 70
4.1.1 Logical ManagementofSpace . . . . . . . . . ... e 71
4.1.2 AutomaticZone Creation . . . . . . . . . . . . e 73
4.1.3 ZoneTopology . . . . . . . . e 74
414 Results . . . . . . 75
4.15 Automatik Determination . . . . . . . . . ... ... 80
4.1.6 Deployment. . . . . . . . .. 81
417 SUMMAIY . . . . ot e e e e e e e e e 82

4.2 Fusing Qualitative Positional Data . . . . . . . . . . . ... . ... 83
4.2.1 BayesianNetwork . . .. . . . . . . . .. .. 84
4.2.2 Node Probability Distributions . . . . . .. ... ... ... ... ... ... 87
4.2.3 ApplyingEvidence . . . .. . ... . e 88
4.2.4 AssessingPerformance . . . . . . ... e 90



CONTENTS

CONTENTS

4.3 Related Work

4.4 Summary

5.1 Available Information

5.2 Supervised Calibration

5.3

54
55
5.6
5.7

6.2 GSM Implementation

6.3

4.2.5 Results

Recognising Modes of Travel

5.2.1 Neural Network Implementation
5.2.2 Neural Network Results
5.2.3 Window Size

Hidden Markov Model
5.3.1 Inferring Activity
5.3.2 Unsupervised Calibration
5.3.3 Results

Heterogeneous Environments

Related Work

Applications: Raising Health Awareness

Summary . ...

Fusing Activity and Position Information

6.2.1 POI Creation
6.2.2 POI Recognition
6.2.3 POI Transitions
Results. . ... ................
6.3.1 Activity Performance (Independent)

6.3.2 Position and Activity Performance



CONTENTS CONTENTS

6.3.3 Position Performance (Independent) . . . . . . . .. .. ... .. ... ... 134

6.3.4 Limitations . . . . . . . ... e 136

6.4 RelatedWork . . . . . . . . . e 138
6.5 Summary . ... e e e e 140

7 Conclusions 143
7.1 Applications . . . .. e 143
7.2 Limitations . . . . . . e 146
7.3 FurtherResearch . . . . . . . . . . . . e 147
7.4 ClosingRemarks . . . . . . . . . . . e 148



List of Figures

21
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5

Bayesian network for fusing GPS and self-reported positdata . . . . . ... ... .. 31
Conditional probabilitytables . . . . . . . . . ... . ... .. .. ... . 32
Cell density map for the network operator O2 in Northeeteind. . . . . ... ... ... 45
Cell density map for Belfast, Northernlreland. . . . . .. .. .. ... ... ..... 46
Signal strength stability of one particularcell . . . . ... ... .. ... .. ..... 47
Signal power uctuation when moving and stationary . . ... .. ... ........ 49
Cell uctuation . . . . . . . . . e 53
Environmenttransitions . . . . . . . . ... 55
Cellhistory . . . . . . . e 56
RSSI level for a single 802.11 accesspoint . . . . . . . . . oo 60
802.11 Density: Map . . . . . . . e e 64
802.11 Density: Graph . . . . . . . . e e 65
802.11 Density: Map subsection . . . . . . . . . . ... ... e 66
Ofce oorplan. . . . . . . e e 71
Physical path through the of ce environment . . . . . . . . ... ... ... ..... 72
Clustering performance . . . . . . . . . . . . . . e e e 76
Radio map performance in the metro-open environment.. . . . . . . . . ... .. .. 78
Clustering Visualisation . . . . . . . . . . . . e 79



LIST OF FIGURES LIST OF FIGURES

4.6
4.7
4.8

51
5.2
53
54
55

6.1
6.2
6.3

A Bayesian network for fusing cellular, WiFi and beacasigional information. . . . . . 85

Relationship between Cell-Zone's and WiFi-Zone's. . .. ... . . . .. ... ....... 91

Results. . . . . . . . 93

Signal Strength Fluctuation . . . . . . . . ... ... ... e 99
Cell density in rural and populated areas. . . . . . . . . . o oo oL 100
Creating the observation alphabet. . . . . . . . . .. ... .. L. 108
The applicationinterface . . . . . . . . . . .. e 116
Participantdiary extract . . . . . . . . . . . ... e e 117
CSSFInputData . . . . . . . . . . . e e 127

POlgroundtruth . . . . . . . .. . . . e 130
POl groundtruth . . . . . . . . . . . e 137

Vi



List of Tables

3.1
3.2
3.3

51
52
53
54

6.1
6.2

Signal strength variance over 25-metreintervals . . .. ... . .. ... ... ... ... 48
Cellhistory . . . . . e 54
802.11 Signal strength uctuation . . . ... ... .. ... .. ... ... ...... 67

CSSF Confusion Matrix in a metropolitan environment... ... . . . . .. ... ... .. 103

Confusion Matrix . . . . . . . . . . e e e e 104
Confusion Matrix . . . . . . . . . . e e e e e 105
Confusion Matrix . . . . . . . . . . e e e 111
CSSF Confusion Matrix . . . . . . . . . e e e 128
POICreations . . . . . . . . . e e e 141



LIST OF TABLES LIST OF TABLES




Chapter 1

Introduction

As humans, we adapt our behaviour to re ect the current caont®/e dress with consideration of the
weather and we increase the volume of our voice in noisy enmients to ensure we are heard. This
process of adapting our behaviour to match the environmeaattles us to complete tasks in an effective,
optimised manner. From a computing perspective we reféigsdehaviour as “context-awareness'. Similar
to humans, devices and software programs that dynamickly their behaviour to re ect the current

context that they are being used in are said to be contexteawa

In order for a computer application or device to behave in ateoxd aware manner it will need to
sense aspects of the current situation in which it is beirglusn the pervasive and ubiquitous research
communities there have been numerous projects focusingeeelaping this type of context-aware be-
haviour [WHFG92, PLFKO03, BP0O, Kra06, SBG98, The06]. To lablone example in more detail, the
SenSay project [SSM3] sought to provide context-aware behaviour on mobilenglso This included the
functionality to adapt the ring tone volume on the phone teatethat of the ambient noise level in the
current environment. In addition, SenSay used three awrekders to capture the motion of the user with
the aim of adjusting the behaviour of the phone in keeping ¢ activity of the user. For example, raising

the ring-tone volume when the carrier of the mobile phone dedscted as being mobile, i.e. walking.

Although numerous factors in uence the current contextalbwill be relevant for all situations. For
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CHAPTER 1. Introduction

example, the current weather conditions are arguablyeieglt from the perspective of how a mobile
phone should react to the event of receiving a phone call.oirast, knowledge of whether the carrier
of the mobile phone is driving a motor car is extremely usebntextual data; the call could be automat-
ically diverted to an answer phone, reducing the risk ofairiistraction. As humans we subconsciously
Iter irrelevant information and react to contextually eeant information. In order for devices and soft-
ware programs to replicate this behaviour they must be pgdipvith the “logic' to fuse and lter the
data obtained from sensors attached to the device. To mieatéhd, numerous projects have sought to
develop software frameworks and inference engines to fudelter data from multiple, typically hetero-
geneous sensors [PLFKO03, HI04, KMK3]. An example of this type of work comes from the MIThril
platform [DDO1]. In this project accelerometer data wasefligith IR tag readers, 802.11 (WiFi) data in
addition to othepn-bodysensors. This work enabled the identi cation of activiesh as walking, driving

and cycling.

Machine learning enables context-aware devices to irgerpw sensor data and adapt behaviour ac-
cordingly. The term "machine learning' refers to the precasa software program learning how to interpret
raw data from sensors. Two forms of machine learning - sugpedvand unsupervised learning - are dis-
cussed in Chapter 2. From the perspective of context awgteEapons machine learning limits the amount
of human involvement in deciding how a context-aware apfiit should adapt its behaviour given the raw
sensor data. In addition, machine learning eases the grotedroducing different parameters, sensor data,

and events to a context-aware device.

The approach taken to fusing data from multiple typicallypdirate sources has generally been to apply
machine learning techniques such as Bayesian based m¢&iR865, DC93, DD01]. Using data obtained
from accelerometers, Muller and Randell [RMO0O] succes$sfigveloped an Arti cial Neural Network to

identify activities such as walking, driving, climbing stand sitting still.

Whilst there are many sensors capable of sensing a widewafievents, it is worth noting that a con-
siderable research effort has focused on the developmemibfods for inferring location. This knowledge
enables a context-aware application to deliver infornmat@a user based upon their current location. For

example, providing reminders of required shopping itemgnvhear the appropriate stores or playing an
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CHAPTER 1. Introduction

audio commentary to visitors of a museum that re ect the spexhibits they are closest to.

Perhaps the most popular method of obtaining positionalrinétion is via the Global Positioning
System, or better known in its abbreviated form - GPS [Get@8]S enables context-aware applications to
typically be aware of their location to within a 10-metre 2on outdoor environments. Unfortunately GPS
is not without its limitations. GPS relies on the ability teesfour or more satellites in the sky in order to
determine the position of a GPS receiver. As such, if yourdeadrs or the view to the sky contains other
obstacles, the GPS receiver will not see a suf cient numlieatellites, meaning the application will not
be able to determine position. In addition, a GPS receivexpensive in terms of power consumption and

typically is only tted as standard on today's high-end meldevices.

Due to some of the limitations associated with GPS, the utnigs and pervasive research communities
have looked for alternative methods that utilise wirelelsdéfprms including 802.11 (WiFi) and cellular
telephony. The interest in cellular methods is arguably wuthe ubiquity of mobile phones. In 2004
there were an estimated 61 million mobile phones in the UKirega population of just under 61 mil-
lion [CIAQ7]. As such, there has been much excellent worketteping positioning methods for cellular

devices [OVMdLO5, LLNO1, WNLO4, Wil98, SROOQ].

Aside from location there has been much work focusing on Hwsvkiehaviour of a mobile phone
could be improved given contextual data. The Context Awask Phone Project [The06] from MIT is an
example. This project sought to load different user prodepending on whether the carrier of the mobile
phone was driving, in a restaurant, at work and so on. Theosgmsed to achieve this behaviour included

a GPS receiver, a three-axis accelerometer, an IR tag raadex microphone.

Whilst there has been much successful work focused on pray@bntext awareness on mobile devices
it is not without its limitations. The main issue relatestie fact that the contextual data has always been
obtained from sensors not present on today's mobile phdnekis thesis we present alternative methods
for inferring the current activity of the carrier of a mobitdone and for recognising locations. These
methods use cellular data present on all mobile phones. Wiekgrate that this approach can provide a

level of context-awareness similar to that obtained fromgiaccelerometers and GPS receivers.
A cellular network consists of a series radio transmittdBase Transceiver Stations - that are deployed

5



CHAPTER 1. Introduction

at xed locations. Each transmitter provides a coveraga #rat is referred to as a “cell'. In order to satisfy
demand and enable a user to travel from the geographic g@/enea of one cell to another without a
break in service, the management of the mobile phone mustdrated from one radio transmitter (cell) to

another. This process is referred to as "handoff' or "haadaw the US. Aside from the physical location

of the mobile phone the cell signal strength will also in werthe decision for initiating handoff. As such,
a mobile phone typically monitors six neighbouring celladdition to the current serving cell. If the signal
strength drops below a predetermined minimum level the dfipdocess may be initiated to mitigate the

risk of a break in service.

Our approach to activity recognition utilises this arctitee. We use the number of unique cells that
a mobile phone monitors over a given time interval as an at@io of current activity. The hypothesis
that makes this possible is that the faster you travel, tkatgr the geographic area you will cover and,
as such, the number of cells that will be detected by the ragifibne will increase. We also demonstrate
how the level of signal strength across all visible cellsfent and neighbouring) will uctuate in specic
patterns depending on the current activity of the carrighefmobile phone. This pattern of signal strength
uctuation, together with the previously mentioned cellctwation, enables the identi cation of activities

such as walking, travelling in a motor car and remainingbary.

From a position determination perspective we use the fatthie base transceiver stations in a cellular
network are deployed at xed locations. We extend the laratngerprinting technique presented by
Bahl and Venkata in 2000 [BP0O]. The term “location ngenping' refers to the method of positioning a
mobile device using signal strength levels from wirelesscboas such as 802.11 access points and cellular
base stations. Deploying a location ngerprinting positity service is a two stage process. Firstly, an
of ine calibration phase is undertaken where the signadrggth levels are recorded at xed points in the
application environment. The positions and associatedasigtrength levels ( ngerprints) form a radio
map of the environment. At runtime, users match their carsggnal strength levels from visible beacons
against those in the radio map. Typically the position assed with the closest matching ngerprint
(shortest Euclidean distance of the signal strength) igmet to the user as their current position. The

hypothesis is that the same signal strength levels will lneentered at the same physical position.
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CHAPTER 1. Introduction 1.1. CONTRIBUTIONS

Problems occur when deploying this type of system when the&@af the environment creates incon-
sistent performance levels. This will occur when statictatles such as walls and desks are present in
parts but not all of the environment. Equally, dynamic oblsts such as those created by people moving
through the environment also cause issues with the retiabil positional information. In this thesis we
address these issues by taking a qualitative approachiteded) positional information to context-aware
applications. We argue that for most situations, knowlealgieeing in a particular zone or place is more
useful than providing a position in the form of a Cartesiaardinate that has an associated error that must
then be mapped to a place.

Neither the activity recognition nor position determiatitechniques that are presented in this thesis
require anyactive network participation. Thus user privacy is maintainedlsthélso ensuring that the

solutions presented in this thesis are scalable.

1.1 Contributions

The contributions of this thesis are summarised below:

An analysis of the behaviour of wireless data in heterogesaemvironments and the effect this

behaviour has on localisation techniques [AM06b, AM08]h&@ter 3)

A spatial model for developing context-aware applicatitivad is re ective of both measurement and

environmental limitations [AMO5]. (Chapter 4)

An automated and unsupervised approach to constructingléaiive representation of the spatial

environment [AMO5]. (Chapter 4)

A model for fusing wireless positional data for use in quiite representations of the spatial envi-
ronment [AMO6d]. This enables behaviours such as the ditivaleactivation of speci c services

depending on whether the phone is at the of ce or at the ho@lealjter 4)

A model for recognising everyday activities such as walkingyvelling in a motor car and remaining

stationary using wireless data [AM06a]. Activity data siashthe knowledge that someone is driving

7



1.2. THESIS STRUCTURE CHAPTER 1. Introduction

enables calls to be silently diverted to an answer phone.c@lier can be played a message letting
them know that the person they are trying to contact is dgivinhe driver can then be alerted that

they missed a call when they nish driving. (Chapter 5)

An unsupervised activity recognition calibration procedéor learning the optimal settings for a
speci ¢ environment [AMO06¢]. Given knowledge of the curteactivity of a mobile phone it is

possible to conserve power. For example, people genersdélyBluetooth only when using hands-
free-kits. Therefore we could switch Bluetooth off if we kmdhe user is currently stationary. In
addition, if a mobile phone was equipped with a GPS receivecauld switch off the GPS receiver
when we are stationary or when we are indoors. Or we coulcceethe frequency of cellular network

scans (scans to assess the current and neighbouring ¢Ehsipter 5)

Methods for fusing data produced by the activity recognitamd positioning algorithms and iden-
tifying points of interest. Fusing activity and locationtdancreases the accuracy and reliability of
the behaviour of a context-aware mobile phone. For exanfle carrier of a mobile phone always
walked to the shop and always drove to their of ce, passimgstop on the way then an application
that provided shopping reminders should look at both locagind current activity before supplying
a reminder. If the user is driving then it is not worth prowigia reminder when the user is near the

shop; they only visit it on foot. (Chapter 6)

Other papers . In collaboration with Glasgow University the activity mgnition technique presented in

Chapter 5 has been used to raise health awarenessTOBRBRMS" 07].

1.2 Thesis Structure

The rest of this thesis is structured as follows.

Chapter 2. This chapter introduces context-aware computing, pingién overview of the state-
of-the-art in terms of position determination and activi#égognition. This chapter also provides an

overview of supervised and unsupervised machine leareicfyniques.

8



CHAPTER 1. Introduction 1.2. THESIS STRUCTURE

Chapter 3. In this chapter we present the results of a series of exeatsndesigned to assess the
behaviour of wireless signals such as GSM and 802.11 (WilF@.evaluate the reliability of signal

strength levels, i.e. at the same physical location will wpegience the same signal power levels
from the same beacons. We also present an investigatior eftiance of signal power levels given
obstacles in the environment and the signal power degadasi the mobile device is moved further

away from a wireless beacon.

Chapter 4. This chapter presents an alternative approach to modealfiace in context-aware appli-
cations. We argue that location aware applications showdetthe application environment with
consideration of the underlying positional service. Wespré¢ a method and set of algorithms for as-
sessing the positioning service performance in a giverremiient and generating a zone-based rep-
resentation of the environment that re ects the perforneasfca given positioning service in a given
environment. Towards the end of this chapter we demongtmateto fuse multiple homogeneous or
heterogeneous sources of positional data with the aim of&sing the accuracy and reliability of the
positional data. These algorithms have been developedaatgpwithin the qualitative, zone-based

approach to managing space.

Chapter 5. In this chapter an approach to inferring the current agtiof a carrier of a GSM mobile
device is presented. We demonstrate how it is possible timgissh between various methods of
movement such as walking, driving and remaining stationasigg GSM data. This method differs

from traditional approaches using accelerometers.

Chapter 6. In this chapter we present an approach to fusing positiohaativity data. We demon-
strate how by combining this information it is possible tok@atronger predictions of activity using
positional data and vice-versa. We use this approach tdifdmoints of interest in an automatic to

another.

Chapter 7. This is the nal chapter and concludes this thesis by sunsimy contributions and

results. In closing, suggestions of areas for further researe presented.



1.2. THESIS STRUCTURE CHAPTER 1. Introduction

10



Chapter 2

Background

In 1991 Mark Weiser wrote a seminal paper titled “The comptde the 21st century” [Wei91]. In this
paper he presented a vision for a new age of computing thatdhhia colleagues at PARC [Pal] described
asubiquitous computingThis vision describes a transition from traditional degktomputing to an era
of mobile, always available computing that would help oeene the problem of information overload.
Ubiquitous computers would assist in the completion of e everyday tasks but now these tasks could
be completed quicker thanks to ubiquitous computing. Magiséf described the technology required for

ubiquitous computing as:

“[...] cheap, low-power computers that include equallyvemient displays, a network that ties

them all together, and software systems implementing utioigsi applications” [Wei91].

Since 1991 all of these requirements for ubiquitous computiave been met. Computer processing
power has increased substantially with Moore's Law [Moo@5¢sture based touch screen interfaces such
as the Surface Table from Microsoft have been developed]8}icThe Surface Table integrates a computer
and a touch screen display into a coffee table. The touctesqeovides intuitive methods for everyday
tasks such as viewing and sharing media in social envirotsn&his serves as a ne example of a ubiqui-

tous computer.
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CHAPTER 2. Background

The term “context-aware computing” rst appeared in 199gublications from Schilitand Theimer [ST94]
and Schilitet al. [SAW94] and in a special issue of Human-Computer InteractanContext in De-
sign [Mor94]. These early papers discussed the need for ¢haviour of applications to be re ective
of the current context that they are being used in [SAW94, STMWS8ntext was de ned by Brown et al.

as:

“Context is any information that can be used to charactéhieeituation of an entity. An entity
is a person, place, or object that is considered relevahgtinteraction between a user and an

application, including the user and applications themesMADB* 99].

In order for a device or application to behave in a contex&r@wnanner the device or application must
be designed to support dynamic recon guration at runtime st be provided with the ability teense
the relevant aspect(s) of context. For example, if the eaafia mobile phone is driving then all incoming
calls could automatically be diverted to an answer phonés fdguires the ability to sense that the carrier
of the mobile phone is driving and that the mobile phone hasatility to redirect calls. There has been
much work focusing on how tgense contexand secondly, how to design applications and devices to
support dynamic recon guration. In Section 2.1 we presenteerview of the state-of-the-art in context-
aware computing. We provide reviews of methods for deteingiposition and methods for recognising

activities.

The term “Machine Learning” is used to describe the procéssammputer program learning how to
complete a task. In terms of ubiquitous and context-awanepeming, machine learning has been heavily
used in the processes of identifying aspects of contexgusiw sensor data. For example, accelerometer
data is typically processed using machine learning teclasido recognise everyday activities such as walk-
ing, running, and cycling. In Section 2.2 we present an dearof machine learning techniques, including

the use of both supervised and unsupervised approaches.

12



CHAPTER 2. Background 2.1. CONTEXT-AWARENESS

2.1 Context-Awareness

There are numerous aspects of context that will potentiallience the desired behaviour of an application.
The most popular are: location and activity. In this secti@nprovide an overview of the state-of-the-art

activity recognition techniques and position determiratnethods.

2.1.1 Position

The ability to accurately determine personal position isasential requirement for many context-aware
applications. To address this issue, many positioningegysthave been developed using a variety of
different technologies, ranging from Infrared and optteahniques to the use of radio and ultrasonic waves.
All of these systems provide users with varying levels ofifimsal granularity. For example, the Global

Positioning System (GPS) can place a user within 10 metess\ahereas ultrasonic systems can provide
a sub 25cm level of accuracy. This varying degree of accuoacyrs because positioning systems are
designed to solve speci c problems, i.e. to be low-costeoffigh levels of accuracy, or self-calibrating.

There is no single technology that would meet all positigmeeds.

Therefore developers of context-aware applications stHeanost appropriate positioning technologies
to meet the requirements of their application and if neecdbmplement them with other systems and fuse

the positioning data.

In this section we provide an overview of infrastructuresdxposition determination methods. We use
the term positioning infrastructure to describe a systeahdltermines the position of a user via the use of
external data. An example of this would be the GPS where ae¥de used to listen for signals containing
position information being broadcast from satellites. Wiit the information from the satellites it is not
possible for a GPS receiver to calculate a positional x. \Wesent a review of positioning infrastructures
that have been created using a wide selection of technalég@uding: Infrared, RF, and Ultrasound,

before concluding with a review of autonomous positionieghhiques.

13



2.1. CONTEXT-AWARENESS CHAPTER 2. Background

GPS

The Global Positioning System (GPS) [Get93, EPG85] pravijolesitional information in most environ-
ments that provides a clear view to the sky. GPS uses infaamaént from satellites orbiting the Earth to
calculate position. This process of position determimatiequires visible satellites and uses trilateration.
Each satellite transmits the time each message is sent. ebleé/er uses this to calculate the satellite’s
distance from the earth. Position determination is onlysitads if four or more satellites are visible. This
means that GPS will fail in indoor environments and in dermfamn environments (i.e. city centres where

tall buildings create obstacles and cause signal re esteord refractions).

Infrared

Initially, the primary focus of context-aware behaviounmobile applications was centred around location.
This is illustrated by the research at the time. One of theinsbuilding positioning infrastructures was the
Active Badge system [WHFG92]. The positioning aspect of {hgliaation was able to offer room level
location granularity. This was used to locate the near@stgsror route incoming calls to the nearest phone.
The architecture for this system was centralised in thahglsimaster station polled sensors distributed
throughout the building for “sightings' of users. Users aveighted by wearing badges that periodically
emitted unique codes detectable by sensors placed at kmoatidns. The underlying technology used in
this system was Infrared. This technology was selectedusectihe Infrared signals will not pass through
walls, hence if only one receiver is placed in each room thases will only be detected by one receiver.
Secondly, Infrared beams are re ected by walls meaning theetion a user is facing does not matter, the
signal will still get to the receiver. This system trackeenssand was one of the rst applications to raise
the still current issue of privacy concerns.

The scalability of infrared based systems is limited beedbsy suffer from dead spots, have limited
range and will perform poorly in sunlight i.e. rooms withdarwindows. It is also expensive to install and
maintain and cannot easily be extended to offer a ner le¥débcation granularity. Other problems occur
when there are many concurrent users of the applicatiomptieg to transmit IR signals at the same time.

Another key characteristic of this system is that the baddefrared signal never knew its location, instead

14



CHAPTER 2. Background 2.1. CONTEXT-AWARENESS

location information was provided by the application iistraicture.

The IR technology has been used in other positioning sysiieE®&3] to provide absolute ground truths.

RF

The prison guard Duress Alarm System (DALS) [CGL93] wasgiesil to extend existing duress systems
that broadcast messages to inform other staff that someotie irouble’ including the location of that
person. The system had to use the existing infrastructuszavir possible.

This system uses a network of distributed sensors that Rffagignal strength measurements to a central
point. Traditionally, to nd RF signal direction requirewd line of bearing signals which will locate the
transmitter in two directions: azimuth and radial distantlee problem with this system was that a prison
is primarily constructed using RF re ective materials suahsteel grids and reinforced masonry. This
prevented the use of such classic radio location technidqostead, a combination of radio, carrier current
transmission and digital signal processing had to be uskd.sblution consisted of guards wearing VHF
transmitters on their body that would transmit the distiesls when activated. Throughout the prison a
series of sensor/relay modules record the strength of thel&Btrength and output a proportional signal
to a central PC. The signal strength can then be mapped on atibmation matrix outputting a set of
coordinates that represent an X/Y location on the prisorm. oo

Although this system met the requirements of the applicatie initial setup of the system was expen-

sive and a detailed structural knowledge of the oor was el

RF and Ultrasonics

In recent years a number of positioning infrastructures§@ RMMRO02, HWO02, HHO6] have been de-
veloped using a combination of RF and Ultrasonic signalsetermnine position. Both signals are typically
used in the following way to calculate position:

RF and ultrasonic signals are broadcast concurrently frdmeacon when the RF signal is received
by the listener, the ultrasonic receiver is switched on atichar started. RF signals travel at the speed

of light so the RF signal is received at the listener almostantaneously, however ultrasonic signals are
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considerably slower, travelling at the speed of sound. Asdtsignals travel at a constant speed (assuming
no signal interference and a clear line of sight betweerstréter and receiver), the time difference between

receiving them can be used to calculate the distance betiram@smitter and receiver.

The Cricket system [PCBO00] uses both RF and ultrasonic tdogies in the manner described in the
previous paragraph to determine position to within a fenasgtieet. The decentralised system architecture
consists of beacons placed on ceilings and walls that diss¢enocation information to “listeners'. In the
Cricket system a listener is a small device that can be athttha node (static or mobile) that provides a
simple API to programs running on the node. The API allowgpams to advertise themselves by regis-
tering with a map server and use a resource discovery seivgsentially this system acts as a positioning
infrastructure that context-aware applications can béogegd on. The decentralised beacon network and
the need to con gure components has been kept to a minimurereTik no need to con gure the listener
and the beacon con guration only requires the setting ofiagto represent the space that is disseminated
by that beacon. This system does not require beacons to tedpda known locations. This has a positive
affect on system scalability but it does create the problehit is not possible to coordinate RF transmis-
sions (even if it was possible it would have a direct affecsgstem scalability). In the Infrared section the
Active Badge system [AG'03] broadcast Infrared signals every 15 seconds to avoithkigpllision, the

Cricket system however uses randomisation to avoid thelgmobf repeated collision.

The Bat system [HH94, WJH97], like the Cricket system [PCB@&#s a combination of RF and ul-
trasonics signals to determine location. The system has tesigned to determine the three dimensional
position of objects to within 15cm of their true location. thre Bat system, wireless transmitters are at-
tached to all objects that are required to be located. Theiwercarchitecture is centralised with a single
controlling PC. Receivers are arranged 1.2m apart in ary atr&nown locations. When determining an
object's location, the PC sends a reset signal to all receiveer the serial network and at the same time
it instructs a RF base station to broadcast a message dogtaitransmitter address. Upon receipt of the
message the transmitter will then send out an ultrasongepuhich will be detected by the receivers. The
ultrasonic receivers are then monitored for 20ms until tgea peak is retrieved. The controlling PC then

retrieves the time difference that the receivers encoadt&om receiving the reset signal to receiving the
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ultrasonic spike. The PC can then calculate the positiom@fobject using multilateration to sub 15cm

levels of accuracy.

Although this tracking system provides excellent levels@furacy it does have some limitations, par-
ticularly concerning scalability. Primarily, it is only psible to identify one object at one exact time. This
would limit a context-aware application to a single usersihgle time. Deploying over a large environment
such as throughout a building would be a time consuming taskuse transmitters need to be arranged in

patterns at known locations.

Hazas and Hopper [HHO6] investigated the use of broadbamdsolund in location systems. This
work demonstrated that the use of broadband ultrasoundedfimany bene ts of narrowband ultrasound

including: reduced position determination latency, iased robustness and increased update rates.

The low cost ultrasonic system [RMO01] developed at the Uit of Bristol can be implemented for
around 150 U.S. dollars, providing coverage for a typicannoin an area greater than 8m by 8m with
accuracies of 10-25cm. The system consists of a single RErtiigter and four ultrasonic transmitters. The
clientis equipped with an RF receiver, decoder and a PICa¥gontroller. The RF transmitter sends out an
eight byte coded packet containing an identi er byte, andBrass, and a oor and room number. The RF
“ping' is primarily used for clock synchronisation. Follawg this ping four ultrasonic chirps are sent. The
client can then use these time-of- ight measurements toutale their position relative to the transmitters.
Using four transmitters increases the system range, casapeshfor occasional signal loss and simpli es
geometric calculations. The accuracy of this system has improved by using a signal tness selection
that removed the poorest values. In this system the privattyeaclient is maintained and they alone know
their position. This does require an of ine initial setup &k the client (receiver) is told the arrangement
and location of the ultrasonic transmitters. In order tologphis system in multiple neighbouring rooms
the range of the RF ping needs to be con gured. One of the mtestasting parts of the low cost ultrasonic
system at Bristol is how the RF ping is utilised not only fasat synchronisation issues but also to provide

general information about the room via an ID number.

This system does have an advantage over the Bat system iit gravides support for multiple re-

ceivers. However is does suffer the same problems when #iersyis deployed over a large spatial envi-
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ronment, i.e. throughout a building.

Ultrasonic

The positioning infrastructures described in the previeetion have used a combination of RF and ultra-
sonic signals to determine a users position [PCB00, HH94, %WJRMO01]. In all of these systems clock
synchronisation between transmitter and receiver musth&wed. This is one of the main reasons for
using both RF and ultrasonics. RF signals travel at the spéédht, whereas ultrasonic signals travel
considerably slower, at the speed of sound. Therefore th&dRial can be used to either start a timer, or act
as a trigger so that the ultrasonic “chirps' can be sent aoewtly. This gives times-of- ight measurements
that can be converted to distances and by using multiléeratetermine a user's location.

This technique has proved to be successful, however it dmpsre more circuitry than using only RF
or ultrasonic components. Work at the University of BrigddMO03], has shown that it is possible to create
a pure ultrasonic system, eliminating the need for RF toeskdclock synchronisation and with it the need
for the RF circuitry. This works by using a ping to indicate tstart of a transmission cycle as opposed
to the transmission of a single RF chirp. Both the transmsittend receivers use a previously agreed delay
between the transmission of the ping and the transmissidheothirps. This is particularly useful for
wearable computers where small size and weight are paramaanther advantage of this system is the
elimination of clock synchronisation errors that typigadiccur when using a ping to indicate the start of a
chirp transmission sequence.

In conjunction with the development of this RF free ultras@ystem an auto-calibration algorithm for
determining the location of the transmitters has been dpeel [DMO03]. This is particularly useful to the
deployers of context-aware applications as it removes teehead involved in measuring the positions of

location transmitters.

Location Fingerprinting

The IEEE 802.11 standard [IEEQ7] or WiFi as it is more commdmown de nes a set of protocols

for creating Wireless Local Area Networks (WLANS). Althoulgtptops have traditionally been the most
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popular use for 802.11, in recent years we have seen an siggaaumber of mobile devices such as phone
and PDA's become augmented with 802.11 transmitters araivess.

WiFi provides us, from a context perspective, with two usbfts of information:
a base station ID
a signal strength

The RADAR [BPO0O0] user location and tracking system uses th&al/AN NIC Signal Strength (SS)
and the Signal-to-Noise Ratio (SNR) to determine the locatif a user. Users periodically emit broadcast
messages that are received at multiple base stations. TéedSS\R data allows the controlling application
to offset the strength of signal readings at each of the bas®ss and calculate the users location. The
results showed that this system could determine a usergigrowvith a median accuracy of 2-3 metres.
This system had to address the issue that a clients' WaveLABI $ignal strength will vary depending
on whether a user is inside a room and the type of walls in thatnr This means initial system setup
is complex, requiring a detailed structural knowledge @f émvironment, i.e. type of walls and how they
affect signal strength.

The use of WaveLAN does have the advantage that commumnidagittveen the client and positioning
infrastructure and in turn the context-aware applicatsosimple because the network connection is already
available.

This project rst demonstrated that it was possible to deiae the position of an object by comparing
signal strength levels recorded at the objects positioh thibse stored in a radio map of the application
environment. This technique, now known by the term “logati@erprinting’, appealed to the ubiquitous
and pervasive research communities largely because itchnilb on existing infrastructures such as 802.11
Wireless Networks (WiFi).

In order to deploy a location ngerprinting system, an ofdrcalibration process must rst be under-
taken. The purpose of this procedure is to assess the behafithe RF signals in the given environment.
This process requires the deployer of the system to recanglessignal strength measurements throughout
the application environment. Each of these samples, kn@vngerprints, contains the signal strength

levels for all visible RF beacons at that point in the envinemt. Fingerprints are then typically associated

19



2.1. CONTEXT-AWARENESS CHAPTER 2. Background

with an arbitrary coordinate representing the positionnghiee RF samples making up the ngerprint were
recorded. At runtime the position of an object is determibgdcomparing the received signal strength
levels from visible RF beacons with those stored in the rawlap that represents the environment. The

position associated with the “closest' matching ngerprepresents the current location of the object.

Autonomous Positioning

Positioning infrastructures typically operate within spatial ranges, for example, a single room or build-
ing. When an application user leaves this range and stops coioating with the positioning infrastructure
they lose track of their personal position. Outside of thisge autonomous positioning systems capable
of determining position independently of any external datarce must be used. Here we consider some
autonomous positioning techniques and the effect they batbe development of context-aware applica-
tions.

Originally, dead-reckoning was a navigation techniquedusg sailors to calculate a target position
based upon a known relative location. For example, if a shipaving the Dover shipping port in the UK
at 9am and travels due South for two hours at a speed of 20 krsbtsuld expect arrive in Calais, France
at 11am. Historically, the speed at which the ship was tliagglvould be calculated by throwing a buoyant
object from the bow of the ship and timing how long it took tach the stern and the direction that the ship
was travelling in would be determined by using either a cosspa astronomical charts. This technique

has since been updated and applied to the problem of mdmggersonal position.

A series of experiments have been carried out to assessabtcptity of using dead-reckoning tech-
nigues to maintain personal position by measuring stepsM8%). They have shown that dead-reckoning
techniques can provide satisfactory results for maintagipiersonal position over short distances. But over
longer periods of time the quality of the data produced wéltsto deteriorate and subsequently the users
personal position will drift away from their actual locatioThis is largely due to the unreliability of the
human step. For example, when walking over cobbled surfsiteger steps are taken then when walking
along a smooth tarmac path. Although it is possible to imerins data by using facts about the way we

walk such as stride length being proportional to the speedalk, there will still be an issue of drift. To
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address this, dead reckoning systems must be built witkrgit@riodic recalibration in mind or they must
be coupled with another source of positional informatioohsas GPS. The success of these systems also
depends upon the stability of the host that they are deplaped. For example, an autonomous position-
ing system designed to run on a car will provide better reghian the equivalent system deployed on a

pedestrian.

Cellular Positioning

The mobile phone is ubiquitous. Chen et al. [C®B] noted that there are more GSM subscribers than
there are Internet users [Com04, GSMO05]. In developed ciesrguch as the United Kingdom, Germany,
Spain there are more mobile phones than people [WiK09]. ii3tiis popularity and the features of modern
mobile phones such as an always available Internet comme@ssuming network coverage is available),
a long battery life and the fact people generally carry thedbile phone wherever they go, the mobile
phone is particularly appealing as a platform for sensimpgets of context. As such, a number of different
methods for determining the position of a mobile phone hasenbdeveloped. In this section we rst
describe GSM before reviewing cellular positioning tecfugs.

The Global System for Mobile Telecommunications (GSM) igently the most popular cellular stan-
dard with over a billion users worldwide. Aside from Canadd the USA, GSM networks typically operate
in the 900MHz and 1800MHz bands. These bands are furthatathinto the uplink and downlink bands.
For example, the 900MHz band is split into the 890-915 MHZnkaband and the 935-960 MHz downlink
band. Channels are spaced throughout these bands at 200t€Hzis creating 124 separate channels. On
each of these channels GSM networks operate a Time-Divididtiple Access (TDMA) system enabling
multiple mobile stations to share the same channel. Tofgale&snand within these bandwidth constraints,
channels are reused at base transceiver stations that areofagh away not to cause signal interference.

Channels are managed by the base station subsystem part@flan€work. The base station sub-
system consists of multiple base station controllers eacttralling multiple Base Transceiver Stations
(BTSs). ABTS is typically equipped with between 1-16 difesal antennas and transceivers broadcasting

on different frequency channels.
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A cell is allocated a number of channels depending on theg@eztlusage for that given area. Estimated
usage is calculated by carrying out multiple radio surveythe environment and analysing the expected
customer base for that area. Once a usage model has beeructatsthe network designers will select
the number and types of cell required to provide coverag¢hgiven area. Cells are classi ed as being
either macro, micro, pico or umbrella, depending upon tedmitting power of the base transceiver station

antenna.

The number of channels allocated for a particular cell wadiepending upon the environment and the
predicted usage. In dense urban environments a high nurhivécro (short-range) cells are typically used.
This provides a greater network capacity, a necessity farapelitan environments. In contrast, coverage
in rural areas tends to be provisioned by macro cells. Maetis consist of high powered directional

antenna giving a cell coverage range of up to 35km.

In order to maintain mobile-to-base station communicatidrist a mobile communication device is
moving, a cellular network must provide support for migngtservice provision to the mobile device from
one cell to another. This process, referred to as handdffoedur when a signal level and a received power
level on the mobile communication device drop below a preteined threshold. To provide support for
this behaviour, the mobile communication device maintaihist of typically six or seven neighbouring cell

signal strength levels.

The mobile communication device monitors signal powerlkeeéthe BTS which is currently serving
it (also referred to as the current cell), and of BTSs assediaith neighbouring cells. In order to identify
these neighbouring cells, the mobile communication dev@reuse a Broadcast Common Control Channel
(BCCH) on the serving BTS. The purpose of the BCCH is to transystem information, including a list
of neighbouring cells, known as a BA list, that the mobile conmication device can expect to detect, given
that the mobile communication device has an active cormeaetith the serving BTS. When a BTS is in
a passive state (i.e. when the BTS is not actively managinglailencommunication device), the BCCH
is used to send system information messages. In a GSM syatsat,of prede ned system information
messages (called SYIBIFO) are provided. Thus, in a passive state, the serving Bai&smits a message

providing the mobile communication device with a descaptof the neighbouring cells. The description
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is made up of a list of channels that the mobile station cowtbmtially use to receive a better signal
power. The neighbouring cells in the list are representetyusbsolute Radio Frequency Channel Numbers

(ARFCN). An ARFCN is an identi er for a channel used by theiaterface in a cellular system.

While the mobile communication device is idle, it scans theCB{Cfor neighbouring cell informa-
tion. This initially produces a list of up to 16 ARFCNs (repemting 16 neighbouring cells, each with
an associated BTS). The mobile communication device redtids initial list of identi ers to a list of a
predetermined number of identi ers, typically six, of thedt candidates for handover, on the basis of the
received signal strength associated with their BTS. Whiksthave described GSM the above principles
exist for other cellular networks such as UMTS. Handoved, la@nce monitoring cell strength is essential

to any mobile network. Using these characteristics we navewecellular positioning techniques.

Arguably the simplest approach is Cell-ID based positignifhis is a beacon based method where the
position of the wireless beacon, in this case a Cell-ID, &du® represent the users position. The position
of the wireless beacon is typically either the position & BF antenna (the location of the BTS) or the
radio centre of the beacon (where the radio signal is ststhg€his position is typically represented as a
coordinate e.g. a latitude/longitude pair. When the useaita phone is currently connected to a cell the
users' current position is considered to be the positiorhaf tell. Deploying a Cell-ID based positioning
service requires a database of Cell-ID's and associatetigras If this information is not available a radio

survey must be conducted to determine the positions of thid@s.

The accuracy of this type of system is dependent upon the@gsearea of the cells. If the coverage
area is large the accuracy will typically be poor. As such,abcuracy of this type of positioning service is
generally superior in densely populated city environmevitsre cellular coverage is provided by a larger
number of low powered micro cells when compared to ruralremvhents cells generally coverage larger

geographic regions.

In 2004 Trevisani and Vitaletti [TV04] conducted a studyoitiie viability of Cell-ID positioning. In
this study they argued that Cell-ID positioning did not pd&vsuf cient accuracy for many location aware
applications. Later work has sought to address these ibgumdending Cell-ID positioning. For example,

Varshavsky et al. [VCdL06] argue that GSM phones are “the solution for localizdtiom this work
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two extensions of Cell-ID positioning are discussed: rgamting and centroid. Fingerprinting with WiFi
as the source of measurement data has been discussed ieatisrsection. Using GSM data involves
the same principles; the comparison of visible beaconsl{D&l) and their associated signal strengths
with those stored in a database (the ngerprints and aswatipositions). The centroid approach also
requires a database of Cell-ID positions. The centroid aessible Cell-ID's (serving and neighbouring)

to determine the position of the mobile phone. Position isutated by averaging the position of each
Cell-ID. Compared to ngerprinting the Centroid has the adtage of requiring less effort in training and
calibration but it offers poorer performance in indoor eamiments. This is due to the increase in obstacles

between the mobile phone and the cell towers.

Chen et al. [CSCO06] present a study of GSM beacon based positioning. Iniaddi the ngerprinting
and Centroid approaches this work also uses a Monte Carddization with Gaussian Processes signal
propagation model. Data was collected throughout Se&tlelata (training and test) was collected whilst
driving. Fingerprinting offered the greatest positioned@aracy in downtown Seattle whereas the Gaussian
signal propagation model provided the best performancesidential Seattle. The authors noted that
ngerprinting required the most exhaustive survey and thesinmaintenance, i.e. it degraded at a faster
rate when new cells were added when compared to the otheodwetiihis work showed that calibrating an
area the size of Seattle requires a 60 hour drive. This warggses that the Gaussian signal propagation

model provides the best trade-off in terms of accuracybcaiion and maintenance.

In recent years a variation on traditional GPS known as Ass$i&PS (AGPS) has been increasingly
integrated into mobile phones [3GP]. Assisted GPS (AGP&)iges the accuracy of traditional GPS but
with a shorter time to rst x. This is possible because thesbastation can provide the almanac of GPS
satellites meaning the mobile phone does not need to waitimidad this information. The base station

can also provide other assistance such as accurate tinforgiation (atomic time).

The previous cellular positioning methods have requireliemtcapplication to determine position. We

now discuss methods that do not require explicit clientraatgon.

Pettersen et al. [PELO2] assessed three network based methods for determirgérapsition of a mo-

bile phone using network based approaches. These were:s¢hefiCell-ID and Timing Advance (TA)
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information, an extension of Cell-ID and TA information thacorporated signal strength measurements
and a method referred to as the Forced Handover method thated the mobile phone to perform a han-
dover from one cell to another. The rst option (Cell-ID and)Tused the GSM Timing Advance parameter
to estimate the distance that the mobile phone is from tHetmekr. The estimation is in units of 500
metres. The authors noted that due to the fact that the mphdee and the cell tower were not in clear
site the Cell-ID/TA algorithm would typically overestingathe distance from the cell tower. This method
was re ned by incorporating signal strength informationefitod 2). This methods improved accuracy by
between 30%-50%. Using TA information with a single cell\ypdes a distance from the position of the
cell tower (or the centre of the cell). The TA information do®t in uence the position instead it provides
an indication of the accuracy of the position, e.g. positigh accurate to 1000 metres. If however the
network has knowledge of TA information from more than onktten a re ned, more accurate position
can be determined. This is achieved using a weighted avératye=en the available TA information for
each cell. Compared to the other methods this provided amracg that had been improved in the region

of 40-55%.

Alternative network based approaches apply generic pogit) techniques including Time Difference
of Arrival (TDOA) and Angle of Arrival (AOA) [DMS98]. In TDOAsystems the mobile phone listens
to signals sent from multiple base stations. Using knowdedbtransmission time, arrival time and the
positions of the base stations it is possible to infer thétjposof the mobile phone. Due to the requirement
of synchronised transmission of base station signals gipsoach is not suitable for providing continuous
positioning for a high number of users. In AOA systems thdenbarrival for a signal received from a mo-
bile phone by a base station is used to determine the patththahone is currently located on. Repeating
this process with another base station enables positioe ttetermined by calculating the intersection of
the two lines. These methods are popular methods for detargiihe position of a mobile phone because

they do not require explicit user interaction.
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Summary

As illustrated in this chapter, developers of context-anvapplications have a wide array of sources of
positional information available to them. There is howewversingle “perfect' positioning technology that
will meet the requirements of all context-aware applicagioHence developers must typically fuse data

from multiple positioning systems.

Positioning infrastructures are designed to solve pdeiquroblems. Therefore before designing a po-
sitioning infrastructure developers must consider a nunatbéey issues that will ultimately decide the
behaviour of their system. The biggest of these is the strattesign decision of whether to use a cen-
tralised or decentralised architecture. This decisionéhsige bearing on the design of the positioning
infrastructure. For example, positioning infrastructutieat track objects typically exhibit a centralised ar-
chitecture [WJH97, BP0O, CGL93]. Tracking systems can enghin clients', i.e. the less work a client
needs to do the smaller the hardware and software they hasaayp But it is much harder to maintain
user privacy with a centralised architecture as user poéitg data is routed through a single point. The
Cricket system [PCBO0OQ] was developed with user privacy indifience the architecture is decentralised.

In summary, systems that seek to maintain user privacy need powerful clients.

The process of selecting sources of positional informasioould be carried out by the developer de-
pending upon requirements of the context-aware applicatdhen deciding whether to use a tracking
system or a pure location system, a developer needs to epngidther the clients of their application will
be active or passive. For example, if a context-aware agidic is to play an audio commentary through
speakers located behind a painting when a user gets clesetrétking is appropriate and the client should
be passive. However if the commentary is to be played thrdwggtuphones the user is carrying then the

client should be active.

A decentralised architecture typically offers more opgiimterms of scalability than a centralised one.
For example, increasing the number of users on a centradisgdtecture creates a potential bottleneck.
Another scalability issue is signal collision. This is atpadar problem for systems used by multiple
concurrent users. There have been a number of approacheédressing this, invert the system, i.e. don't

track the users - broadcast to them all [Get93], periodiaticasts [HH94] randomisation [PCBO0O].
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In terms of of ine setup, the biggest issue lies with the aisition of the transmitters/receivers in the ap-
plication environment. This becomes a problem if known lmee are required and is further complicated

if a receiver pattern must be observed such as in the Batsystel94, WIH97].

Positioning infrastructures such as the Cricket systerarsgép the process of determining object loca-
tion, and mapping this information to a hot-spot within thmplication environment. This can be imple-
mented in one of two ways, either the client has a local copgh@hot-spots or the client uses an external
mapping service. The advantage of having the informatiail@ve locally is that there is no need for
additional hardware to enable communication, i.e. a waelgetwork card. But this requires greater client
processing power and comes at the expense of a static ligttfpots that cannot be updated at runtime.
Systems such as RADAR [BPO0O0] that use WaveLAN as part of tis@tipoing infrastructure bene t from
already having a network connection in place that can be fasdmbth communication and to dynamically

collect additional data to maintain the positioning infrasture.

Developers must consider limitations of the technologyde and the accuracy of position required.
For example, Infrared systems have the advantage (andvdistadje) that the Infrared beams will not pass
through walls and hence are limited to the room in which theyiastalled. Ultrasonic systems suffer
from loss of signal due to obstruction, false signals dueteation, and interference from high frequency
sounds such as keys jangling and rustling paper. The usekifdsed location ngerprinting provides the

bene t of a network connection but suffers from a relativebarse accuracy.

When an application user leaves the range of positioningsirfactures autonomous systems such as
dead-reckoning must be used instead. These techniqgues@adepsatisfactory results for maintaining
personal position over short distances. But over longaogsiof time, the quality of the data produced will

start to deteriorate and subsequently the user's persosélgn will drift away from their actual location.

We use GSM data throughout this thesis to infer aspects aégbrin Chapter 4 we use GSM to provide
measurement data to a qualitative location service. In @nh&pwe use the list of neighbouring cells and
handovers to recognise everyday activities such as wakkindriving. In Chapter 6 we fuse location and

activity data (both inferred using GSM data) to increasdquarance to recognise context.
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2.1.2 Activity Recognition

Activity recognition is a term used to describe the procdsgcognising the current activity of a person
using data obtained from sensors. This knowledge enablésedeand applications to behave in a manner
re ective of a persons current activity. Satellite navigatsystems for use in motor cars have been designed
with consideration of activity; the user will be driving. wtould be unsafe for the driver to study the map
presented on the navigation system screen while drivingassist, a navigation system typically provides
verbal instructions. This user of this product only perferansingle activity (driving), this means there is
no need to adapt the behaviour for other activities. Theeettre product is designed without the ability to
sense the current activity. In contrast, devices such aslenoiftones are used whilst the carrier undertakes
a variety of different activities. People regularly usesipds when sitting still, jogging, walking, travelling
in cars, trains and buses. By designing a mobile phone tovbeha manner re ective of these activities
the device can better assist the person. For example, wiggingthe virtual buttons on a touch screen
could be made bigger or require a longer press [Lou08]. Aerotitample is the activation of voice based

control (voice recognition) when the carrier is driving.

In order to realise these bene ts the devices and applicatieed to be able to sense the current activity
of the user. As such, much work focusing on sensing activitgi unobtrusive manner has been carried

out [BIO4, TILO4, PLFKO03, LFKO5]. In this section we revievifigrent techniques.

One approach to recognising activities involves the useetifoity data such as that obtained from a
GPS receiver. This method maps velocity to activities faragle, a high velocity - upwards of 25 miles
per hour is likely to indicate that the carrier of the GPS nesres travelling in a motor car. A low velocity
such as between two and four miles an hour is likely to inei¢aat the carrier of the GPS receiver is
walking. Patterson et al. [PLFKO03] used a GPS receiver tiindjsish between different modes of transport
such as walking, driving or taking a bus. Data was collectezt @ three month period and daily patterns
of behaviour were learnt using a graph-based Bayes ltee flode of transportation was then estimated
using a particle lter. This work supports a high level pretitin to be made regarding the purpose of a
user's journey. However, work from LaMarca et al. [LCQ5] showed that GPS positioning was typically

only available for 5% of a person's day.
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A second method for inferring the current state of the cawwfea mobile device uses accelerometer
signal data. Movement (stationary or moving) can be infelrg analysing signal data collected from
accelerometers. The SenSay project [S@8] used three accelerometers to capture the motion of #re us
The accelerometers were tted inside a sensor box that wasdtéo the user's abdomen. This was used
to distinguish between states of low activity such as gjttimedium activity such as walking and high
activity such as running. The MIThril project [The06] alssed an accelerometer to distinguish between
similar activities including cycling. Lukowicz et al. [LWTE] combined the use of accelerometers with
microphones worn on the body. This allowed them to distislglietween an increased range of activities.
This was demonstrated in a carpenters workshop by trackiegrogress of an assembly task. Lester et
al. [LCK* 05] combined multiple, disparate sensors in order to pewvigk-grained activity recognition
capable of sensing eight different activities includinigtirsy, standing, jogging, walking, walking up stairs,
driving, cycling, and travelling in a lift.

Position and activity recognition are often implementechgisnachine learning, which is explained in
the following section. In Chapter 5 we present an altereadjpproach to activity recognition that uses ma-
chine learning and data available on standard GSM mobilaeghor his technique can recognise everyday

activities such as walking, driving in a car and remainiragishary.

2.2 Machine Learning

The term “Machine Learning” is used to describe the procéascomputer program learning how to com-
plete a task. Mitchell, in his seminal book on machine leagriMit97], presents the following de nition

of machine learning.

“A computer program is said tiearn from experiencd& with respect to some class of tasks
and performance measupe if its performance at tasks in as measured by, improves with

experiencee.” Machine Learning by Tom Mitchell, page 2 [Mit97].

In this de nition, Mitchell describes a computer progranaticonsists of the following functional com-

ponents: a feedback loop, a method of assessing performandea method for re ning behaviour to
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increase performance. The process of adapting behavistimgliishes computer programs that learn from
other computer programs that use feedback loops.

In machine learning there are two different approachesamirg,supervised learningndunsuper-
vised learning The termsupervised learningefers to training a machine learning process by providing
inputs with the desired associated outputs. This is tylyig@plemented in a recursive manner with the ma-
chine learning process re ning its behaviour after eactatien. This is achieved by comparing the outputs
from the machine learning process with the supplied targgduds. The difference between the target and
actual outputs is the error. In contrastsupervised learningefers to training a machine learning process
by supplying only program inputs. The inputs are not suplpiéh associated target outputs.

In the remainder of this section we introduce core machiaeiag concepts and algorithms that are

applied later in this thesis.

2.2.1 Bayesian Networks

Bayesian networks [Hec99] are directed acyclic graphsyevhedes represent random variables and edges,
also known as arcs, represent the causal relationshipgbetaodes. Each node consists of a set of mutu-
ally exclusive states. At each node a probability distituts de ned. Nodes without parents are assigned
unconditional probability distributions and those withrgrats are assigned conditional probability distri-
butions, that is:P (AijB1;:::;Bn) whereBjy;::;; B, represents the parents Af The joint probability
distribution is calculated using the chain rule:
¥
P(X1i X2 Xn) = P(XijPa) 2.1)
i=1
whereP g represents the parents H¥f. By applying evidence at certain variables thaPifA;je)
wheree is evidence, we are able to use the chain rule to determinprtimEbility of an event occurring
given limited or partial information.
We will illustrate the power of a Bayesian network using afgerexample for fusing positional data. In
this situation we seek to determine our current positiongidiata from a GPS receiver and a self-declared

positional estimate made using a map of the environmentigir€ 2.1 we present a Bayesian network for
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Current
Position

Self
Reported

GPS
Reported

Figure 2.1: Bayesian network for fusing GPS and self-regzbpositional data.

fusing this data. In this network there is one root node dalzurrent Positionand two child nodes called
“Self Reporte’dand "GPS Reportéd The current position will in uence both the self reportpdsition and
the GPS position. We will demonstrate how, by applying enaeobtained from the self reported and GPS
position, we can make stronger estimates of the currentiposi

At each node in a Bayesian network a probability distributioust be de ned. For nodes with no
parents this distribution is unconditional and for thos¢hwiarents the distribution is conditioned upon
the parent nodes. Probability distributions are populaiiter by a domain expert or by learning from
historical data. In Figure 2.2 we present the probabilistributions for the example Bayesian network.
For the purpose of simplicity we have restricted the numbgyossible positions to two and we denote
these aCP A andCPB. We now demonstrate how to add evidence to the Bayesian netwdetermine

the following probability:

P(CP = AjG= B;S = A)

where the Current Positioil€P) is positionA and the current GPS reported positi@) (s position

B and the current Self Reported positi®) (s positionA. We start by looking at the probability of being
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POSITION | True | False
CPA 0.8 0.2
CPB 0.2 0.8

()

SELF SA=T, SB=F | SB=T, SA=F GPS GA=T, GB=F | GB=T, GA=F
CPA=T, CPB=F 0.7 0.3 CPA=T, CPB=F 0.6 0.4
CPB=T, CPA=F 0.3 0.7 CPB=T, CPA=F 0.4 0.6

(b) (c)

Figure 2.2: The conditional probability tables for (&urrent Positiofy (b) “Self Reporte’dand (c) ‘GPS
Reported The attributes of these nodes are shown in column one.

in a particular zone given evidence about the position tepdoy the GPS receiver and the self declared

position. Using Bayes rule we can write this as:

P(CP;G;S)

P(CPjG;S) = P(G.S)

whereP (CPjG; S) means the probability of the Current Position (CP) givenGIRS reported position
(G) and the Self reported position (S). The states of CufPaisition are mutually exclusive, it is not

possible to be in two zones at the same time, hence we arecatiséssform the denominator to give:

P(CP;G;S)
cpoP(G;S;CP9

P(CP|G;S)= P

By using the product rule we can now expand both humeratodandminator to give.

P(GjS;CP) P(SjCP) P(CP)
croP(G|S;CP9 P(S|CP9 P(CP)

P(CPjG;S)= P

At this point we have an equation that is not representatiibe conditional independencies in our

Bayesian network. We therefore need to update statemecisa®P (GjS; CP) with the relationships
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shown in Figure 2.1. This gives:

P(GjCP) P(SjCP) P(CP)

PCPIGIS) = P 5 (GicPY P(SiCPY P(CPY

If appropriate we would now simplify removing any commonttas. In this situation there is no need
so instead we continue to determine the valué¢CP = AjG = B;S = A) by substituting known

evidence.

P(G=BjCP = A) P(S=AjCP=A) P(CP=A)
CP =A0%2(yes;no) P(G = BjCP = AO) P(S = AjCP = AO) P(CP = AO)

P(CPjG;S)= P

We can now solve this by substituting the values from the itimmal probability tables.

04 07 08
(0:4 07 08)+(0:6 03 0:2)
0:224
(0:224) + (0:036)
0:224
0:26
0:86(2d:p3)

P(CP = AjG= B:S = A)

2.2)

This results in a probability d9:86 that the user is currently positioned in Zone A given evideota
GPS reported position of Zone B and a self reported positicdoae A. This is an increase over the prior
probability of being in Zone A which wa&8. This therefore enables a stronger estimate of a usersqosit

to made. In Chapter 4 we present a Bayesian network for fusitgyrogeneous positional data.
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2.2.2 Markov Chain

The Markov propertyis a term used to describe a stochastic process where futies sre conditionally

dependent only on the current state and not dependent up@rianstates. That is:

P(Xn+1 = XjXo0;X1; X255 Xn) = P(Xns1 = XjXp) (2.3)

whereX; is a state X, is the current state and ., is the future state. An example of this type of
behaviour is a UK traf ¢ control signal. The next light to besplayed is conditionally dependent upon the
current light or lights being displayed. It is not dependgmbn any states prior to the current state.

The termMarkov comes from the name of the Russian mathematician Andreyé&ymdich Markov.
Famous for his work in the eld of stochastic processes, &ggdvlarkov helped create the Markov chain
research eld and as such was accredited by the adoptiorsafdihe. As such, the terwtarkovianis also
used to describe the Markov property.

A Markov chain is a sequence of system states. The sequetioeei®rdered with the rst position
in the sequence representing the rst state of the systefmn suibsequent positions indicating how the
state of the system changed over time. Changes from onetstatether are referred to &mnsitions
The sequence of transitions behaves according to the Markaperty, the next state of the system is

conditionally dependent upon the current state. That is:

P(Xn+1]Xn) (2.4)

whereX, is the current state andl, .1 is the future state. This is referred to asigle-stegransition.
Markov chains can be extended to build knowledge of morer gtites by extending the number of steps

to be taken into consideration during a transition. Put fdtynthat is:

P(Xn+1jXn;:5Xn k) (2.5)

whereX, is the current state 41 is the future state arklis the step count (the number of prior states

to use when calculating the conditional probability disition). This method of applying the knowledge
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of multiple prior states has successfully been appliedrtguistic processing tasks where multiple prior
word states are required to infer the context of a sentenaekhss other sequential data problems [Ben96,
Rab90].

In Chapter 4 we apply this technique to build a zone-basetitian matrix modelling the probabil-
ities of moving from one area of a spatial environment to haont We show how this enables stronger

predications of a user position to be made.

2.2.3 Hidden Markov Model

One of the key characteristics of a Markov Chain is that thtess directly observable. In some situations
however, direct observation of the state may not be posdtoleexample, we may want to know whether a
person has stepped through a door way linking two rooms. rAsgythat we do not have access to visual
data and instead only have access to coarse 802.11 ngengritiata then we cannot directly observe the
event of transitioning from one room to the other. We can h@wvenake observations of the 802.11 data.
This data will be in uenced depending on which room the parsocurrently located in. We can therefore
use the behaviour of this data to infer whether a user has anibweugh the doorway. In this section we
discuss a machine learning technique referred to as a Hiddekov Model that models this behaviour.

A Hidden Markov Model (HMM), is a Markov Chain with a state thg&not directly observable. Like a
Markov Chain, a HMM is used to infer the most likely next stgiven a prior state. In situations where we
cannot directly observe the state of the system we use alig®rs of other events that typically occur in
speci ¢ states to infer the current state of the system. kangle, we could use observations of whether a
lawn was wet to infer the current state of the weather. Wearenbre likely to observe a wet lawn when
the current state is raining as opposed to when it is sunny.

A Hidden Markov Model therefore takes a sequence of obsenatand determines the most likely
corresponding state sequence. The process uses thred patbabilities. The rst is the probability of
starting in a particular state, the second is the probglufitransitioning from one state to another and the
third is the probability of an observation occurring whilbe system is in a particular state. As such, a

Hidden Markov Model is de ned as follows:
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=(A;B; ) (2.6)

A is the transition matrix representing the probabilitiesmafving from one state to anotheB. is the
observation matrix representing the probability of beim@ istate given an observation ands the initial

probability distribution.S represents the set of states of the HMM (8h&te alphabét

S =(51;S2;:5Sn) (2.7)

V is the set of discrete observations. It comprigsesdementgvy;Vs;::;;Vy). The observations are not of
the state of the system but instead are observations ofsswénatse occurrence is likely to be in uenced by
the current unobservable state of the system.

During operation of the HMM we will have a sequence of obsiows which will lead to a sequence

of states. There afteobservation®, andt matching inferred state3:

O =(01;02;:5;,0) (2.8)

Q=(0; % q) (2.9)

The strength of a Hidden Markov Model is that it uses knowkedfjprevious states in order to predict
the most probable current state. This is represented indhsition matrixA. Hence if we remember ve

prior states, the probability @f depends on statést ;G 4;::5 G 1):

t

P(ajdy )= P(qjtk; ;i G6) (2.10)

The matrixA captures these probabilities: It contains the probabdftyransitioning to stat¢ given

the previous ve states of activity in a sequengg,; :::; Gs, that is:

aj = P(q=sja 5:G 450G 1) (2.11)
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whereq is the future state in a sequence. The observation mBtroontains the probabilities of an

observatiork being produced whilst currently in stgte

bk = (Wkisi) (2.12)

Therefore given a sequence of observations we seek to ildembst likely state sequence. To do
this we rst need to determine the probability of a sequenicebservations occurring. This is solved by
applying the Forward algorithm [Rab90].

The Forward algorithm is essentially an ef cient method eching all possible state sequences that
could have occurred. Givenstates and an observation sequence contaimiagservations, there ak&
possible state combinations. Calculating the probabidlftgach of these state sequences occurring given
the observation sequence is computationally expensive Fidnward algorithm uses recursive methods
in calculations to avoid the need to calculate the prokt#slifor all possible sequences thus reducing the
computational overhead.

The probability of an observation sequence occurring isasgnted by the forward variable(i). The

Forward algorithm is de ned as:

t(i)= P(01; 02,501, = Sij ) (2.13)

with (i) representing the probability of being in stateat timet using the following:

1(i) = ib(o1); 1 i N (2.14)

The above step calculatesfor all states at = 1. Then for all other time steps$,= 2;::;;T, is

calculated using:

X
wm@) =0« @) 1 1 N (2.15)

i=1

The partial probabilities are then summed to give the priibabf an observation given the HMM.
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. X\l .
P(O) )= () (2.16)
i=1

Similarly the reverse of this is the backward variabjéi), de ned as

(i) = P(O+1; 04225500 = Sij ) (2.17)

This can be solved by initially setting (i) arbitrarily to1 and then using:

X
(@)= ah(o+1) (+2(j); 1 i N (2.18)
j=1

In Chapter 5 we use a Hidden Markov Model to improve the perforce of a novel approach to activity

recognition use patterns of GSM signal strength uctuation

2.2.4 Clustering

The termclusteringrefers to the process of partitioning a set of data-poinis groups of similar mea-
surements. We determine whether two data-pointsandar by calculating the distance between them.
We de ne the distance between two data points in a multidsieral space the Euclidean distance. The

Euclidean distance between poifts (az; az;::;;an) andB = (by;bp; ;b)) is de ned as:

p
(aa b)?2+(az )%+ i+ (an )2 (2.19)
Other distance metrics include Manhatten (Taxi-Cab) antid¥&nobis [Mah36]. In this section we
present two well known clustering techniques and discusis thlevance to this thesis.
Hierarchical Agglomerative Clustering

Hierarchical Clustering creates a hierarchy (tree stregtof clusters [Joh67]. The process of hierarchical

clustering is as follows.

1. Given a set of data-points the rst step is to assign eatdr-paint a cluster.
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2. Find the closest two clusters and merge them into a sithgdeer.
3. Calculate the distances between all other clusters.

4. Repeat steps 2-3 until the desired number of clustersdesiteached.

One advantage of hierarchical clustering is the abilitynicréase or decrease the number of clusters
relatively easily. This is possible because the clusterstared in a tree structure hence it is easy to merge
two clusters. The number of clusters can also be determisiad & distance metric. For example, clusters
can be merged until all remaining clusters are a certaiaulist apart.

K-means

K-means is perhaps the most well known method for clusterikgmeans is used to produdeclus-
ters where each cluster contains at least one data-poinnbdeship is determined by nding the closest

matching cluster. The process of K-means clustering islas\fs.

1. Initialise k clusters usingk data-points selected at random from the total set of datatped be

clustered.
2. For the next data-point nd the closest matching clustet add it to that cluster.
3. Re-evaluate the cluster centroids.
4. Check for changes in cluster membership.
5. Repeat steps 3-4 until there are no changes in membership.

6. Repeat steps 2-5 until all data points have been clustered

The objective function to partitioN data points intd clustersSj:

XX
)= xn i (2.20)

j=1 n2s;
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wherex, is a vector and; is the centroid of the data points$ andjx, j? represents the distance
between the sample and the cluster centre is used to pattigotraining data. K-means can be initialized
with vectors selected at random from the training data. Tindifean distance for each subsequent sample
Xn to the centre of each centroiq is then calculated. This samplg is then added to the centroid that
it is closest too. The centroids are then recalculated amdngmbership of each of the poir8s for each
centroid ; is then re-evaluated until there are no further changes imimeeship.

In Chapter 4 we use clustering to group together wirelesedresignal strength measurements. We do

this to identify areas of space that, in terms of signal sfiigrare distinguishable from each other.
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Chapter 3

Characterising Wireless Data

In our daily lives we are increasingly surrounded by a wealiihformation that can be used to infer aspects
of context. We can use the sighting of a particular wirelesacbn or combination of wireless beacons to
infer information about our current location. For examjifi¢he MAC address of the WiFi access point in
your of ce appears in an 802.11 (WiFi) scan, then you canrittiat you are near your of ce. A dynamic
example is that if the current serving cell that a mobile hznconnected to frequently changes then we

could infer that the carrier of the mobile phone is likely ®roving.

In order to make these inferences, it is essential that tieeence process model the behaviour of the
wireless data. In this chapter we investigate the behavibwireless data (GSM, UMTS, 802.11) from the
perspective of providing contextual information. We asdashaviour in different environments including
busy metropolitan environments as well as sparsely popdilairal areas. We focus on behaviours that
enable contextual inferences such as the stability of tipeasistrength; is the same level encountered at
the same position? The variance of the signal strength; howdes a mobile device need to be moved to
generate a distinguishable difference in signal strengjitiebehaviour of the wireless beacons; are the same
beacons visible at the same location? Does the previousgiath through the environment in uence which
beacons are visible at a speci ¢ point? The behaviour ofaigower data whilst undertaking activities;

does the signal power uctuate whilst walking as opposedetmaining stationary? As an example, in
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a location ngerprinting service [BP0OQ], position is det@ned by matching the current received signal
power levels from all visible beacons against those starede radio map. The radio map is created in an
of ine process that involves recording a snapshot of sigruaber levels for all beacons that can be detected
from a xed point in the application environment. This is eged throughout the application environment.
The positions and associated signal strength levels (pigiets) form a radio map of the environment. At
runtime, users match the current received signal powelddx@m all visible beacons against those in the
radio map. The position associated with the closest magcimgerprint is returned at the current user
position.

In this type of system the reliability and accuracy of thetegsare directly linked to the behaviour
of the base station signal power levels. If there is only aiméh amount of variation in the received
signal power level for a speci ¢c beacon across the coveraga af the location service, then using the
beacon alone will provide poor position granularity andiit tae hard to distinguish between two different
positions. If at the same position the received signal pdesxe! uctuated erratically then the process of
matching a current snapshot of received signal power meamnts to the reference database may result in
inconsistent performance with incorrect positional infiation being displayed to the user.

The rest of this chapter is structured as follows. Sectidn@esents an investigation into the be-
haviour of GSM data. This includes beacon visibility and d@rer behaviour in addition to assessing
signal strength reliability and variance. Empirical datgiesented from a series of experiments spanning
multiple heterogeneous environments. Section 3.2 takenimsformat to Section 3.1 but with WiFi be-
ing the wireless technology that is being investigated. ha@er 4 we will use these characterisations to
demonstrate how to create qualitative location servicbss qualitative approach both shields the end user
from inconsistencies created by the behaviour of wireleda end enables a more relevant location to be

supplied to the user, for example, a spatial zone that repteshe coverage area of a shop.

3.1 GSM

In 1999 Bahl et al. [BPOO] rst demonstrated that it was pbksito determine the position of an object

by comparing current RF WiFi signal strength levels withsatored in a radio map of the application
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environment. One can use GSM instead of WiFi as the undegrlgirasurement service. This has the
advantage that GSM as a technology is more ubiquitous tharl 8®oth in terms of coverage and user
accessibility; everyone has a cell phone. Although thessheen some excellent work from Varshavsky et
al. [OVMdLO5], the practicalities of tracking mobile objsdn outdoor environments has yet to be fully
investigated.

In this section we report on an investigation into the use 8M3ignal strength levels as a method of
determining position. In particular we focus on positianmobile devices in scenarios typically considered
as harsH such as open, outdoor environments where signal strerggthtion is minimal. From a location
ngerprinting perspective, the perfect environment is ovigere the source of signal strength information
will vary widely at different locations but be constant a¢ tbame physical locations. Hence areas where
there is only a minimal uctuation in signal strength, suchapen outdoor environments, offer relatively
poor positional granularity. We analyse the performanc&8M-based ngerprinting systems in urban
environments with a high number of base transceiver statiom cells. We assess the effects of tracking
signal strength levels for only seven cells in such envirents, as many phones track only a limited number

of base stations simultaneously.

3.1.1 Method

We have been given access to a Cell-ID data set created aretidwyrOverlay Media [Ove]. The Overlay
Media data set is split into two parts. The rstis the raw meament data and the second is the calculated
cell centre positions and cell area coverage. The raw meamnt data has been used to calculate the cell
centre positions and coverage areas. The raw measurentercbdaists of over 200 million samples. Each
sample contains a full Cell-ID, a signal power measuremadtan associated GPS position (where the
measurement was taken). The cell centre data containsltleentre positions for all Cell-ID's for all UK
operators. In total there are over 285,000 unique cells.dlt@ has been collected in 2008 and 2009 using
equipment deployed in motor cars with drivers driving alltoravays, A roads, B roads and the majority of

all smaller roads throughout the UK.

Even though the Overlay Media data set is huge, we need atfedies data sets that have been collected
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multiple times in controlled conditions. For this purposeave collected trace data from two metropolitan
environments. The approach to surveying these envirorsvesis carried out in two different ways. The
rst was a systematic approach where volunteers were askedatk along explicit paths. The second
approach was the more traditional, static method of gatgetata for location ngerprinting. Volunteers
stood at given locations whilst sample measurements wélecterd. The volunteers were equipped with
Orange SPV C500 cell phones capable of monitoring the sgfnagth levels for up to seven cells. GPS
receivers were used to collect a ground truth for the sampBlasiples were collected once per second. Data
was collected over a two month period in 2005. In total ove®,600 signal strength measurements were
taken and 77 unique Cell-ID's were identi ed across the twgibnments.

We use these three data sets to characterise GSM data. Weeuldidwing terminology to refer to

each data set.

Metro-closed A 375 metre section of a busy shopping street with a largebaurof tall buildings.
This data set was collected 10 times over a three week peyitwddwolunteers. This data set contains

8457 measurements. In total 24 unique cells were monitangdgithis creation of this data set.

Metro-open A densely populated residential area but more open aréanwitall buildings and few
people on the street covering approximately 2.2% kifhis data set was collected 20 times over a
one month period by four volunteers. This data set contalf measurements. In total 54 unique

cells were monitored during this creation of this data set.

OM-UK - The Overlay Media data set representing complete UK cgesrd here is only limited
repetition in this data set (mainly motorways) there is nparfunity for repeated experiments. This

data set contains over 200 million measurements includd@y®O0 unique cells.

3.1.2 Density

The positional granularity of a beacon based location sersuch as a Cell-ID location service is limited
by the density of Cell-ID beacons. Equally a location ngémnging service will provide poor performance

if there are only a limited number of visible beacons. In géstion we use the OM-UK data set to assess
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Figure 3.1: Cell density map for the network operator O2 imtNern Ireland.

the density of cellular beacons (cells) in different enmireents such as rural and metropolitan.

As an example we look at Northern Ireland. In 2007 the pomrabf Northern Ireland stood at
1,759,100 [Nor09]. The land mass of Northern Ireland is 43,Bn? giving a population density of 122
people per kri. The OM-UK data set contained cell positions throughoutwhele of Northern Ireland,
with which we can assess the number of cells pef kmper person. This density is however slightly
misleading because each cellular network operator regjaoeerage throughout the environment. Looking
at the O2 cellular network shows that there are 3023 uniglieinghe Overlay Media data set giving a cell
density of one cell per 4.58 Kdvor one cell per 600 people. Figure 3.1 illustrates this dgnsi

Figure 3.2 presents an overview of the cell density for a 19@ykm area surrounding Belfast in
Northern Ireland. The markers illustrate the centres ofc#iks from the perspective of cell coveraget
cell tower location. The network operator that a cell bektwis illustrated by the colour of the marker.
The density of cells mirrors population density. For exaenp a 1kn? region in the centre of Belfast we

identi ed 72 unique cells whereas in a 1kmegion in the outskirts we counted only 21 cells. In rurakpar
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Figure 3.2: Cell density map for Belfast, Northern Ireland.

of Northern Ireland there were areas where there was no@eatrage.

The deployment of Base Transceiver Stations (BTS) or asateesnore commonly knoweell towers is
largely based on economics. Providing complete coveragedhout a country is expensive and deploying
a BTS in a sparsely populated area provides minimal namei@irn. As such, macro cells are often created
in rural environments with the coverage area of the cell sppanup to 35km. This is in contrast with cells
deployed in city centres such as Belfast where cell coveisageplaces, as low as three hundred metres.

This analysis shows that any contextual inferences thatioadne made using cellular data will need to
be acutely aware of the type of environment that they are tdepdoyed in, rural, urban or metropolitan.

However, if the intended use is in areas that people freqipepulated areas) then coverage is ubiquitous.

3.1.3 Signal strength stability

The perfect environment for deploying a location ngerpirig system is one where signal strength levels
are constant for a given physical position but vary suf ¢igrirom those measured at other positions. In
this section we assess the stability of GSM signal strereytbls in both static and mobile tests in the two
test environments.

For this purpose we compared signal strength levels redasgler the 375 metre path in theetro-

closeddata-set. Figure 3.3a shows the signal strength levelssorghe cell that was monitored during 10
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Figure 3.3: Signal strength stability of one particulad cel

pedestrian journeys in the same direction over the 375 npetite (shopping street), collected at different
times of day, and different days of the week. The signal gtietevel is shown against the position along
the path. In perfect conditions we would expect to see theessignal strength level at the same position.
If this were true the graph in Figure 3.3a would contain omg @isible line representing all 10 journeys.
This is not the case. In each traversal the changes in sigvelldlong the path are consistent with the other
9 traversals, but at certain positions along the path thianvee is considerable. This temporal variance
is shown in Figure 3.3b. In this section we use the téemporal varianceo refer to the difference in
signal strength levels that were recorded at the same positross the 10 journeys. Towards the end of the
path, the variance becomes more apparent. We suspecteharetsence of large groups of people moving
between the shops affected the measurements.

We repeated a similar test for tmetro-operenvironment and again found that the levels of signal
strength changed consistently against position. Thatrig|es signal strength levels were encountered at

the same positions in the environment.

3.1.4 Spatial Signal strength variance

In order to distinguish between positions in a spatial eminent the source of positional measurements
such as signal strength levels must vary suf ciently in ertteclassify them as having been recorded at

different positions. In this section we look at the spat&liation in GSM signal strength levels.
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Table 3.1: Signal strength variance over 25-metre interval

Environment Min Max Mean
Metro-open: Moving 1dBm | 28dBm | 8dBm
Metro-open: Stationary | 2dBm | 12dBm | 4dBm
Metro-closed: Moving | 1dBm | 20dBm | 6dBm
Metro-closed: Stationary 1dBm | 10dBm | 3dBm

To assess signal strength variation we compared samplesiestat 25-metre intervals for timeetro-
openand metro-closedest environments. We used samples from data-sets gativbitsdd moving and
stationary. Table 3.1 shows the minimum, maximum and megmabistrength variations for each envi-
ronment. These values represent the mean values for dlevisglls in that area, i.e. the minimum value

represents the mean of all the minimum signal strength kev@htions for all visible cells.

We found that signal strength variation between differéntgical positions was most apparent in the
metro-operenvironment. In both thenetro-operandmetro-closedenvironments we found signal strength
levels recorded at the same physical position to vary dépgrah whether they had been recorded whilst
stationary or moving at walking speed. We found that whilsiving at walking speed, signal strength
change between 25-metre intervals was greater than thatiearibetween those recorded whilst static.
This is important because from the perspective of deplogitagation service that uses signal power mea-
surements to determine position, consideration must bengio the likely activities of the users of the
system. If the users are likely to be walking as opposed taigimg stationary for extended periods of

time, then the uctuation in signal power levels should biestainto account.

In these environments the amount of change in signal stielegtls varied from cell to cell. For
example, at stationary points in theetro-closecenvironment, one cell consistently varied 20 dBm per 100
metres. This type of variation is an excellent source oftp®l information as it is easy to distinguish
between positions. However in the same environment, anoétievaried as little as 6 dBm per 100 metres.
This is primarily due to the location of the base transcestations. The cell that varied as little as 6
dBm per 100 metres was hosted on a base transceiver statibwals approximately 1.3 km from the

application environment. Whereas the cell that varied 20 ¢&m100 metres was less than 400 metres
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Figure 3.4: Signal power uctuation when moving and staéion

from the application environment. We expect that these eguaire unique to these particular cells in these
environments. Travelling further away from the base traivar station is unlikely to result in a maintained

consistent change is signal strength levels.

3.1.5 Motion Effects: Signal Strength

In the previous section we noted that signal power measuresmecorded from the same cell at the same
position varied a greater amount when the carrier of the ka@bione was walking as opposed to remaining
stationary. In this section we investigate this behaviouthier with the aim of establishing if there are any

distinguishable patterns or behaviours that can be usedisdly recognise movement.

To assess this behaviour we collected trace data when mftvawglling in a motor car) and remaining
stationary. The data consisted of the current serving nelghbouring cells and their associated signal

power levels. Data samples were collected at a rate of oncgepend.

We expected that the faster the rate of travel the greateartimnt of uctuation in the received signal
power levels. We expected this would be due to the fact thaembstacles between the mobile phone
and the Base Transceiver Station would both appear andpiagpe.g. as the carrier of the mobile de-
vices moves past a building. In order to test this, we rstché&e calculate the signal power uctuation.

Algorithm 1 shows how we do this.
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Set a short time interval (SAMPLEBERIOD) (for example 1 second).
Set a longer time interval de ning the time window size, tlee number of samples to assess together
(WINDOW_PERIOD) (for example 15 seconds).
Every SAMPLEPERIOD, perform the following steps:
Record the signal strength levels for all of the cells thatamrently being monitored (neighbouring
and serving);
for each celldo
if the new signal strength level is greater than the previougsimamthen

‘ Set the maximum signal strength level to the new signal gtrelevel;
end

if the new signal strength level is less than the previous nuimithen

‘ Set the minimum signal strength level to the new signal gtielevel.
end

if a cell only appears on the list of candidates only otiten

‘ the signal strength uctuation for that cell will be zero.

end
end

Every WINDOW_PERIOD, perform the following steps:

for each celldo
calculate the amount of signal strength uctuation by satting the minimum signal strength
level that was observed during the WINDQRERIOD from the maximum signal strength level
that was observed during the same WINDOR&ZRIOD.

Sum these individual levels of signal strength uctuatiorptoduce a single number

representing the overall level of signal strength uctoatfor the given WINDOWPERIOD.
end

Algorithm 1: The calculation of signal power uctuation

Figure 3.4 plots the output of Algorithm 1 using data colectvhilst moving and stationary. The
moving data was collected whilst driving and walking. Theéadeonsists of approximately three hours of

stationary data and three hours of motion data. Both thmstaty and motion data were collected in urban
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environments. The number of concurrently visible cells\igg and neighbouring) was typically seven in
both environments.

The level of signal power uctuation is typically greater eitnthe mobile phone is moving when com-
pared to levels experienced when the mobile phone is statioiGiven this behaviour the level of signal

power uctuation can be used to provide an indication as tetivar the mobile phone is likely to be moving.

3.1.6 Motion Effects: Monitored Cells

In order to provide support for roaming, a mobile commundaratievice, such as a GSM cell phone, mon-
itors the cell currently serving it and a number of neighlgicells, and maintains a list of the monitored
cells. When the mobile communication device is stationaiy libt typically varies only minimally, in
that only a limited number of individual cells appear on tis¢ during a given time period. The minimal
variation is not only due to the network operator but alsoxtemal factors. For example, events that may
temporarily block weak signals such as lorries driving paay cause changes to the list.

However, when the mobile communication device is moving,list of monitored cells changes, par-
ticularly in metropolitan environments with a large numbécells, such that a larger number of individual
cells (perhaps ten or more, for example) appear on the lishgla given time period. When a large geo-
graphic area is covered, the number of cells monitored &s@® The precise number of cells monitored
depends on both the type of environment and the speed of theraaf the mobile communication device.
For example, in metropolitan environments there are tyjyieahigh number of micro cells, whereas rural
environments with lower populations typically require yal few macro-cells. In a given environment, a
speci c increase in the number of cells is observed as thedspéthe carrier of the mobile device increases.
Hence, a change in the list of monitored neighbouring cgpctlly indicates a change in the position of
the mobile communication device.

In Figure 3.5 cell uctuation is illustrated using six difient sample periods. Each graph shows the
number of unique cells that were monitored over a given timerval (sample period). Each graph uses
the same trace data collected over a ten hour period calléctie outskirts of London. For the rst six

hours of the trace (from 0 seconds to approximately 23,000rs#s into the trace) the mobile phone was
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stationary. For next hour the mobile phone was travellingmmotor car before returning to a stationary state
for the remainder of the journey. In total 6 different sampdeiods are shown, ranging from 60 seconds to

600 seconds. Figure 3.5 illustrates that the longer the leapgpiod the easier it is to identify motion.

3.1.7 Environment Transitions

In order to provide support for mobile-assisted handoff &G3&obile phone typically monitors six neigh-
bouring cells in addition to the current serving cell. Eatlthese cells has an associated signal strength
level. The signal strength level for each cell typicallyrieases the closer the mobile phone is to a base
transceiver station and if the mobile phone has a clear, sinatied view of the base transceiver station.
When the carrier of a mobile phone walks behind a wall theramigerease in the number of obstacles
between the mobile phone and any base transceiver statiahare on the other side of the mobile phone.
However there is no change to the number of obstacles bettheanobile phone and the base transceiver
stations located on the other side of the wall.

When the user enters an indoor environment they are efféciivereasing the number of obstacles
between themselves and all base transceiver stations.nidaas there will be a substantial change in the
total sum of signal strength uctuation. We use the taatal sum of signal strength uctuatioto refer to
the sum of the signal strength levels on both the current aighbouring cells. (Effectively seven signal
strength readings added together). The reverse of thisvlmeimds seen when the user leaves an indoor
environment and heads outdoors. In Figure 3.6a we plot tirecaflGSM signal strength as seen across all
visible cells (current and neighbours) together with then ©f GPS signal strength. This is plotted over
time and shows the transition from an indoor environmentreehe GPS x could be obtained to an outdoor
environment where a GPS x could be obtained. The actualneyishows moving from the 3rd oor of
a building (approximately the rst 100 seconds), takingfatth an underground car park (approximately
100-110), getting in a car (approximately 110-175), andchttaving out of the underground car park
(approximately 175 onwards). The transitions betweendn@nd outdoor environments are indicated by
the two arrow symbols. The graph clearly indicates there ssilastantial change in the sum of signal

strength as we move outside. In Figure 3.6b we show anothepirto outdoor transition, this time from
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Figure 3.5: Cell uctuation over different sample periods.
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Table 3.2: The number of cells sighted during each journepgh 375 metre path in theetro-closed
data-set.

Journey| Number of cells monitored Number of unique cell sets
13
11
11
15
11
14
10
11
11
0 12

P OO ~NOOOPRWNPE

= =
Roowoow~wENvNo o

a different building in a different part of Bristol. In thisgure we show the total sum of signal strength
as seen across all monitored cells. An arrow symbol is us@tbticate the moment of transition from an
indoor environment to an outdoor environment.

Both Figure 3.6a and Figure 3.6b show that it is not possiblese the total sum of signal strength

uctuation as an indication of whether the user is inside wtsade. This is because similar levels of signal
strength were seen when inside and outside. Instead a ligpidrfall in signal strength can be used to
indicate an environment transition.

In these environments GSM signal strength correlates Wwigtbehaviour of GPS signal strength level;
when there is a clear view of the sky the GPS signal strengtie@ses. We believe that this behaviour may
be transferrable to other environments. A possible useisfitformation is to save power when using a
GPS receiver. We can use the rapid change in the sum of GSMIsitgangth to infer that we have left an

indoor environment and have entered an outdoor environarahtherefore switch on the GPS receiver.

3.1.8 Using Cell History

Atypical GSM cell phone can concurrently monitor six neighking cells in addition to the current, serving
cell. In dense urban environments such asie¢ro-operandmetro-closedhere are more than seven cells

providing network coverage. In this section we discuss ffexeof only tracking signal strength levels for
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Figure 3.6: The effect on GSM and GPS signal power when tiiangig between indoor and outdoor
environments.
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Figure 3.7: Cell history
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seven cells in the test environments.

In the metro-operenvironment we identi ed 54 unique cells and 665 distinan@nations of visible
cells. We found that certain cells, those with the strongigtal strength levels, were typically monitored
over 90% of the time. The monitoring of other cells, thoséwmituch lower signal strength levels changed

more frequently. This behaviour was consistent with thahfbin themetro-closecenvironment.

To determine whether the previous path had an effect on thétamed cells we collected data along
different routes to the same physical point. We found thatrttobile station “hung on' to already mon-
itored cells. We suspect this approach to be deliberategdoae the overhead of changing between RF
channels and also to avoid thrashing (repeatedly switdhétgeen two cells of similar signal strength lev-
els). From a location ngerprinting perspective, the insimtency in monitored cells may cause problems
matching signal strength levels to those stored in an ofriedio map. For example, if the construction of
a ngerprint was not exhaustive and cells visible at a givesifion were missed, then comparing samples
containing these missing cells with those stored of ine Wdotesult in placing the current location of the
user incorrectly. Therefore when constructing a radio miagnoenvironment, data collection should be

both exhaustive and re ective of the users' behaviour irt #ravironment.

In Figure 3.7a we show the number of times the same cell wastoned along a 375 metre path in
themetro-closedlata-set. This gure illustrates that although the samé pats taken during each journey
the actual cells that were sighted varied. In Figure 3.7b meide a visualisation of the average signal
strength for each cell. Cells that were consistently seeimgeach journey have a stronger signal strength
(illustrated with darker shades of grey) when compared ¢sdithat were only occasionally detected. In
Table 3.2 we show both the number of unique cells that wereitored during the ten journeys and the
number ofdistinct sets of cellthat occurred during each journey. We use the term “disseicto refer to

a unique combination of cells that was monitored by the neghiilone at a given time.

In Section 4.1.4 we show how we use this information to dgvel@ualitative representations of the

spatial environment.
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3.1.9 Related Work

Otsason et al. [OVMdLO05] demonstrated that in an indoorremment by using a wide GSM signal strength
ngerprint it is possible to achieve a median positional@exy of 5 metres. The wide ngerprint contained
the signal strength levels for the 6 strongest cells and @®tadditional GSM channels. This information
was obtained using a GSM modem that exported a richer APIrtiaat typical GSM cell phones. Laitinen
et al. [LLNO1] used location ngerprinting with GSM netwaskn an outdoor environment, achieving a
positional accuracy of 44 metres. The Placelab projectthedenown position of approximately 2.2 million
radio beacons to position mobile devices such as cell phdéti2as and laptops [LCT05]. By applying
Bayesian Itering techniques such as a particle lter, a ia@dposition accuracy of 20-30 metres has been
achieved with almost a 100% environmental coverage whererage is by assessed by the availability of

location information in peoples daily lives [HBO4].

In November 2007 Google introduced an auto-locate featurs tMobile Maps application [Goo07].
This feature displayed the current location of the carrfehe mobile phone with a blue circle to indicate
the potential error associated with the position. Positias determined using the Cell-ID of the current
serving cell. To enable this behaviour Google developed@anall of the cell centres and coverage areas.
It is unclear as to whether Google initially used data ctdlddy its users or instead contracted drivers to
survey the environment. However since this time, Google&fasshed this map by both contracting drivers
and using data generated by application users. The accafagyvice has been considerably better than
early research suggested that Cell-ID could offer [TVO4tchracy has however been linked to the type
of environment that the Mobile Maps application is beingduse For example, in city centres accuracy is
generally in the region of 1km in contrast in rural areas aamcyican be as low as several kilometres. This
is to be expected though as large, high-powered macro aellgypically deployed in sparsely populated
areas. Although this type of positioning is not as accurat&RS, the public reception of the My Location
feature has been largely positive because of convenienstanit position determination and the ability to

work in indoor environments.
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3.1.10 Summary

In this section we have characterised GSM data a source @fgmad and activity information. We have
shown that in highly populated, urban environments the ttooton of a radio map must re ect the be-
haviour of users in that environment. We have shown thatigteot monitored cells on a typical GSM

mobile station is dependent upon the previous path in thi@mment.

3.2 |EEE 802.11

In this section we investigate the use of 802.11 (WiFi) asumc®of context information. As with the pre-
vious GSM section we focus upon positioning from the perSpeof location ngerprinting and beacon
based systems. Other favourable traits of WiFi are thateéraies in environments where the Global Po-
sitioning System (GPS) would fail (indoors and in dense nrdavironments) and the number of wireless
beacons available in our cities and towns has increasedatiatly over the last few years. For example,
in 2005 during a war driving survey it was shown that downt@eattle has a WiFi access point density of
1200per kri [LCC* 05].

To assess the behaviour of IEEE 802.11 we have data collctmdurban and metropolitan environ-
ments. Data was collected using IPAQ Hx4700 PDAs, HTC S62bite phones and an Acer laptop with
an Atheros AR 500 5G WiFi card. The approach to data collagsadiscussed with the presentation of
results. We use these data sets to characterise WiFi daig tins following terminology to refer to each

data set.

Metro-of ce - An of ce in a busy metropolitan environment.

Metro-urban- A 45km car journey from a densely populated metropolitavirenment to a more

sparsely populated rural environment.
Metro-closed A 375 metre section of a busy shopping street with a largebmurof tall buildings.

Metro-open- A densely populated residential area but a more open arsanwitall buildings and

few people on the street covering approximately 2.25 sq km.
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Figure 3.8: RSSI level for a single 802.11 access point osmbover a two hour period in thdetro-of ce
environment.

3.2.1 Stability

Unlike GSM and other cellular networks, 802.11 (WiFi) ogesan a public frequency band (2.4GHz). As
such there is a much greater chance of experiencing inéexderwith other devices that operate in the same
frequency band such as Bluetooth. In this section we askesstability of 802.11 signal strength. We
compare data collected in controlled environments with tidained fromharshenvironments where we
would expect the signal strength levels to be inconsistentenvironments with a large number of moving

obstacles.

To assess WiFi signal strength stability we collected 76 @&a point readings at a xed point in the
Metro-of ce environment. Data was collected with an Acer laptop with ainefos AR 500 5G WiFi card.
Data was collected at a rate of once per second. It is worthgtitat there were minimal dynamic obstacles
in the environment, i.e. people moving around between theszcpoint and the 802.11 receiver. The data
from this experiment is presented in Figure 3.8. This grdpktrates that the 802.11 data is relatively stable
despite the nature of the public 2.4GHz band. The maximuml RS8| was -96dbm and the minimum
was -106dbm giving a signal variance of -10dbm. This resfilthis experiment are not surprising and are

echoed by the work of Bahl and Padmanabhan [BP0O] and otBBG5, BK02, WNYO05].
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3.2.2 Using History

In Section 3.1.8 we established that the previous path fak#me carrier of a GSM mobile phone in uenced
the current and neighbouring cells. This behaviour re d@bis frequency reuse architecture of cellular
networks. A mobile phone assesses the suitability of a numbeells greater than seven before deciding
on the short-listed seven that will be actively monitoretlislworth emphasising that programmatically
obtaining the data used in this initial selection processoispossible on today's mobile phones. GSM
modems do support an AT command that surveys a wider numimdrasinels typically up to 16. Otsason
et al. [OVMdLO5] used this to implement an indoor locatiorgerprinting based system for GSM devices.
As such we focus upon using the seven available cells for tipases of inferring contextual factors.

However the same limitations do not apply to 802.11 recsiver

Prior to the experiments in this section our hypothesis Was tinlike GSM devices, 802.11 devices
would not be affected by the previous path taken in an enwmient in that all visible WiFi base stations
(access points) can be scanned. That is, the path taken logrtier of an 802.11 device would not affect
the visibility of any given access point, i.e. if an accesmpis visible because a user has walked north to
south along a path then any previously sighted access pwilhtdso be sighted at approximately the same
locations if the user walked in the opposite direction - kdatnorth. From a positioning perspective this is
important if you are developing a positional service whéients will typically be walking. If the visibility
of speci ¢ access points were to be dependent on the prepatlistaken then the deployer of the positional
service would have to conduct an exhaustive calibratiomefenvironment by taking every possible path
in each direction.

To assess this behaviour we collected 802.11 trace datatfremetro-operenvironment. We chose
this location because there is good 802.11 coverage anel dhemultiple interconnecting paths enabling
an assessment of the effect of path history.

In total 10 passes of a 1km path were made. Data was colledtist walking. In total 94 unique WiFi
access points were seen during the 10 passes. The highelsénafraccess points seen on a single pass
was 78 and the lowest was 64. The signal strength readingalezl/that the access points with a lower

signal quality were typically seen less (5 access pointgwaly seen during one pass). In contrast, those
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with a higher signal quality were seen during all 10 passéss i§ as expected. Areas with houses close to
the pedestrian path produced consistent sighting of apmésts. Whereas, access points located in houses

further from the path produced more inconsistency.

3.2.3 Availability

Position can be determined using 802.11 data in a numberffefatit methods. For example, a crude
position can be determined simply using the closest WiFésepoint, i.e. if you can see the access point
in your of ce then you must be near your of ce. Positional acacy can be extended further by dividing
the zonal coverage area of access points into smaller zaieg 802.11 signal strength levels.

If an 802.11 positional service is required to deliver a spggositional accuracy then there is an
underlying requirement on the availability of 802.11 ascpeint coverage. The density of access points
must be great enough to distinguish between different nsgad space at the required accuracy. In this
section we discuss the availability of 802.11 data in disgaenvironments. We assess availability by
drawing upon results from war driving surveys conductedvargety of different environments.

During the experiment in theetro-of ceenvironment where data was sampled at a single position, we
sighted 12 unique access points during the two hour suruéydodt is worth noting that although 12 access
points were identi ed, not all were consistently visibler fimne duration of the survey. The availability is
shown in Table 3.3. Unsurprisingly, and in behaviour simitathe GSM data we collected in the previous
section, we found that access points with lower signal gtielevels provided inconsistent availability.

In a similar survey in thenetro-closeenvironment we collected 5050 data points and sighted 8yueni
access points. The 375 metre path led along one side of #et aind was taken whilst walking. This level
of access point coverage echoes results obtained by LaMbatgLCC" 05] which, in 2005 demonstrated
that downtown Seattle had a WiFi access point density of H20&q km.

It is interesting to note that surveying the same stretctoafirin themetro-closedenvironment in a
car produced 142 unique access points being sighted, 5&rhilghn when walking. We had not expected
to encounter this behaviour, instead we were expecting tiectienore access points whilst walking than

driving. Our hypothesis was based on the fact that more plgitsts would be collected in the environment
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whilst walking; driving is faster than walking. In additiowe expected that the distance from the 802.11
survey equipment to the potential access points will ireeeahen driving; we are taking a path along the
road as opposed to the pavement. To investigate this simgrissult we surveyed the other side of the road
whilst walking. We discovered that when driving we were jickup access points located on either side of

the road; however whilst walking we primarily detected ascpoints located on the same side of the road.

We collected additional trace data along a route that leoh filwe centre of Bristolrfietro-closedl to
the outskirts of Bristol where the urban data was collectad;metro-urbantrace, before nishing in a
rural, sparsely populated area North of Bristol. This rogtdlustrated in Figure 3.9. The trace took
one hour to complete and was collected between 14:40 an@.15#4is route was chosen because it led
through densely populated residential areas in additiderge traf c junctions distanced from commercial
and residential property. In total 9826 data-points weréected over the 45km journey. During this
journey 812 wireless access points were sighted. We foustdthie number of visible access points was
dependent on the surrounding environment. As expectedeihgety populated areas had high numbers of
access points, however roads linking pockets of housesdiatively little coverage. This is illustrated in
Figure 3.10. This gure plots the number of access pointsuaae seen during each minute of the journey.
Densely populated areas were driven through near the $tdré gourney in the centre of Bristol (14:45-
14:50) and in the residential outskirts of Bristol (15:08-110). This is re ected by the increased number
of visible access points. Figure 3.11 presents a visualisatf the location of access points discovered
during the 15:02-15:11 time period. This gure shows a higimier of access points were sighted in this
residential part of Bristol. Comparing Figure 3.11 with tig 3.9 reveals that there are large parts of the

journey where no access points were detected.

These experiments highlight that although in densely ptpdimetropolitan environments 802.11 cov-
erage is extensive, in other environments and paths joimiegopolitan areas it does suffer from gaps in
coverage. This imposes certain limitations, i.e. 802.tafion ngerprinting systems would not have the

necessary coverage to replace GPS based traf ¢ navigatioices.
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Figure 3.9: Visualisation of the entiraetro-urbarntrace (14:40-15:40).

3.2.4 Related Work

Although some work has sought to apply Time Difference oivalr(TDOA) based positioning techniques
using 802.11 equipment - AeroScout's Wi-Fi-based ActivdRFags [Aer07] - the majority of posi-
tional work has come from applying location ngerprintingchniques [BP0O, LCQ05, BK02, WNYO05].
Brunato et al. [BK02] demonstrated using just 3 access p@intaverage positional error of just 2 metres
could be achieved in a indoor 625rarea. Users of the system constructed their own radio mathéor
given environment separating the need to query the infretstre. Although this forces a calibration proce-
dure per user it does demonstrate one method for complatebegving user privacy. Similar results were
produced by Ferris et al. [FHF06]. This work used Gaussiaegsses and produced an average error of

2.12 metres. This 2 metres level of accuracy in indoor enwvirents has also been produced by [LFLOS5].

Madhavapeddy and Tse [MTO05] assessed the suitability efguBiuetooth signal strength levels to

determine position. In this process they collected tra¢a fitam an of ce environment. They concluded
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New access points

Time

Figure 3.10: The rate of access points discovery on a 45kmgyurom the centre of Bristol (South) to a
rural environment (North). Thmetro-urbantrace.

that Bluetooth was “ill-suited for the purpose of accurdtey-latency location sensing” [MTO05]. This
was partly due to practical issues such as the limitatioh ¢basumer mobile phones cannot maintain
multiple Bluetooth connections and partly due to the batwavof the Bluetooth data. Madhavapeddy and

Tse [MTO05] noted that walking adversely affected signal ppmeasurements.

The iPhone from Apple provides a location API that featurem@e's My Location service to de-
termine position using Cell-ID and the Wireless PositignBervice (WPS) from Skyhook Wireless to
determine position using WiFi [IPh09]. The reference dassbthat powers the Skyhook Wireless WPS
service consists of over 100 million WiFi access points [B{y This comprehensive WiFi map enables
accurate position determination in situations where GP8ldvoormally fail, such as in indoor environ-
ments, and in city centres where the view of the sky is obstufée process for determining position is
as follows. First the mobile device conducts a WiFi scan. M€ addresses from the WiFi access points
that were detected in the scan are sent to the WPS server. These¥&8 matches the MAC addresses
using the reference database and returns the positionmsgyposition determination was successful, any
previously unknown WiFi access points are then integratéal the reference database using the position

associated with the known access points. This keeps thenefe database refreshed.
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Figure 3.11: Visualisation of a subsection of thetro-urbarntrace (15:02-15:11).

3.2.5 Summary

Although devices implementing the IEEE 802.11 standara hmwaen widely adopted by many, their cov-
erage is not as ubiquitous as that of the mobile phone. Atguamon-metropolitan environments there
are still substantial areas where 802.11 coverage is posrsuéh, and from the perspective of position
determination, this means that there are issues with insten$ performance. Unlike GSM mobile phones
the limitation of the number of access points visible at ang time lies with the implementation of the

scan/survey function.

3.3 Summary

In this chapter we have characterised the behaviour of IHEEI8 (WiFi) and GSM. We use these ndings

throughout the remainder of this thesis.

In Chapter 4 we use WiFi and GSM to provide position informmiatin a qualitative manner.

In Chapter 5 we the patterns of GSM cell and signal strengtuations established in Section 3.1.5
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Table 3.3: Results from a two hour 802.11 survey in an of ceiremment. Data was collected at a xed
position.

MAC Address Available | Min | Max | Range
00:1a:6d:80:c4:50 29% -58 | -53 5

00:90:96:f2:fa:21 65% -58 | -53 5

00:14:69:f2:79:10, 100% | -103| -87 16

00:02:2d:37:3a:36 100% -64 | -56
00:13:49:9a:2a:83 100% -74 | -68
00:0a:€9:00:71:e§ 100% -106 | -96
00:11:24:28:8f:.0a 81% -62 | -54
00:14:51:6f:10:0f 24% -56 | -53
00:1a:6d:80:c4:56 47% -58 | -53
00:14:69:f2:7b:00| 100% -93 | -81
00:1a:6d:80:c4:54 52% -58 | -54
00:18:39:10:26:80 100% -97 | -90

~NrRQuwols oo

and Section 3.1.6 to identify everyday activities such akiwg and driving.

In Chapter 6 we fuse position and activity information in @rdo recognise places of interest to a

person.
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Chapter 4

Qualitative Positioning

It is well established that modelling the spatial envirominie an essential part of developing a context-
aware application [JS02, BBR02]. As such, multiple modedsehbeen developed over the past few
years [Nar01, VFK 99, Bei99]. These spatial models can typically be classieedeither topological
(qualitative) or more commonly, as coordinate based (quzine). Quantitative models generally take
a geometric view of space with positional information siggblby location services using Euclidean or
spherical coordinate systems. Coordinate tuples are ggsededy the application and behaviour is updated
to re ect the new location information. In contrast, topgical or symbolic models manage space in a
qualitative manner with positional information mapped tortan abstractions of physical places usually in
the form of spatial zones. The relationships between zaooressf a topology often expressed as a graph.
Application behaviour varies depending upon the symbe@jresentation of space (zone) that the user is

currently located in.

In Chapter 3 we established that the behaviour of wirelegssiech as GSM was dependent upon envi-
ronmental factors and the current activity of the carriethef mobile device. As previously demonstrated
position accuracy and reliability varied based upon thesofs. In this chapter we demonstrate that by
building this behaviour into the process of position defeation and using a qualitative approach to man-

aging space, the end user will receive a better user experidnconsistencies such as reduced positional
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granularity in certain parts of the spatial environment barelegantly handled by creating spatial zones
that cover a larger area.

The rest of this chapter is structured as follows. Secti@rpdesents a qualitative approach to managing
the spatial environment. In this section core concepts|argriated using a single source of positional

information. Section 4.2 presents a method for fusing mplgtsources of positional information.

4.1 Qualitative Management of Space

When constructing a symbolic model of the spatial environrdemelopers must de ne spatial zones within
the constraints of the underlying sources of positionarimfation. For example, it is not possible to create
zones with a physical coverage area that is ner than theujaaity of the data produced by the positioning
services.

With some positioning systems, performance varies depgngjpon the physical environment where
the system is deployed [TV04, SR00]. For example, RF bass@sg suffer from multi-path fades, dead-
spots, signal diffraction and re ection, creating incaisint performance in different areas of the appli-
cation environment. This poses problems for developersfames a laborious of ine calibration phase
where positioning system performance is assessed and aomeseated to re ect the limitations of the
measurement service and environment.

In this section we present a strategy and set of algorithmadieeloping a positioning system that offers
an appropriate service for the given spatial environmeamtpdrticular, our qualitative positioning service
de nes zones that are determined by the quality of the measents. We use the term measurements to
describe information that the positioning system can usmatculate location. We are agnostic about the
type of measurements (cellular, 802.11, ultrasound), =g &s the measurements are position dependent.
This qualitative approach differs from more common quatitie location systems, where the positioning
APl may, given the available measurements, make unreatistinands and unrealistic promises to the
application programs.

The rest of this section is structured as follows: Sectidnl4discusses the underlying spatial model

and introduces the concept of a logical path, Section 4.@r@ahstrates how a zone based representation
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Figure 4.1: A typical of ce oor plan - the spatial environmefor a context-aware application. The spatial
environment partitioned into zones that re ect the perfante of the underlying positioning services.

of the spatial environment can be generated in an unsupenagnner via a simple calibration procedure,
Section 4.1.3 demonstrates how zone topology can be idfbyrapplying Markov chain frequency analysis

techniques and Section 4.1.4 presents results from aningpigtion using cellular networks.

4.1.1 Logical Management of Space

In this section we introduce the concept of a spatial zonellarsirate how transitions between zones can
be expressed as directed graphs.

We use the termspatial zondo describe a portion of space that can be distinguished éther areas of
space when using measurements such as the signal streiagtfirefess beacon. The area of physical space
that a zone symbolizes, re ects both the quality of the paisal measurements and the spatial environment.
Thus zones represent the nest, reliable position that teasurement service can offer. This implies that
if it is possible to reliably determine position within déffent areas of a zone then the zone should be split
into smaller, child zones. Consequently, zones do not Baci#scover the same amount of physical space
and hence are assumed to be of unequal size. At rst sightntiaig seem like a very limited system.
However applications that require knowledge such as “is ontext the toaster or the fridge?” need no

more information than the above, if the toaster and fridgeiarseparate zones. In contrast, quantitative
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Figure 4.2: The physical path illustrated in Figure 4.1 camdpresented as a directed graph. The nodes in
this graph correspond to qualitative locations and the iadisate order.

positioning services typically require the deployer to mé#hke qualitative mapping; map places of interest
to position measurements produced by the positioningsrvi

The zone that the user is currently located in is their gat@ht location. The way that zone mem-
bership is determined depends on the type of positional unea®nts available. For example, Figure 4.1
shows the layout of a typical of ce environment. In this exae) positional measurements are obtained
from ultrasonic transmitters distributed throughout theienment. Zone membership (a users qualitative
location) is determined by looking at the strongest trattemsignal. As such, the oor has been partitioned
into zones that re ect the areas that can be reliably diststged from one another using the measurements
obtained from the transmitters.

Figure 4.1 also shows the physical path an application wg#t when walking through the spatial
environment. In terms of qualitative location, this patimgly represents a series of zone transitions in the
form of a directed graph as shown in Figure 4.2. We use theltmgival pathto describe the series of zone
transitions equivalent to the physical path.

By constructing logical paths based on users interactiatistihe application environment it is possible
to infer the relationships between zones. This has the galgarthat once suf cient data has been collected
it is possible to identify popular paths and invalid zonensitions in an unsupervised manner, improving

positioning service performance.
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4.1.2 Automatic Zone Creation

In this section we demonstrate how it is possible to consazone based representation of the application
environment in an unsupervised manner that re ects theracgwand reliability of the available positional

measurements.

Constructing the zone representation is a simple of inéxation process. Firstly, the deployer collects
samples of positional measurements throughout the agiplicanvironment. Unlike traditional location
ngerprinting calibration, the associated physical piosis do not need to be stored with these measure-
ments. Once this training data has been collected it istjpemtid into sets of similar measurements. These
sets contain the data that will be used to determine zone mestipp. Hence a set, or cluster of training

data de nes the boundaries of a spatial zone.

At runtime, the qualitative location of a user is determifgd nding the cluster most similar to a

position dependent measurement taken at the user's cupigrgical location.

With many partitioning algorithms the developer must sfygaiadvance the number of clusters (zones)
to create. Therefore a range of values should be tested amktformance of each assessed in order to
select the optimum solution. Performance can be evaluategeberating several logical paths recorded
over the same physical path. As they all represent the sagmgah path, in theory, all the logical paths
should be identical. This however is not realistic as tylbjcthe source of positional measurements is
inherently noisy. Therefore the optimum solution is a traffebetween two factors: number of clusters
and similarity of logical paths. The higher the number ofstéus the greater the positional granularity
since more zones represent the spatial environment. Bubwer the number of clusters the greater the
similarity between logical paths that represent the samgsipal path. It is important to note that the quality
of the generated zones largely depends on the amount ofgadiata collected and whether the data was

gathered throughout the spatial environment.

Clustering algorithms such as those discussed in Sectib# 2an be used to cluster the measurement
data (create the zones). In this thesis we use K-means fopthcess. K-means partitiohk data points
(training vectors) intd< clustersSj. The objective function representing the distance betvtleeisample

and the cluster centre is used to partition the training.data
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xXox "
J= iXn il (4.1)
j=1 n2S;j
wherex, is a vector representing a positional measurement arnsl the centroid of the data points in

S; andjxn jjz. If, for example, the positional measurements were siginahgth levels on a cellular
network therx, would represent a snapshot of these levels for all visiblls.dé-means can be initialized
with vectors selected at random from the training data. Tidiffean distance for each subsequent sample
Xn to the centre of each centroiq is then calculated. This samplg is then added to the centroid that

it is closest too. The centroids are then recalculated amdigmbership of each of the poir8s for each

centroid ; is then re-evaluated until there are no further changes imiveeship.

4.1.3 Zone Topology

In this section we demonstrate how logical paths, expreasedirected graphs, can be used to infer zone
topology and hence improve positioning service perforreanc

As the physical coverage area of a zone is decreased (nurhlzenes covering the entire spatial
environment is increased) support for richer locationises/can be provided. But decreasing the physical
coverage area of a zone (reducing the training data) redheasliability of accurately matching the same
physical position to the same spatial zone. This problenbeaminimized by identifying the zone topology
and hence distinguishing between valid and invalid zongsttmns. An invalid transition is one where the
user is reported to have moved from a zone to another that ia neighbour of the rst zone. In order to
implement this we need to work out the zone topology. Thiisdirectly observable with both valid and
invalid transitions appearing to have equal legitimacy. d&r however determine a zone's neighbours by

applying frequency analysis technigues such as Markownshai

In terms of logical paths, a Markov chain is a sequence of r@msitions where the current zone that

the user is located in is conditionally dependent of theiptevzone. That is:

P(Xn+1 = XjX0; X1; X255 Xn) = P(Xn+1 = XjXp) 4.2)
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whereX is a spatial zone and , is the current zone a user is located in. The one-step tramasit

probability:

P(Xn+1jXn) (4.3)

is implemented as a transition matrix containing the prdligis of moving from one spatial zone to any
other spatial zone in the environment. This matrix is pofgaldy processing the zone transitions contained
in logical paths. Once trained one can distinguish betwedid and invalid transitions by looking at the
transition probabilities. Invalid zone transitions stibhk associated with lower probabilities than the more
frequently occurring valid transitions. This has the adage that once suf cient data has been collected
it is possible to identify popular paths and invalid zonengitions in an unsupervised manner, making it

easier to roll out the system and, over time, improving pasitg service performance.

4.1.4 Results

In this section we discuss the results for implementatidnthis work on a busy shopping street with
a large number of tall buildings in th@etro-closedenvironment and a 500-metre section of thetro-
openenvironment. Thenetro-closedenvironment was collected 10 times over a three week pegdd/d
volunteers. Thenetro-opens a densely populated residential area with no tall bugdiand few people on
the street. This data set was collected 20 times over a onérperniod by four volunteers. We used GSM
networks as the measurement service.

The aim of our experiments was to identify if people had tatkensame physical path by comparing
the equivalent logical paths. In total we collected 8457 smeaments during 25 passes and encountered
24 different Cell-IDs. We use the terpassto refer to a user walking from one end of the road to the
other whilst carrying measurement collection equipmene Wed 15 passes as training data (data used
to create the clusters) and 10 passes as test data (dateouseskss performance). Data was partitioned
into groups of similar measurements using K-means. K-mdgéesmany partitioning algorithms requires
the developer to specify in advance the number of clustense@) to create. Therefore a range of values

needed be tested and the performance of each assessedritoosdiect the optimum solution; we tried
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Figure 4.3: Clustering performance is assessed by contpariiitiple logical paths generated over the
same physical path.

K valuesk = 2 to k = 28. Once the clusters had been generated, the test data wasgedc producing
logical paths of the users transitions through the zone®gsepting the spatial environment.

Logical paths were compared using the following equation:

P
21 CF)

r

s= (4.4)

wheren is the number of logical paths being compar¥d,is the number of matching zones at logical
path positiorez with a path size of, ands is a real number between 1 and O representing path similarity
with 1 indicating paths are identical and 0 meaning pathsesha similarity. The performance of this
function is shown in Figure 4.3.

In our experiments all logical paths represent the sameigdiygath so, in theory, all logical paths
should be identical. This is not realistic though as cellsignal strength levels are inherently noisy and
the mobile station can only track up to 7 levels at any one timstead, our results showed that for this
environment performance was optimal with three zones,ymiog a path similarity of 87%. Witk values
less than 11, a path similarity of 60% or above was achieved.

At most, only 10 zones were used, even whewas 28. This served as a good indication that with
higherk values the number of zones is not re ective of the environngewl available training data. This

illustrates it is not possible to force a granularity beydimel limits of the positional measurements.
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In the experiments in theetro-closecnvironment we noticed that measurements recorded atiie sa
position showed that the list of monitored cells varied. sTisibecause the phone can only monitor up to
seven cells at any one time. In some positions more than selsnare visible. To address this limitation
we have introducedariancesn the process of calculating Euclidean distance. Prelypow$ien calculating
the Euclidean distance between two measurement vectongwhn&nown values existed, i.e. a centroid
was not initialised with a signal strength level for a parkiz cell contained in a measurement sample, a
static value was substituted. Now we substitute valuesatigate ective of the similarities with other shared
cells. This rewards samples that already share many comellsrby substituting the unknown value with
a value close to that contained in the measurement samplasuvieEment samples that do not share many
common cells with those in the centroid are assigned vahatsih terms of Euclidean distance are much
further away. We refer to the substituted values/asances We use this term because the substituted

values vary depending on the similarity between the two oreasent vectors.

The second set of experiments were conducted inmto-operenvironment. In these experiments
the approach to surveying the environment was deliberatedgructured to provide data that represented
real usage. Volunteers were shown maps of the desired gm/araa of the radio map and asked to walk
where they wished within this coverage area. Volunteergwet constrained by direction or asked to walk
on any particular paths. There were however practical caimss such as busy roads would only be crossed
at pedestrian crossings. The idea of calibrating radio rttzgtsare re ective of usage has previously been
demonstrated by LaMarca et al. [LHSCO05]. The collectiorhef test data was systematic with volunteers
taking the same path. In total we used 12567 measurememgsrang data (data used to create the clusters)

and 8324 as test data (data used to assess performance).

We show the performance of the new approach to calculatirdjdaan distances in Figure 4.4. Fig-
ure 4.4 is a Receiver Operator Characteristic curve (RO€eguhat plots the path similarity against the
number of zones used (effective zones). We use a ROC curlledtrate that no matter how great tke
value used when generating the zones, the number of effeadives peaks. The number of effective zones
shown along the x-axis is the average number of effectiveza@tross all test data. In this environment,

no more than seven zones could be found. The graph showsyteabbtituting values that are re ective of
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Figure 4.4: Radio map performance in the metro-open enwvigoni.

the similarities with other shared cells (using varianage)can increase path similarity performance and

increase the number of effective zones.

In Figure 4.5 we present visualisations of the clusteriracpss in thanetro-operenvironment for a
variety ofk values. This gure shows the different zones (clusters) ¢ghaser is located in during a single
journey around thenetro-operenvironment. Each marker represents a measurement. Towr aflthe

marker indicates the closest matching cluster. This pmisagpeated fok values[3 8.

From looking at this gure it is clear that in most cases thee® represent continuous, connected
space. This is a useful effect as in most cases of real wodtbgeent the deployer will seek to map zones
(clusters) to single areas of physical space. The physizalaf the zones is dictated by tkevalue. In
Figure 4.5& = 3 and the size of the three zones are approximately 1000mdgeyan00m (yellow) and
300m (red). Ask is increased the size of the zones decreases. For examplgure 4.5ek = 7, the
largest zone covered an area of approximately 430m.

Providing the information contained in this gure to the d®per of the location service will highlight
areas of position inconsistency. For example, in Figuré #h& deployer can see that the red cluster that
covers the space at the top right hand side of the gure is aoticuous. There is a small overlap between
the red cluster and the purple cluster. This enables th@gepbf location based service to decide the most

appropriate way of addressing this inconsistency.

In the metro-open environment, we found zones in the more ppets of the environment were typi-
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Figure 4.5: Clustering visualisation using multipdealues.
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cally larger than those close to obstacles such as walls.géherated zone representation re ected these
limitations. With a path similarity performance level of%Qhere are six effective zones as opposed to ten

in themetro-closedthis is characterised by the density of cells and the dgp$ibbstacles.

415 AutomaticKk Determination

In the previous section a rangelofalues were used in order to decide on the optimum numbemafzihat
should be used to represent a spatial environment. It isad#sito shield the deployer of a location service
from the complexities of this process. In this section wespnt a method for automatically selecting an
appropriatek value.

The method builds on the technique used to compare logiths phat was presented in Section 4.1.4.
This method used test data to assess the similarity of Ibgaths. Eaclk value was then awarded a score
based upon the similarity of the logical paths and the nurmobeones that were actually recognised in the
path (effective zones). A higher score meant that takingsirae physical path through an environment
produced the same or similar logical path. The score waseatlifi thek value did not re ect the number
of effective zones. With the termffective zoneeferring to a zone that is actually used, the logical path
shows the user was at one point located in the zorlewiis higher than the number of effective zones then
the score for thé value was reduced.

The process of scoring eag&hvalue lends itself to automatic selection. The implementation of the
scoring process used in Section 4.1.4 is already automdibd.tool is provided with a minimum and
maximumk value; start and end points. The output is the score for kaehue between the minimum and
maximumk values.

Automatick determination can be implemented by either the deployevigirag selection criteria or
by simply nding the highest effectiv&. If the deployer was asked to de ne a selection criteria ttas
would be the threshold fdt value scores e.g. 75%. Pdowalues would then be removed and only zone
based representations of the spatial environment woulddsepted to the deployer.

It is not effective to shorten thesearch space by analysing the raw measurement data. Tleisdase

many of the steps involved in identifying distinguishabtesipions using the raw data are repeated in the
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process of creating a zone based representation of thalspatironment. As such this approach does not
offer any signi cant advantages over the automating sgpafk values that was previously discussed.
Unfortunately we cannot tighten this upper estimate. Figdhe maximum k-value is another aspect,
as this is obviously limited by the number of visible cella.Section 4.1.4 the tests along a 500m section
of a shopping street resulted in 24 unique cells being moetoln Chapter 3 the tests in theetro-open
(2.25 sq km) area resulted in 54 unique cells being monitoBath Figure 4.3 and Figure 4.4 show that
the number of effective zones that can be achieved witlseore greater than 80%ks= 3. Greater than
60% is also approximately the same. This is despite more belhg visible and a larger coverage area in
the metro-operenvironment. This is due to the nature of the environmentse Shopping street contains
many obstacles such as tall buildings that help createndisishable signal strength levels. In contrast the
metro-operenvironment has a minimal number of obstacles hence the awaildistinguishable sections

is low.

4.1.6 Deployment

In a qualitative environment most of the time the deployelt want to map back to “Sainsbury's” or
“BP Garage” [Hig03]. But occasionally the deployer of thedtion service will want to map back to
latitude/longitude. If the deployer wants to map to the gative location, then the process is as follows.
Consider that the deployer collects ngerprint measureimémoughout the application environment
at equally spaced intervals. Although the position assediavith each ngerprint is different from the
next, in terms of signal strength differentiation some ngnts will be indistinguishable from others. The
qualitative approach to managing space handles this irstensy. Multiple ngerprints will be merged into
a single ngerprint in order to identify a single positiorofze). Once the clustering process has completed
(the zones have been created) the real world positions &cehtre of the zones can be determined by
nding the closest matching ngerprint in the training data’he associated position is the real world
position for the centre of the cell. Zone coverage area canlad determined in a similar way. A ngerprint
from each unique physical position can be matched to thesta®ne. This de nes the real-world coverage

area of each zone. If the deployer was intending to use thierayia particular places of interest (e.g. shops)
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then they could use measurements collected in front of thlegps as starting points for K-means; speeding

up the process and increasing the likelihood of getting at&wl that separates shops.

4.1.7 Summary

In this section we have presented a strategy for developdsgipning services that provide users with a
gualitative location. The supplied location re ects theatjity and reliability of positional measurements
obtainable in a particular spatial environment. We haveatetrated that, via a simple calibration phase,
the spatial environment can be automatically partitioméd & series of distinguishable zones.

Instead of offering a position and accuracy which may not le¢, mve offer a zone and a con dence,
where the zone depends on the environment. If it is not plessildistinguish between two places then a
single, qualitative location will represent both areas.

In terms of GSM signal strength data this type of qualitatipproach to managing space is particularly
suitable because it addresses the inconsistency issged miSection 3.1. In Section 3.1.4 we established
that signal strength levels vary inconsistently betwedfemint physical points in outdoor environments.
This poses problems for quantitative systems in that somasanf the spatial environment may be dis-
tinguishable whilst others are not. This leaves the dewloyth an awkward decision. Reducing the
positional granularity of the system in order to hide theewill create consistent performance. However,
leaving the error will enable a ner positional resolutiamthe rest of the environment but at the cost of
inconsistent performance. In contrast, a qualitative @@ghn such as the one described above handles this
situation well. Zones are created to re ect the limits of theasurement service in the given environment.
If it is possible to reliably determine position within déffent areas of a zone then the zone is split into
smaller zones; if not, a zone with a larger coverage areased.

We have applied this work using cellular signal strengtlelgin metropolitan and urban environments.
We achieved promising results, accurately matching ldgiaths with low numbers of spatial zones. But,
as expected, we found that as we increased the number of irotiresenvironment the performance of the
location service decreased. Although performance can peowad by knowledge of the zone topology,

ultimately a trade off must be made between positional deaity and measurement reliability. In our
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experiments, we found cellular signal strength inforntatim be very noisy. The calibration phase gave us
an accurate picture of performance in this environmentlargbs to build location aware applications that
operated within these constraints.

In both the metropolitan and urban environments our prooébsilding a zone-based representation
of the environment and providing the user with a positiorhi@ form of a spatial zone was successful. It
should however be noted that the physical coverage areg (dfithe spatial zone was not the same in both
environments. In thenetro-operenvironment a logical path comparison produced a perfocméavel of
70% whenk = 6. In contrast, thenetro-closedenvironment produced an equivalent level of performance
whenk = 10. In the metro-operenvironment wherk = 6 the average zone size was 375m with the
largest zone covering approximately 550m. In thetro-closedenvironment the average zone size was
approximately 50m. This suggests that although the prozeseeating the zone-based representation is
transferrable to other environments, expectations oftjpmsgranularity are not directly transferable. This
is expected as different environments will be provisiongdifferent RF infrastructures, e.g. the density of
beacons, and the environments will have different chariaties, e.g. they will contain different obstacles.

The experiments in this chapter have used GSM data but cawkel iised any source of data, including

ultrasound, WiFi etc. In the next section we show how to fusétiple sources.

4.2 Fusing Qualitative Positional Data

We have discussed two sources of information abundant idaily lives that can be used to infer location;
GSM and WiFi. Each source has strengths and weaknesseded§isignal strength levels are susceptible
to multi-path fades, diffraction and re ection and hence gypically very noisy. WiFi operates on a public
band (2.4Ghz) and is subject to interference. Cell phonesragdly only track up to seven cells at any single
time. However in dense urban environments there will padéntoe far more than seven cells visible from
a single location. Hence the same wireless beacons maywaysbe observable at the same physical
location. However by fusing these sources an increase caralde both in terms of positioning reliability
and granularity. In the following section we present a Bayesetwork for location inference using this

data.
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The rest of this section is structured as follows. Secti@il4presents an extensible Bayesian network
for fusing cellular and 802.11 signal strength data witheldss beacon information. We use the term
“wireless beacon information' to refer to beacon data ssdhe sighting of a WiFi access point or a GSM
Base Transceiver Station. We can make inferences relatipgsition without using additional data such as
signal strength levels. For example, if your mobile phoneuisently monitoring a GSM cell visible from
your home then you can infer you amearyour home. In Section 4.2.2 and Section 4.2.3 we demonstrate
how to calculate node probability distributions and applidence. Section 4.2.4 discusses how to assess
the performance of the radio map. Section 4.2.5 reports dmplementation using both simulated data

and real data gathered from a metropolitan environment.

4.2.1 Bayesian Network

We aim to fuse wireless beacon information and measurenaatabtained from GSM and WiFi sources
to provide the best possible performance in the process sifipo determination. To do this we use a
Bayesian network; enabling us to take a probabilistic apgindo data fusion. We review the information
we have available to us by rst looking at each source indiaitly before presenting a model for fusion.

We use three sources of information.

1. GSM. The GSM measurement data can be partitioned into disshgbie zones using the method

presented in Section 4.1. In this case position is repredeas a zone.

2. WiFi. WiFi data can also be used in the same manner; clusteringetiecthe zones. Again this

results in position being represented as a zone.

3. Wireless BeaconsWireless beacon information to provide an indication af position. A wireless

beacon is a GSM Cell-ID or a WiFi MAC address; all IDs togetfoem a set of visible beacons.

A single beacon appearing in a WiFi scan or list of monitorelscon a mobile phone enables a coarse
estimation of our position; we are within the coverage arfethat beacon. If multiple beacons are visible
then we can improve accuracy beyond what could be achievibdavgingle beacon. Cellular networks are

suited to this purpose because they are designed to havieoceitlary overlap but no duplication in the
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Figure 4.6: A Bayesian network for fusing cellular, WiFi doelacon positional information.

exact coverage area. The area where multiple wireless beate visible can be thought of as a zone with
membership criteria dependent on concurrently monitonmdtiple beacons. To illustrate this consider
that a phone is monitoring a list of cell&;(B; C; D ) and then this list changes t&;(D; E; F ). This would
result in two beacon zones being created. If at a point in innger carseecells A; D; E; F ) then they
will be deemed to be located in the second beacon zone. Toatlies€SM, WiFi and beacon data rst

requires the following.
1. Clustering of the Cellular data to create ®ell zones
2. Clustering of the WiFi data to create théFi zones
3. Determination of unique visible sets of beacons,Gbenposite-Beacon-zones

Completing this process creates three sets of zones. Mship@f the Cell zones and the WiFi zones is
determined by nding the centroid that is closest to a measient sample collected by the user at runtime.
The beacon zones represent the unigue sets of visible beaBeacon zone membership is determined by
matching the list of currently visible beacons against #ts stored of ine.

In Figure 4.6 we present a Bayesian network that infers thation of a user using the GSM, WiFi
and beacon data. In this network there are two parent nodesaenchild nodes. TheCell-Zone node

represents the Cell-Zone that a user is currently locate@his node contains attributes representing all of
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the different Cell-Zones used in the environment. The numb€ell-Zone attributes is de ned by the.
value used when clustering the cellular signal strengta.dBlte WiFi-Zoné node is the equivalent of the
Cell-Zone node but using WiFi as opposed to cellular sigtiahgth data. As with the Cell-Zone node, the
number of WiFi zones is determined by the value used when clustering the WiFi data. We create separate
cellular and WiFi nodes because the clustering approadepted in Section 4.1 performs best when using
a single source of positional information. This is primaidue to the assessment of performance. WiFi
zones are typically smaller than cell zones. Clusteringi\&itel cellular data at the same time typically
results in the creation of many zones whose membershipgsliain uenced by WiFi data. This means it

is hard to evaluate the optimum number of cell zones thatldimicreated for the environment. To address

this we create the cellular and WiFi zones independently.

We use the term "Composite-Beacon-Zone' to refer to thedreaones that represent the unique com-
bination of wireless beacons visible at a single point ireti/e are agnostic about the type of beacon and
do not treat cellular or WiFi any differently. Membershiptbfs type of zone is determined by matching the
visible beacons in a measurement sample with those in a @gleemposite-Beacon-Zone. For the purpose
of this work we do not consider situations where we are oatsfatell coverage. Therefore whenever WiFi
data is available so to is cell data. In addition, the covermga of Cell-Zone's is larger than that of WiFi
Zone's. This is re ected in the structure of the network,r#hés no link between the WiFi Zone node and

the WiFi in Cell Zone node.

At any point in time a user will be located in three differewines, a Cell-Zone, a WiFi-Zone and
a Composite-Beacon-Zone. This combination of zones formsaditative coordinate (Cell-Zone, WiFi-
Zone, Composite-Beacon-Zone). Looking at the frequenaydtuser is placed in a combination of these
zones enables inference of the relationships between thenexample, whilst placed in Cell-Zone A their
current WiFi zone at this time is typically zone B. Therefarken placed in WiFi-Zone B they can infer
they are likely to also be placed in Cell-Zone A. In the Bagagietwork this relationship is modelled via
the WiFi-In-Cell-Zoné node. The Composite-Beacon-Zoneode represents the equivalent relationship

for Cell-Zone and WiFi-Zone.

In the following section we discuss how the conditional @ioitity distributions can be learnt from
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historical data and in Section 4.2.3 we illustrate how tolagpidence to the network to obtain stronger

location estimates.

4.2.2 Node Probability Distributions

As with any Bayesian network, probability distributione @opulated either by a domain expert or by learn-
ing from historical data. We learn these probabilities gghre same training data used to create the initial
zone based representation of the environment. To pophiat€ell-Zone and WiFi-Zone probability distri-
butions we use the Euclidean distance between a measursample and the centre of a cluster (zone). In
this case the Euclidean distance is determined by comp#réengadio beacons in the measurement sample
against those in the Cell/WiFi zone. This is de ned in Secth2.4 and applied in Section 4.1.2. The
closer the measurement sample to the cluster the greaterdbability of the user being located in that
zone (cluster). We normalise the data by dividing the distdfrom a given cluster to a measurement sample
by the sum of distances from that sample to every other clirstee environment.

Certain Composite-Beacon-Zones will be visible more oftenertain Cell-Zones and certain WiFi-
Zones. Hence knowing the current Composite-Beacon-Zoablesa Cell-Zone or WiFi-Zone positional
estimate to be made with an increased con dence. This oalsliip is represented in the Bayesian network
by the links from the Cell-Zone and WiFi-Zone nodes to the @osite-Beacon-Zone node. As such the
conditional probability table distribution for the ComjitesBeacon-Zone is dependent upon the state of the
Cell-Zone and WiFi-Zone nodes. The values in the conditipmabability distribution are populated by
calculating the frequency a given Composite-Beacon-Zaewisible whilst in a Cell-Zone and WiFi-Zone
combination.

The WiFi-In-Cell-Zone node, like the Composite-Beacom&aepresents the relationship of being
concurrently located in different types of zone. In thisggdke probability of being located in a given WiFi-
Zone whilst also being located in a given Cell-Zone. Agaiis #nables increased assertions to be made
regarding both the current Cell-Zone and the current WigiZ The conditional probability distribution is
determined by calculating the frequency with which a giveR¥Zone was visible whilst a given Cell-Zone

was also visible.
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In this network the probability distributions for the Congite-Beacon-Zone and WiFi-In-Cell-Zone
nodes are static for a given set of training data. The rootsodell-Zone and WiFi-Zone nodes are however
dynamic and the unconditional probability distributione aipdated with each new position dependent

measurement.

4.2.3 Applying Evidence

In this section we demonstrate how it is possible to magiangerestimate of a user's qualitative location
by applying evidence to the Bayesian network describedémtievious section. We demonstrate how to

add evidence to the Bayesian network to determine the fallpywrobability:

P(CZjWZ;WICZ;CBZ )

whereCZ is the Cell-ZoneW Z is the WiFi-ZoneWICZ is the WiFi-In-Cell-Zone an€BZ is the
Composite-Beacon-Zone We start by looking at the proligbili being in a particular Cell-Zone given
evidence about the current WiFi-Zone, WiFi-In-Cell-Zomal&Composite-Beacon-Zone. By using Bayes

rule we can write this as:

P(WZ;WICZ;CBZ;CZ )

P(CZIWZWICZ,CBZ ) = —5 Ry 7-Wicz.cBZ )

The states of Cell-Zone are mutually exclusive, hence walsleeto transform the denominator to give:

P(WZ;WICZ;CBZ;CZ )
c,0P(WZ;WICZ;CBZ;CZ 9

P(CZjWZ;WICZ;CBZ )= P

By using the product rule we can now expand both humeratodandminator to give.
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P(CZjWZ;WICZ;CBZ )=
P(WZjWICZ,CBZ,CZ ) P(WICZ jCBZ,CZ ) P(CBZ jCZ) P(CZ)
P(Wzjwlicz,cBz,cz 9 P(wiCz jcBz;cz % P(cBz jcz% P(cz9

cz 0

At this point we do not yet have an equation that is represigataf the conditional independencies
in our Bayesian network. We therefore need to update statisnsech a® (WICZ jCBZ; CZ ) with the

relationships shown in Figure 4.6. This gives:

P(CZjWZ;WICZ;CBZ )=
P(WZ) P(WICZ jCZ) P(CBZ jCZWZ ) P(CZ)
P(WZ) P(WICZ jcz% P(CBZ jcz%wz) P(CZ9

cz 0

We are then able to simplify by removing the common fa&¢W Z) from both the numerator and
denominator. This is possible because the prior probgbidit the WiFi-Zone has no direct effect on the
Cell-Zone probability. The prior probability is the prolitly before evidence is added. In this case the
WiFi-Zone is not a parent nor a child of the Cell-Zone nodedaetie prior probability for the WiFi-Zone

has no effect on the Cell-Zone. This simpli cation gives:

P(CZjWZ;WICZ;CBZ )=
P(WICZjCZ) P(CBZjCZ;WZ) P(CZ)
<, oP(WICZCZ9 P(CBZ|CZ%WZ) P(CZ9

P

We illustrate this by determining the value B{CZ = AjWZ = A;WICZ = A;CBZ = A) by
substituting known evidence. In this case we wish to knowpttedability of being in Cell-Zone A given

that we are currently in WiFi Zone A, WiFi-In-Cell-Zone A a@mposite-Beacon-Zone A.
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P(CZjWZ;WICZ;CBZ )=
P(WICZ =AjCZ=A) P(CBZ =AjCZ=AWZ =A) P(CZ=A)
P(WICZ =AjCZ=A% P(CBZ =AjCZ=A%WZ =A) P(CZ=AY

(]
T

cz =A02 (yesno )

We can now solve this by substituting the values from the itmmdl probability tables. This allows us
to make stronger estimate of a user's position thus inanggssitioning system performance. This process

is repeated to determine the probabilities for the CompeBdacon-Zone and WiFi-Zone zones.

4.2.4 Assessing Performance

In Section 4.1.2 we demonstrated how it was possible to nartsh zone-based representation of a spatial
environment in an unsupervised manner. As part of the psoitesdeployer had to select the number of
zones to cover the application environment. As such, a rahgelues are used with the performance of
eachsolutionbeing evaluated and the most appropriate selected. We @aderthsolutionto refer to both
the Cell-Zone and WiFi Zone radio maps together with the Gasitp-Beacon-Zone map. In this section

we discuss the different aspects of performance that neleel tonsidered when selecting a solution.

When considering the performance of a solution we must askess factors: reliability, granularity
and substantiality. In terms of performancgjability refers to consistently positioning a user in the same
qualitative zone when they are at the same physical posifldre positionalgranularity of a solution is
dependent upon the number of distinguishable or effectivegz. We use the tereffective zon&o refer to
a zone that a user has been identi ed as being located inllydea number of effective zones will be equal
to the total number of created zones. This is not howeversteawith all types of positional dependent
measurements, particularly noisy sources such as GSM ahdB8ignal strength levels. As such, we

remove unused zones and instead only use the effective.zones
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Figure 4.7: Relationship between Cell-Zone's and WiFi-&en

425 Results

In this section we assess the performance of the Bayesiaef B&twork (BBN) when determining the
current Cell-Zone given evidence about the WiFi-Zone, WitCell-Zone and the Composite-Beacon-
Zone. It is important to note that we are assessing perfocenfnom the perspective of GSM cells (Cell-
Zone's). We compare whether using this extra informatiomofidedge of WiFi-Zone's, WiFi-In-Cell-
Zone's and the Composite-Beacon-Zone's) can increasestiability of identifying the current Cell-Zone.
We do this by comparing results obtained from a BBN againsseifrom K-Nearest-Neighbour (KNN)
method that only uses Cell-Zone information.

Figure 4.7 illustrates the assumptions we make regardiagdlationship between Cell-Zone's and
WiFi-Zones. This gure represents a 2D spatial environmentthis gure there are three Cell-Zone's
(CZ1, CZ2, CZ3) and three WiFi-Zone's (WZ1, WZ2, WZ3). The Cétine's cover a larger geographic
area than the WiFi-Zones. A single Cell-Zone may completelgtain a WiFi-Zone (e.g. WZ2) or the
coverage area of a WiFi-Zone may overlap the border of twbZmie's (e.g. WZ1 and WZ3). Given this
behaviour, knowledge of a WiFi-Zone may indicate membegrshia single Cell-Zone (e.g. WZ2 to CZ2)
or it may indicate a probability of membership to two or morelZone's (e.g. given WZ3 membership
the Cell-Zone is more likely to be CZ3 than CZ2 due to a grepder of WZ3 being located in CZ3).

In order to assess the performance of the Bayesian netwarl vsal world data we collected mea-
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surement samples from a metropolitan environment. Voemteere equipped with Orange SPV C500 cell
phones capable of monitoring the signal strength levelsifoto seven cells. To obtain 802.11 data users
also carried an IPAQ 4700 that ran software to passively EmaWiFi networks. The test area has reason-
able GPS coverage, and a GPS receiver was used to colleatadgiraith for the samples. Samples were
collected once per second. The approach to data collecti@ndeliberately systematic where volunteers
were asked to walk along explicit paths. This approach eabbh assessment of the reliability of a user's
gualitative location to be made. Data was collected at whffetimes of day over a two month period in

2005. In total over 85,000 signal strength measurements ta&en.

In Figure 4.8 we show the performance of Bayesian Belief NetwWBBN) and K-Nearest-Neighbour
(KNN) using real data collected from two different areashaf same metropolitan environment. In the rst
area WiFi beacons were only visible in approximately 11%hef tlata-points. In the second area WiFi
beacons were visible in approximately 44% of the data-goiwe found WiFi data was not as widely
available as we had expected. We suspect this is due to ttencésfrom pedestrian paths to nearby
buildings. At many points along the path the volunteer wad83@netres from the nearest building hence

signal strength levels were weak and not always detectable.

In the rst area, in terms of reliability, the BBN only perimed slightly better than KNN, this is due
to the limited WiFi data. In this experiment 89% of the time tARBN was determining location using
only Cell Zone data and cellular Composite Beacon Zone datéerms of granularity, KNN performed
better than the BBN. This is as expected. The BBN reducee tioésefore typically places a user in fewer
zones than the equivalent KNN approach. In the second arée @nvironment, the performance gain in
terms of reliability of the BBN over KNN was more substantiaan in the rst area. This is due to the
increased availability of WiFi information in the secon@ar In terms of granularity, both BBN and KNN
decline at a faster rate than in rst area. We suspect this ective of that area of the environment - fewer

distinguishable zones.

Given these experiments using data collected from the redtiwthe Bayesian network offers a slight
increase in reliability when only cellular and wireless d@@ positional information are available. This is

due to the noise associated with cellular beacon informaparticularly apparent in dense urban environ-
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Figure 4.8: Experiment 1 - limited 802.11 coverage. Experit®? - good 802.11 coverage.

ments. Environments where cellular, WiFi and wireless bednformation are readily available bene t

most from applying this Bayesian network.

4.3 Related Work

The NearMe Wireless Proximity Server [KHO4a] provides théity for applications to be made aware of
other objects that are close to their current location. tRws in the spatial environment are distinguished
using 802.11 radio signals. From the perspective of the ywoekented in this chapter the NearMe prox-
imity server is interesting because there is no requirerttentap the radio signals to positions within the
spatial environment, e.g. a coordinate. Instead a cliertherNearMe system registers their current n-
gerprint (visible 802.11 beacons and associated sigreigiin levels). The NearMe server then compares
this ngerprint with other registered objects (clients astgjects). Those that share a similar ngerprint are
deemed to be near the client. The threshold used to detemhiether ngerprints are close was calculated
using a calibration phase. During calibration ngerprimtsre collected at known locations in the spatial
environment. Using these measurements the Euclideanatrepadistance was calculated in metres. Us-
ing the same process at runtime enables the NearMe systeatetordne which objects are withmetres

of a ngerprint. This process assumes that signal strengttation and access point visibility is constant
throughout the environment. Whilst successful for the twad&ts used, the authors note that this cali-

bration process is not likely to be directly transferabletoer buildings and environments. Inconsistent
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performance is likely to be encountered if this system weaasferred to different environments using a
constant value to represent the mapping between 802.1Jaddteetres in the spatial environment. The
catchment area (the area used to identify objects in clasamity of each other) would vary in size (from
the perspective of coverage area in sgm). This is becaussgrcparts of the environment may contain more
obstacles than others resulting in unequal disruptiondmrsignals. Arguably in this situation a qualitative
approach to managing space may be more appropriate.

In September 2008 Google changed the way its Mobile Mapsagtigin presented the My Location
position and associated error to the user [Goo08]. My Loacatises serving Cell-ID data to determine
position. Prior to this September update the Mobile Mapdiegion illustrated the location of the user
using a blue dot. The My Location determined position wilt mect the exact location of the user. To
make this clear to the application users Google renderedtimlpatransparent blue circle around the blue
dot representing the users position. The idea behind hdatiythe dot and the circle was to illustrate to
the user that the applicatidhinksyou are here (blue dot) but it is impossible to know for certso the
circle illustrates the inaccuracy. When the My Locationeatwvas rst launched the size of the error (blue
circle) was xed to represent different accuracy bandsudiig 5000m, 1700m and 500m. Typically the

size of the blue circle stayed the same. Google con rmediaisaviour in 2007.

“When we originally launched the “blue circle' on Google Mdpsmobile, the circle usually
stayed the same size no matter if you were in downtown Maahait rural lowa.” Zhengrong

Ji, Software Engineer, Google [Goo08].

However in September 2008 this approach to representingwas updated. The size of the blue circle
was adapted to re ect the coverage area of the cell (accustiye position). Therefore in dense city
environments the size of the blue circle was made small vaisecells that provided a larger coverage area
had their “blue circles' increased.

From the perspective of this thesis this is most interesigg shows a shift away from the assumption
that positioning service performance is consistent. bsteexposes the user to a zone based position with
a variable size that re ects the limits of the positionahéeg. This could be extended further to show the

true coverage area such as disjointed zones that are nadshileg perfect circles.
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In a series of papers Matthew Chalmers argues that ubiqugomputing systems should be designed
with 'seams' in mind [CM03, CDHrR04, CMBO03]. In the context ositioning seams can be thought
of as imprecise positions, gaps in coverage and inconsist&im position accuracy. Chalmers advocates
considering these limitations during the design phase aihating the user experience to take advantage
of the seams as opposed to trying to hide or ignore them. &dhépter we have presented a method
that acknowledges seams in the performance of positionistesis. We move away from quantitative
coordinates and variable levels of accuracy and insteaatecmnes with coverage areas and boundaries

modelled on the seams of the measurement data; the disgtivahie space.

4.4 Summary

From the perspective of the application developer the amrto managing space presented in this chapter
has both advantages and disadvantages. An advantage thahd¢veloper is provided with a location
service that highlights the limits of the positioning servi(the position dependent measurements). The
developer can use a visualisation of the coverage area ofptagal zones to optimise the behaviour of
the location-aware application. If this approach were iafieh the developer would need to manually
establish the performance level of the positioning sertliteughout the environment. In the worst case
the application developer may not be aware that the positjppservice may not perform consistently in
the spatial environment and design the application in a Wwayis dependent on unachievable positioning
performance levels.

This approach can be used to integrate alternative positi@olutions. For example, If the granularity
of a zone is not suitable for a location aware applicatiom ttreembership to that zone could be used to
trigger switching on a GPS receiver. This provides the b&nef conserving power whilst ensuring the
required position accuracy is available throughout theérenment.

The approach we present in this chapter is not without it&ditions. The main issue relates to the
calibration process. Whilst the generation of the zonestsnaated (clustering) the data collection process
may still be arduous requiring the application developecdbect measurements throughout the spatial

environment.
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Applications that are particularly suited to this approaxmanaging space are those whose behaviour
is intended to vary when the user is located within discretasof space. For example, playing an audio
commentary to visitors of a museum when they are near an iexfibe application would use the zone
membership criteria to determine whether a user was neattalbite Zones that made up the environment
would be mapped to the relevant exhibits. The applicationld/@lay the commentary when the user
entered the zone. The same commentary would be played thwatithe zone. Alternatively this approach
could be used in energy saving applications. For exampdights in a users home could be automatically
switched on/off depending on the room that the user wasdddat

In contrast, applications that require a continuous rarfgposition information such as those that
require coordinates, are less suited to this approach. idemrggy the museum example again, if the appli-
cation developer wished to vary the volume of the audio conmarg depending on the distance between
the user and the exhibit piece they would need to create nptiabzones around the exhibit and map the
appropriate volume level to each zone. Establishing thepingetween zones and volumes is likely to
be time consuming, there might need to be hundreds of zohgsaititative approach using a continuous
coordinate system was used the distance between the ustreaexhibit could then simply be mapped to

a volume as a function resulting in a far easier deployment.
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Chapter 5

Recognising Modes of Travel

The traditional approach to sensing activities such asinglér driving on a mobile device such as a phone
has been via the use of accelerometers [DD01, LM02]. Usimigeds from a 2D accelerometer it has been
shown that it is possible to distinguish between variougstaf movement such as walking, climbing stairs
and running [RMOQ]. This has been proven as a reliable mettagghble of distinguishing between various
states of activity such as walking, running, remaining atid cycling. The main limitation of this approach

is that it requires additional sensor hardware not presetoaday's mobile phones, and that this additional

hardware consumes powetr.

In Chapter 3 we investigated the behaviour of wireless $sggiach as GSM and WiFi from the perspec-
tive of providing contextual information. We establishidttithe behaviour of these signals was in uenced
by motion. We showed that repeatedly sampling the signahgth of a wireless beacon at the same loca-
tion will provide approximately the same signal strengtrels. However, collecting samples from the same
beacon at the same location whilst moving will produce atgreaariation in signal strength levels. That is,
the user moving past the location where samples are callesfgeriences a greater range of uctuation in
signal strength levels than compared to those collectebdyser who remained stationary at that location.
In this chapter we demonstrate how we can extend this belmataoidentify everyday activities such as

walking, driving and remaining stationary. We refer to thjgproach to activity recognition &ell and
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Signal Strength Fluctuatio(CSSF).
The primary contribution of this chapter is that we presemieghod that does not require any additional
hardware, and in particular no accelerometers, whil$tstihg able to distinguish between states of activity

such as walking, driving and remaining still. Two classiticen methods are presented:

Supervised

Unsupervised
The rest of this chapter is structured as follows:

Section 5.1 describes the GSM behaviour that enablestgat@dognition.

Section 5.2 presents a supervised approach to inferringutient activity of the cell phone carrier.
Section 5.3 presents an implementation using a Hidden Maviadel.

Section 5.4 discusses performance in disparate enviraismen

Section 5.5 provides an overview of related work.

Section 5.6 discusses the use of this work in mobile appicatdesigned to raise health awareness.

Section 5.7 provides a summary of the chapter.

5.1 Available Information

We aim to support context-aware behaviour such as routithgdigectly to an answering service when the
cell phone detects the carrier is driving, or extending theqal of vibration when the carrier is walking in
order to ensure noti cations are not missed between striflesupport this type of behaviour we need to
sense the activity of the user in a manner as close to reabinpessible. In Section 3.1.5 we demonstrated
that over a given period of time, e.g. 15 seconds, the totaluamof signal strength uctuation across
all visible cells was greater when the carrier of the mobhenme was moving as opposed to remaining

stationary. Section 3.1.6 showed that if the carrier of tiobite phone is moving, then a greater number of
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5.1. AVAILABLE INFORTION
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Figure 5.1: Signal Strength Fluctuation

unique cells are typically monitored. This effect becomeserapparent when greater geographic distances
are travelled. In this section we explore this behaviouthier with the aim of distinguishing between

different types of motion such as driving and walking.

In Figure 5.1a we plot the signal strength uctuation expaded whilst the carrier of the mobile phone
was stationary, walking and driving. Signal strength uation is calculated using 15-second time intervals.
We use the termsignal sample periotb refer to this time interval. It is visually easy to distingh between
remaining stationary and walking, and between remainiagisstary and driving. It is however harder to
distinguish between walking and driving. To address thiscese either increase the signal sample period

or we can use a history of signal strength uctuation measergs.

In Figure 5.1b we illustrate how it is possible to “pull ap#ne lines representing each level of uc-
tuation by extending the signal sample period. In this gsignal strength uctuation is calculated using
30-second time intervals. This has the effect of separ#tiagtationary and motion states but at the expense
of increasing the latency of detecting state changes. lttalie longer for the signal strength uctuation
level to re ect the current activity following a change intadty. In Section 5.2.3 we discuss in more detail

the effects of increasing the sample period.

The second approach to distinguishing between walking amohg is the use of history. We can Iter
out drops in signal strength levels that occur whilst digvimhen they are placed between large spikes of

signal strength uctuation. This is possible because weuatiely to be driving for 15 seconds, walking
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Figure 5.2: Cell density in rural and populated areas.

for 15 seconds and then driving for 15 seconds. Instead wemaoth this to be driving for 45 seconds.
We compared the uctuation levels in Figure 5.1 with the GR&®és and found that the drops between
high spikes of uctuation typically occurred whilst waitirat areas of traf ¢ ow control or road junctions.
Hence the graph re ects the stop-start nature of driving @tropolitan environments.

As demonstrated in Section 3.1.6 the number of distinct toogd cells over a sample period also
provides an indication of motion. A short sample period saglthe signal sample period is not appropriate
as it does not provide suf cient opportunity for the carriemove and detect new cells. Instead the number
of cells monitored should be determined using a longer tierdod. We refer to this time period as the
cell sample periodThe use of a longer sample period enables better diffetgoni of walking and driving.
This is because if a large geographic area is covered thewuthber of cells monitored has the potential to
increase.

The precise number of cells that will be monitored is depahdg@on the type of environment. In
metropolitan environments there will be a high number ofrmizells with a small coverage area, whereas
in rural environments with lower populations, coveragd génerally be provisioned by macro-cells with
large coverage areas. Figure 5.2 uses the OM-UK data sebtalpra visual illustration of cell density in

different types of environment. On the left hand side the sfagws the highly populated city of Manchester
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in the UK. To the right of Manchester are sparsely populatediareas. The locations of the cell centres
are shown with coloured markers with each colour represeridifferent network operator. As expected,
the density and coverage areas of cells is not consistewtinroral and metropolitan environments. There
are a considerably lower number of cells in the rural area thélanchester and the surrounding cities and
towns. This means that the total number of cells monitorethetbe treated as a constant value suitable

for use in any environment.

In summary, we can use the following information to recograstivities such as walking and driving.

Signal strength uctuation The level of signal strength uctuation across all monédrcells as

calculated using theignal sample period

Cell uctuation - The number of unique cells monitored over ttedl sample period

In the remainder of this chapter we fuse the above data tdge@/means to recognise activities such
as walking and driving. Our goal is do this in as close to teak as possible. This is because the shorter
the time it takes to infer the current activity of the mobileope carrier, the more useful the knowledge
of the activity becomes (e.g. the ability to divert incomicegls if the user is driving). This requires us to
make a trade-off between longer sample periods that enableger predictions about the carrier's current

activity and shorter sample periods that allow a quickdreitlsometimes incorrect prediction.

5.2 Supervised Calibration

In terms of machine learning, supervised learning refepsdwiding an algorithm with a set of target values
that correspond to a given set of inputs. This essentiallgmaghe algorithm is provided with training data
that is associated with the optimal or desired output. Thabés the machine learning algorithm to re ne
itself in an iterative manner by measuring system outpuirafjghe target outputs. We investigated both

Neural Networks and Hidden Markov Models.
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5.2.1 Neural Network Implementation

One method to distinguish between different states of mevens to use an arti cial neural network. The
network inputs arefi) the sum of signal strength uctuation across current sgrand neighbouring cells
and (i) the number of distinct cells monitored over a given timervaé Signal strength uctuation is
calculated using the algorithm presented earlier in thésithin Section 3.1.5. The network outputs the
current mode of travel for the given input values. The nekwges a single layer of hidden units. For our
data sets we found that using a single layer of eight hiddés produced good results. We suspect for other
data sets the number of hidden units may need to be adjusteighi&/ are learnt using back propagation.

The network was trained by repeatedly presenting dataatetieduring each method of movement.

5.2.2 Neural Network Results

We have found that once trained the neural network perforell able to distinguish between different
modes of movement. Table 5.1 shows the confusion matriefiasiag the three tasks. A total of three hours
trace data from each activity was used to evaluate perfareafve used ten minutes of this data for training
the neural network and the remainder for testing. It is gcliéar that distinguishing between remaining
stationary and other modes of travel produces good perfacejanly occasionally positioning the user as
walking. Indeed a classi cation into moving or not movingidae implemented very cheaply consisting of
only a tiny fraction of the resources on a mobile phone. Agatmren walking, good performance levels were
achieved. However travelling in a motor car resulted in iplga¢he current mode of travel as predominantly
walking. This was expected: the pattern of signal strengtttuation whilst driving was erratic, periods of
high uctuation were found between periods of low uctuatioThese drops were similar to those found
whilst walking and on occasion remaining stationary.

Initial experiments using the same trained neural networkther metropolitan environments have
shown positive results. When testing in environments witfedint cellular network structures such as
rural locations, we found the network to need retrainingr &ample, signal strength uctuation is not
as apparent in rural areas hence using the same neural kdtwdroth metropolitan and rural areas may

result in walking being detected as remaining stationahys €an be addressed by adjusting the sensitivity
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Table 5.1: Confusion Matrix. Each row is an activity perfeaneach column indicates what the interpre-
tation was.

Stationary| Walking | Driving
Stationary 90 % 10% 0%
Walking 15% 79 % 6 %
Driving 11% 54 % 36 %

Metropolitan Environment

of the network in accordance with the current environmeninéthod for determining how to adjust the
sensitivity of the network is presented in Section 5.3.2.

The confusion between driving and other modes is due to theaheetwork effectively outputting
a speed of travel that has been mapped to a method of moverietitevtraining data. Typically the
greater the uctuation in signal strength levels and chartgehe neighbouring cells the greater the speed.
However, whilst travelling in a motor car the speed of trawsdtuates between stationary (waiting at
traf c lights), walking speed (traf c congestion), and moal (clear roads). This results in the network
occasionally indicating other modes of travel. We are abladdress this issue by re ning the network to
include additional information about the task being sensed

Possible improvements of a task-based approach are shovabia 5.2. This shows that by comple-
menting the output of the neural network with a Iter basedtloa task to be sensed it is possible to accu-
rately determine current mode of travel. This addressessthues of placing the user in different modes
of travel whilst travelling in a motor car. A performancetiease is also gained when sensing walking and

remaining stationary. In Section 5.3 we present a systerapfiroach to lItering.

5.2.3 Window Size

In Section 5.1 we discussed how the amount of time used tolesdcthe levels of cell and signal strength
uctuation can be increased to improve the reliability ofognising different activities. We refer to this

time period as the window size. By increasingly the windoredhe levels of cell and signal strength
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Table 5.2: Confusion Matrix. Each row is an activity perfeaneach column indicates what the interpre-
tation was.

Stationary| Walking | Driving
Stationary 96 % 4% 0%
Walking 3% 91 % 6 %
Driving 5% 15% 80 %

With Task Knowledge

uctuation became more distinguishable when performirggdtiferent activities. This increases reliability.

In Table 5.3a - Table 5.3j we present the effects of recoggisialking, driving and remaining sta-
tionary using a range of window sizes. The window sizes meeefrom 15 seconds to 150 seconds in 15
second intervals. Three hours of trace data collected wnildertaking each activity was used to assess
performance. As with Section 5.2.2 ten minutes of this dada used for training the neural network and

the remainder for testing.

The results presented in the tables show that the relibilisensing driving and walking is generally
lower with smaller window sizes. As the window size is in@@athe reliability of sensing the motion states
is improved. This behaviour is due to the start-stop nattidgieing and the noise present in signal strength
uctuation measurements. Extending the window size beyahdeconds provided minimal improvement
when sensing driving. Approximately the same performargellwhen detecting walking occurred with
window sizes of 75 seconds and 150 seconds. The walking rpeafice level peaks with a 90 second

window.

The negative effects of using larger window sizes are thatithe it takes to detect a change of activity
state is increased. This is because it will take longer ferttital level of cell or signal strength uctuation
to decrease or increase to a level indicative of the newiictis such, we aim to minimise window size

and thus reduce the lag involved with detecting state chawdst maintaining reliability.
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Table 5.3: Confusion Matrix. Each row is an activity perfewin each column indicates what the interpre-

tation was.
Stationary| Walking | Driving Stationary| Walking | Driving
Stationary 93% 7% 0% Stationary 93% 7% 0%
Walking 30% 46% 24% Walking 6% 62% 32%
Driving 17% 36% 47% Driving 5% 30% 65%
(a) 15 second window size (b) 30 second window size
Stationary| Walking | Driving Stationary| Walking | Driving
Stationary 96% 4% 0% Stationary 97% 3% 0%
Walking 4% 66% 30% Walking 4% 67% 29%
Driving 4% 26% 70% Driving 3% 23% 74%
(c) 45 second window size (d) 60 second window size
Stationary| Walking | Driving Stationary| Walking | Driving
Stationary 98% 2% 0% Stationary 99% 1% 0%
Walking 3% 71% 26% Walking 2% 79% 19%
Driving 2% 23% 75% Driving 1% 27% 72%
(e) 75 second window size (f) 90 second window size
Stationary| Walking | Driving Stationary| Walking | Driving
Stationary 99% 1% 0% Stationary 98% 2% 0%
Walking 2% 74% 24% Walking 2% 70% 28%
Driving 1% 20% 79% Driving 0% 15% 85%
(g) 105 second window size (h) 120 second window size
Stationary| Walking | Driving Stationary| Walking | Driving
Stationary 98% 2% 0% Stationary 99% 1% 0%
Walking 2% 69% 29 % Walking 1% 73% 26%
Driving 0% 13% 87% Driving 0% 14% 86%

(i) 135 second window size

() 150 second window size
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5.3 Hidden Markov Model

The problem that we are trying to solve is that we wish to irdetivity of the cell phone carrier from
observations of the GSM data. The GSM data provides an itidicaf the activity, but this needs to be
smoothed out by knowledge of “normal” behaviour. For examijilis usual for a person to drive for a
prolonged period of time, and then to walk; it is unusual f@eason to frequently switch between driving
and walking. We can model this activity using a Hidden Marktndel (HMM). As explained in Chapter 2

aHMM is de ned as follows:

=(AB; ) (5.1)

A is the transition matrix representing the probabilitiesraiving from one activity to another. In the
context of hidden Markov models the activity of a cell phomerier is referred to by the terstate that
is, the hidden non-observable state. Therefore for theafeSection 5.3 we use the term state to refer
to carrier's activity. B is the observation matrix representing the probability @il in a state given an
observation and is the initial probability distributionS represents the set of states that the carrier can be

in (thestate alphabgt in our case:

S = (Sstill s Swalking: Sdriving) (5.2)

V is the set of discrete observations. It comprisedementgvi; vy;:::;Vvy). In our case, we map measure-

ments of the signal strength uctuation and the cell ucioatonto a set of discrete observations.

5.3.1 Inferring Activity

In order to infer the current activity of a cell phone cargéren a sequence of observations we rst need to
determine the probability of that sequence occurring irgitlen HMM. To do this we can use the Forward-

Backward algorithm (Section 2.2.3) with the forwardind backward variables de ned as follows:
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"xxl #
t+1 (J) = B (0t+1) t(1)a 1 j N (5-3)
i=1

X
)= ab(o+1) (+1(j) 1 j N (5.4)
j=1

These equations calculate the likelihood of a given sefi@bservation€ occurring in the HMM .
We can use this information to help determine the mostyliketivity (hidden state) sequence for the given
observation sequence. There are two ways to do this, thasrst iterate through each possible hidden
state sequence and calculate the probability of it ocogirgimen the observation sequence. The second
and more ef cient approach is to use the Viterbi algorithnit§V]. The Viterbi algorithm nds the hidden
state sequence most-likely to occur given an observatignesee. Following Rabiner's tutorial [Rab90],
we use (i) to represent the probability of being in st&egiven the observation sequer@ethe forward

variable andthe HMM , thatis:

(i) = P(a = SjO; ) (5.5)
This can be expressed using the forwardi) and backward (i) variables. Using these variables we
can determine the optimal activity sequence given an obtervsequence, that is:

)= (i) () _ () 1) (5.6)

POOj ) " N (i) (i)

This allows us to infer the current activity of the cell pharagrier using observations of cell and signal

strength uctuation.

5.3.2 Unsupervised Calibration

In this section we present a method for unsupervised céliborasing the HMM described in the previous
section. We use the Baum-Welch method to learnB, and [BPSW?70]. By presenting the Baum-

Welch algorithm with a sequence of observations it will papaiA, B and . However it will not help
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Figure 5.3: (a) The activity means and (b) creating the disoobservation alphabet.

us consistently map signal strength and cell uctuationshi® observation alphabet. If this mapping is
not consistent across environments then the inferred hidtlte may imply a different meaning such as
walking when the user is actually driving. To avoid an ardudata collection and calibration procedure we
use amautomated, unsupervised procégdearn the mapping between cell and signal strength uana

and the observation alphabet mapping. In this section weritbesthat process.

Measurements Used

In each environment we aim to distinguish between threedifft activities: walking, driving and remain-
ing stationary. Each of these activities produces a diffepattern of signal and cell uctuation. The
amount and pattern of uctuation depends upon the envirariy identifying the mean uctuation val-
ues for activities in speci ¢ environments we can deterntime GSM uctuation to observation alphabet
mapping. In the context of a HMM we use the distance from thamaeo discretise the continuous range of
signal strength and cell uctuation. Fluctuation measueais that are close to the activity means indicate
a stronger probability of undertaking a particular acyivas opposed to those that, in terms of Euclidean
distance, are positioned further away. Hence we map theskslef uctuation to observations contained
within the observation alphabet that re ect this likelittbo

In order to learn the levels of uctuation we collect a seridglata-points. A data-point comprises a

cell and signal strength uctuation measurement. The datatp are collected at random, that is, the cell
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phone carrier does not need to declare current activities.dhta points are then partitioned into three sets.
To partition the data we use K-means wjkh= 3], with the assumption that the carrier will perform all
three activities. If this is not the case thleshould be adjusted to re ect this. The data collection pssce
is ended when the cell phone carrier declares that they tertieipated in all the activities to be sensed in
the current environment. This requires the simple presssiofgle button. The reason that we require this

interaction with the carrier is discussed in detail in Sath.4.

In Figure 5.3a we plot the mean cell and signal strength atitins for an urban area on the outskirts of
Bristol in the UK. In this gure the amount of uctuation ineases with the speed of the activities, that is,
driving produced a greater level than walking and walkingeater level than remaining stationary. Whilst
this relationship is not linear the positions of these mafmbe along an approximately straight line. We
have carried out extensive experiments in disparate typesvwironments and have found this behaviour to
be consistent. That s, the activity means have typicaitydéong a straight line. On occasion we found the
driving mean to rise slightly above the line due to a proporily greater level of cell uctuation. Perhaps
the most useful aspect of the relationship between the misahsat in terms of Euclidean distance, the
driving activity mean will always be closest to and greaket the walking activity mean and that the still
mean will always be closer to and smaller than the walkingmrmédence given the means produced by
K-means we are able to easily match means to their corregmpadtivities. This approach would fail if
driving produced less uctuation than walking or if remaigistationary produced a greater uctuation than
walking. We are however happy to take this shortcut becaaang conducting extensive experiments in

multiple heterogeneous environments we have never fougsditiiation to occur nor do we expect it to.

Using the mean uctuation levels learnt for activities in &em environment we are able to de ne
the mappings between GSM cell and signal measurements arabservation alphabet. We have found
the best way to do this is by slicing the 2D measurement sppaesimg the means and variances of the
three activities along the two dimensions. An example of thiillustrated in Figure 5.3b. Each zone
created by slicing the measurement space represents atdisabsection of the continuous measurement
space. Hence each zone represents the membership citegia dbservation. Membership is determined

by nding the zone that a current measurement lies in. We delb observationsv; vi;:::; v14) and
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automatically divide the measurement space into 15 distiones. Zone spacing is equal (between the
means) and centred on the means.

This approach to learning the optimum settings for a givarirenment avoids the need telearnB.
Instead we update the mapping between cell and signal streingjuation and the observation alphabet.
This enables us to provide consistent mappings between G8asunements and the observation alpha-
bet. This mapping re ects the probability of observatiomsurring in speci ¢ hidden states, matri.

The alternative approach, relearniBg would require the use of xed cell and signal strength uation
boundaries for mappings to observations. The probabifith@se observations occurring in speci ¢ states
for a given environment would then need to be learnt. In or@&arn these probabilities would still require
the use of K-means to learn the activity variances and melms.primary disadvantage of this approach
is that the discretised 2D space that represents the oliseradgphabet mappings needs to be exhaustive in
order to operate in all types of environments. That is, thasueement space needs to be discretised in a
manner ne enough to allow operation in environments witlr levels of uctuation as well as those with
high levels such as metropolitan environments. This reguarmuch larger observation alphabet. This has
a negative impact on the computational overhead of runriagvterbi algorithm to determine the most

likely hidden state.

5.3.3 Results

To assess performance we compared the HMM that was trairiiegl thee unsupervised calibration proce-
dure described in this section with the hand calibrated @ali Neural Network (ANN) implementation
that used task knowledge, as described in Section 5.2.1. ANid required training with data contain-
ing associated outputs, i.e. labelled data collected whitgking, driving and remaining still. Data was
collected in themetro-operandmetro-closecenvironments.

Both the HMM and the ANN were exposed to approximately 15utés of training data for each
activity. In the case of the ANN, training was conducted byeatedly presenting data collected during
each method of movement. This needs to be carried out on &ogeBIC, not directly on the cell phone.

The HMM was trained using Baum-Welch to populdteB and and GSM mappings to the observation
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Table 5.4: Confusion Matrix. Each row is an activity perfeaneach column indicates what the interpre-
tation was.

(a) ANN Supervised Calibration: Metro Environment

Stationary| Walking | Driving Stationary| Walking | Driving
Stationary 83 % 16 % 1% Stationary 92 % 8% 0%
Walking 5% 87 % 8% Walking 12 % 80 % 8 %
Driving 3% 24 % 73% Driving 4% 22% 74 %

(b) HMM&upervised Calibration: Metro Environmen

Stationary| Walking | Driving Stationary| Walking | Driving
Stationary 96% 4% 0% Stationary 98 % 2% 0%
Walking 3% 91% 6% Walking 5% 87 % 8 %
Driving 5% 15% 80% Driving 4% 21% 75 %

(c) ANN Supervised Calibration: Urban Environment (d) HMNh&bipervised Calibration: Urban Environmer

alphabet were learnt using the method presented in SecBol The observation alphabet consisted of 15
distinct observations. Both the trained ANN and HMM are ableun on the SPV C500 cell phone in real

time.

In order to compare the performance of the ANN and the HMM vesented both algorithms with the
same GSM data. That is, we used the data collected frorm#te-operand metro-closedenvironments
and ran comparisons on a desktop PC. We collected appradintatee hours worth of test data whilst
undertaking each activity in thmetro-operenvironment. Data was collected at different times of the da
on different days of the week over a three week period. Inntie¢ro-closedenvironment we collected
approximately three hours of data whilst walking and whlksttionary and approximately one and a half
hours whilst driving. The results of the ANN and HMM are shoinrTables 5.4a, 5.4b, 5.4c and 5.4d.
Tables 5.4a and 5.4b show results for thetro-closedenvironment and Tables 5.4c¢ and 5.4d show results

for themetro-operenvironment.

In the metro-closedenvironment we found the ANN not to perform as well as the HMKew sensing
if the carrier was stationary. We suspect this is partly dudbé nature of the environment, we found signal

strength uctuation to, on occasion, behave in a sporadinmaadespite the cell phone carrier remaining
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stationary. In addition, the task knowledge was appliedaisi simple averaging Iter in the ANN whilst
a superior 5-step Markov model was used in the HMM. In itietro-openenvironment cell and signal
strength uctuation was considerably lower than in thetro-closedcenvironment hence the results in the

confusion matrix re ect this stability.

Whilst walking in themetro-closedenvironment we found the ANN to perform slightly better than
the HMM. It is likely that if the HMM were given more trainingath, a level similar to that of the ANN
would be achieved. This behaviour was also true inntle¢ro-operenvironment however the difference in
performance between the ANN and HMM was reduced. Also, we hakeep in mind that the HMM is

unsupervised whereas the ANN has to be trained manually.

Inferring that the cell phone carrier is driving is the hasidef the three activities to sense. This is
represented in the confusion matrices for the ANN and HMM athlthe metro-closedand metro-open
environments. The reason that this activity is so hard teséndue to the nature of driving in residential
and metropolitan environments. Like the other activitiegerior performance was achieved in thetro-
openenvironment for both ANN (including task knowledge) and thIM. We suspect this is because
the roads were not as congested hence driving data wastedllean average, at a slightly faster speed
than in themetro-closedcenvironment. In addition there were fewer traf c ow contrsignals and busy
road junctions. The self-calibrating HMM performed slighibetter than the ANN in thenetro-closed
environment. But in thenmetro-openenvironment the ANN outperformed the HMM. This slight dip in

performance is probably due to the minimal amount of datd ts¢rain the HMM.

5.4 Heterogeneous Environments

In order for the HMM to operate effectively in disparate eoniments the unsupervised learning procedure
described in the previous section must be reinitiated oegipusly learnt con guration loaded whenever
there is a change to the type of environment. In this sectienliscuss how a change to environment may

be detected and places recognised using information yeadiilable on a typical GSM cell phone.

The globally unique identity of a cell (Cell-ID) consiststbE following information:
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Mobile Country Code (MCC)
Mobile Network Code (MNC)
Location Area Code (LAC)
Cell-ID (CI)

As cells are geographically xed we can use #hghtingof a cell to infer information about our current
location. This type of information has previously been usegrovide crude positional information via the
current serving cell, and later extended to provide a neuaacy using neighbouring cell information and
applying location ngerprinting [OVMdLO5, LLNO1, TVO04]. ri the context of this work location nger-
printing will provide an unnecessary level of positionadigularity. Instead, initial experiments suggest that
the use of the Location Area Code (LAC) that forms part of d-@&@imay be a more appropriate method
of dividing space.

A Location Area Code can be thought of as being similar to ttet part of a UK postcode. The LAC
de nes a general area and the cell coverage area represeatsection of that area. By using the LAC
code as an indication of current environment we are able tecdenovement from one environment to
another via a change in LAC code. In addition, we can eas@iggnise previously calibrated environments
and load previously learnt con gurations.

Upon the detection of a new environment the data-collegiimtess needs to be reinitiated. Once a
suf cient representation of the environment has been ctdig by participating in each of the activities,
the mapping of cell and signal strength uctuation to theaslation alphabet can be learnt. Due to the
nature and behaviour of the GSM signals in disparate erwviemts it is not possible to assess whether
the three activities (walking, driving and remaining jthiave been undertaken. This poses a problem
when determining whether the data-collection phase obiatibn should end and the training process
should begin. K-means will always produkelusters irrespective of the distance between data-pdimts
addition, means will vary for the same tasks in differentiemments. Hence we cannot use a minimum
static Euclidean distance between means to determine wi@mest data has been collected. However

we believe that the self-declared process of depressinggdesbutton to indicate the completion of the
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activities to be sensed is preferable over an estimate tifiaient data has been collected, that ultimately
may be incorrect. If this estimate were to be incorrect thenfigpmance will quickly degrade, i.e. indicating
driving when the carrier is actually walking.

We alert the carrier when they have moved into a differenfrenment via a vibration alert on their
cell phone. We then collect data-points at random interivateder to lower the computational overhead
associated with running K-means. This process continugkaither the carrier declares completion of
participation in each activity or the current environmehnéicges. Should the environment change before
calibration is completed, the data collected will be staratil the carrier revisits that environment. At this

point the partial set of training data will be loaded and natadvill be added as data collection continues.

5.5 Related Work

Similar to this work, Sohn et al. [SVLO6] used patterns of GSM signal strength uctuation to retisg
walking, driving and remaining stationary. Seven featwvese used to recognise activities. They reported
a performance level of 85%. The approach taken in this wdfkréid from the approach presented in this
chapter. We use different con gurations for different tgpaf environment. In contrast they use a single
con guration in all environments. This con guration wasalat from annotated user logs.

Other approaches to sensing motion have used Wi-Fi data. LU@ADIO project [KHO4b] used
variances in Wi-Fi signal strength levels and a two-statédeih Markov Model to infer whether a mobile
device was currently stationary or moving. This projecbadspplied location information by applying
location ngerprinting.

Koile et al. [KTD* 03] discussed the signi cance of identifying the spatialioss in which users par-
ticipate in speci c activities. This knowledge was used tigder application cues and other behaviour
dependent actions upon being located in that zone and ipatiiay in a given activity. In this work, activ-
ity zones were learnt by analysing trace data collected frdracking system and attaching knowledge of
how the application should behave in these zones.

Patterson et al. [PLFK03] used a GPS receiver to distindugsiveen different modes of transport such

as walking, driving or taking a bus. Data was collected ovéirae month period and daily patterns of
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behaviour were learnt using a graph-based Bayesian Itbe mode of transportation was then estimated
using a particle Iter. This work supports a higher level ghetion to be made regarding the purpose of a
user's journey.

Our approach differs from this prior work in that we do notuiq the additional hardware such as
accelerometers or GPS receivers to distinguish betwedessté activity such as walking, driving and

remaining still.

5.6 Applications: Raising Health Awareness

CSSF also provides the ability to continually run activiéggognition services on mobile phones. This has
enabled applications that raise health awareness to beyaebbn mobile phones. Given the obesity and
related health issues present in the Western world thisrisape one of the most useful applications of this
work.

In collaboration with Glasgow University a mobile applicet was developed to monitor the number
of minutes a person spent walking each day [M$B, AMS" 07]. For every minute they spent walking or
running the application added a minute to their daily aatimeute count. The user could not only view their
own active minute count but they could also view the amouattif’e minutes that their peers had recorded.
This aim of this feature was to make the use of the applicationpetitive with users increasing the amount
of activity that they would normally complete in a week in erdo beat their friends. Screenshots from the
prototype application are presented in Figure 5.4.

To assess performance and the usefulness of an applicétibis oature a ten day trial was organised
with nine people. The rst week was used to calibrate CSSRuf® in each environment and the second
week was used to assess performance. At the end of the seeehdhve participants were interviewed and
the log les analysed. The version of CSSF used in the trial ased around the use of an Arti cial Neural
Network and did not have the enhancements that were latetaped including the Hidden Markov Model
implementation. Despite this CSSF still produced goodquarance with participants commenting that is
was a very useful tool for measuring their activities. F&gbr5 shows a two-day extract from a participants

diary. This gure shows that CSSF generally correctly idewt user activity although at times running
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Figure 5.4: The phone interface. Presenting levels of iigtipeer comparison and current activity.

was incorrectly classi ed as driving.

From a motivational perspective feedback was extremelitipes For some participants the ability to
see their peers levels of activity sparked competition.example, one participant saw that their friend had
a greater number of active minutes and in an attempt to cgtcshe asked her neighbour if she could take
her dogs for a walk, gaining additional activity minutes.r Bus participant the application increased the
level of activity above what she would have normally done.

In this application, CSSF has successfully been used te haalth-awareness. It could be extended
to raise the awareness of an individual's carbon footpiintould never be 100% accurate because of the
nature of carbon pollution. Using activity recognitionhe@ues such as CSSF or even an accelerometer
based approach would not be able to distinguish betweery laedingle traveller in a car (driving the car)
and car sharing with multiple people. That said, generalllfaek could be provided to users, such as

advising them with the amount of carbon they have saved tiftgrwalked fromA to B .

5.7 Summary

We have shown that using information readily available ¢rG8M cell phones it is possible to identify
activities such as walking, travelling in a motor car and aging still. On a cell phone this type of knowl-

edge supports context-aware behaviour such as routirg)\dala hands-free intercom when the carrier is
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Figure 5.5: Participant diary extract. Timelines of adtivior two participants days with colour showing
the activity level and the text showing the participant'siatations.

driving, or notifying users of SMS messages when it detdws they are currently still. Aside from im-
provements to the existing behaviour of a mobile phone tytpie of work also opens new opportunities for
raising heath awareness. A cell phone can now act as a pegip@ge to give feedback based upon daily

activities [MSB" 06, AMS' 07].

We have found that a HMM using an unsupervised calibratiacgss to learn the settings for a given
environment is able to offer a similar level of performanzéiat of an ANN that has been manually trained.
We believe that this approach will enable consistent peréorce in disparate environments. Preliminary
experiments suggest that using the LAC code as a means ofileitgy the boundaries of an environment
should enable a computationally low overhead to sensingemivonments and recognising those previ-
ously visited. In addition, initial experiments suggesittbach environment will not require its own unique

con guration, instead environments of similar networkratructures may reuse existing con gurations.

Whilst not as fast and accurate as an accelerometer, we ddfiavthis low cost approach to sensing
activity will support a multitude of pervasive applicatorThe primary advantage this approach offers over

an accelerometer based method to sense activity is thatst mlat require any additional sensor hardware.
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As a proof of concept we have implemented the HMM presentedisgnchapter on a standard mobile
phone. We have found that both the running of the HMM and tleipearvised learning process are able to
run in real time. The mobile application updated the disglaythe screen to indicate the current state of
motion. An application of this nature could be extended wvjgte an API for other mobile applications.
For example, it could inform other applications when theiearf the mobile phone was moving. This
would enable applications to update the interface dismagffer simpli ed views when the user was in a
state of motion.

We have shown that our strategy works using GSM (2G) netwaikd we see no reason why it would
not work on UMTS (3G). Hand-off, and hence monitoring calesgth is essential to any mobile network.

In the future, we wish to assess the behaviour of GSM signhistrunning and cycling. We believe
that sensing this type of activity will be more challengitgut sensing walking, driving and remaining
still because the patterns of running and cycling will beilsinto that of driving. We hope that by using
additionalslower inputs such as rate of LAC code and distinct serving cell gharwe can distinguish

between these activities.
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Chapter 6

Fusing Activity and Position

Information

In recent years the teriPoint of Interestor POI as it is often abbreviated to, has become commonpkace
POl represents a location that has some relevance or integsople. In terms of car navigation equipment
a POI may represent a restaurant, a petrol station or cashimeae.g. a driver may wish to |l their petrol

tank with fuel or stop for lunch. The navigation equipmemtitally has a POI search feature.

From a location perspective a person visiting a POl woulcegaty describe their location as being at
the POI, e.g. “I'm at the bank.” The activity being performadthe POl may vary over time. If a driver
was lling their car with fuel at a service station then it ikdly that their current activity would transition
through the following stages. Initially they would be stargdstill whilst the car is lled with fuel. Then
they would walk to the service station assistant, remaitiostary whilst paying before walking back to
their car. Therefore at the location of the POI the user vélifprm the following activities walk, remain
stationary and drive (entering and leaving the forecou#ithough visiting a restaurant involves travel
(walking/driving) once seated at the table the motion stedald typically be stationary for the duration
of the meal. Shopping typically involves a slow walk arouhd shops but the motion state does become

stationary whilst looking at items and also when making pases. The key point is that the user is typically
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moving much slower, and usually stationary at some poinihdua visit to a POI.

Conversely, if a person is stationary then this position onaglify as a point of interest. For certain lo-
cations the POI quali cation is obvious, e.g. a restaursiviiiereas for other locations the POI quali cation
may not be as clear, e.g. the driver of a car has stopped ketare is a red traf ¢ control signal. It could
be argued that the longer a person is stationary at a spe@Icaire greater the signi cance of the POI to
the person, e.g. sleeping at home (POI). Therefore if thegmels detected as being stationary then we can
infer that they are at a POI. The longer they are stationagtbater the signi cance of the POI to the user.

The amount of time that the user is at a speci ¢ POI can alsoseel to determine the semantic inter-
pretation of a POI, e.g. a person is unlikely to be locatetieit focal shop for several hours. Time of day
information can also be used to improve POI identi catioha berson who regularly works from 9am to
5pm Monday to Friday is reported as having a position thaieiar the of ce but the time is 8pm in the
evening then we can infer that the person is probably not gt.wo

A person must travel if they are to move between differentd?Qlhe method of travel provides an
indication of the likelihood of being located in a particuROI. For example, the process of going to
work involves a transition from the Home (POI) to the WorlqadgPOIl). This journey might regularly be
completed by car whereas a visit from Home (POI) to a locapgRDI) may usually be completed by
walking. Knowing that the person has just left home and igelieng in their car means that they are
unlikely to be visiting the local shop.

Equally, being located in a speci ¢ POI may in uence the n®®I; the POI that the user will travel
to next. For example, a person may only ever walk to the Pusefbre if they are at the of ce they may
drive home (POI) rst before walking on to the local Pub. Kredge of the place a user is about to visit
is useful if location-based reminders are to be issued aasitieen shown that these reminders should be
issued just prior to arrival at the place [LFB6].

In summary, the following points in uence the process ofiatt recognition and position determina-

tion.

Knowledge of the current or previous POI.

Knowledge of the method of travel between POls.
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The time of day and time spent at a POI.

In this chapter we fuse location and activity informationorder to automatically identify areas of
interest to the user (home, workplace etc). We do this usiagobsition determination methods presented
in Chapter 4 and the activity recognition techniques presskein Chapter 5. The rest of this chapter is
structured as follows. Section 6.1 presents a model fon§uasctivity and location data. Section 6.2 presents
a GSM implementation of this model. Section 6.3 discussepérformance of the GSM implementation.

Section 6.5 summarises this work and highlights areas farduesearch.

6.1 Model

Our aim is to fuse position and activity data to improve thigabglity of both determining position and
recognising activities. In this section we present a mdulbuilds on the qualitative approach to managing

space that was presented in Chapter 4.

Knowledge of transitions between POIs, or using terminpfogm Chapter 4, knowledge of transitions
between “zones', enables more reliable position identiaza For example, if we consider a scenario where
three zones exist, denoted by the letters A, B and C. Zone #esepts the home, Zone B is a shop located
250 metres from the home, and Zone C is a place of work, an décated 5 miles from the home. Using
only positional information we can infer the likelihood e&nsitioning from the home (Zone A) to either
the shop (Zone B) or the of ce (Zone C) using frequency analtechniques such as a Markov chain. The
usefulness of this information can be limited if the fregeyeaf transitions fronhome-to-shopndhome-to-
of ce occurs in roughly equal numbers. This limitation can be adsied by complementing the positional
information with knowledge of the current activity beingfmemed. In the context of the example scenario,
the most likely method of getting to the shop is walking, hegrethe user is far more likely to drive to the
of ce. Therefore when leaving the house we can use the krigdef the current activity together with the

knowledge of zone topology to make a stronger predictiomefrtext zone.

The relationship between activity and position is représgas:
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P(Xn+1 = Xj(X0;A0); (X1;A1); (X2;A2); 55 (Xn s An)) = P(Xn+1 = Xj(Xn; An)) (6.1)

whereX is a spatial zoneX, is the current zone a user is located in @&ndis the current activity. The

one-step transitional probability is:

P(Xn+1jXn;An) (6.2)

In the next section we present a GSM-based implementatithisomodel.

6.2 GSM Implementation

In order to implement the model for fusing activity and pigsial data presented in the previous section we

rst need to solve the following problems:

1. How to create POIs?
2. How to recognise POIs?

3. How to identify the modes of travel between POIs?

We can solve these problems by building on the qualitatiye@ach to managing space that was pre-
sented in Chapter 4 to create and recognise POl identi exbtlae activity recognition techniques presented
in Chapter 5 to determine when the user is stationary. Weiddthconstructing user-speci Ol models
andPOI Transition models. The POI model will manage the identi cation critegind the POI Transition
model will manage the relationship between POls includmgrmethod used to transition, e.g. walking.
These models need to be user-speci ¢ because even peoplshah® a home will lead separate lives and
visit separate POls.

Another advantage of having user-speci ¢ POl and POI Tt&rsimodels relates to storage and com-

putational overhead. Although most modern mobile phonaddwoot have a problem storing ngerprint
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identi ers for all petrol stations across the United Kinguat would be computationally expensive to match
a current ngerprint with those stored of ine. Further tagha person is unlikely to visit all petrol stations

across the UK, meaning the majority of this information iglievant.

6.2.1 POI Creation

If we know the user is currently stationary we can infer theyyrne at a POI. We can use all stopping points
but not all POIs will share the same signi cance. We can useatttivity recognition technique presented
in Chapter 5 to identify when the carrier of a mobile phoneagisnary. Once we have identi ed that the
user is stationary (using CSSF) we need to create an ideritrethe POI (assuming this is the rst time
the user has visited the POI). We can create identi ers folsSRSing location ngerprinting.

We use the term “static zone” to describe a zone that has veated because the carrier of the wireless
device remained stationary at a place. The amount of timeatipgrson spends at a place can be used to
infer the signi cance of the place to that person [AS02, ABG8static zone represents the coverage area
of a POI. The ngerprint is created by storing samples thaehaeen collected whilst stationary and whilst
located at the zone (POI). As demonstrated in Section 3alt@pical GSM cell phone can concurrently
monitor six neighbouring cells in addition to the currem\sng cell. In densely populated environments
there are far more than seven cells providing network caeeralherefore the ngerprint needs to be
created to contain a signal power level for all cells thatwasihle from within the zone boundary. If the
construction of a ngerprint is not exhaustive and cellshlis within the zone are missed, then comparing
samples containing these missing cells with those stor@teahay result in a failure to recognise that the

user is located in the correct zone. This issue can only besasled by the collection of additional data.

6.2.2 POI Recognition

Once the ngerprint has been created the carrier of the ragilibne can determine the POI zone they are
currently located in by matching the received signal poweels from all visible cells. The POI associated
with the closest matching ngerprint (e.g. shortest Euetid distance) is returned to the user as their current

location. If no ngerprints closely match the currently @pged signal power levels across the visible cells
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then the user will be deemed to be located at an unknown P@ .wilh result in the POI creation process

being initiated.

There are two major differences between this approach totagize location and the approach pre-
sented in Chapter 4. Firstly, in Chapter 4 the zone-baseseptation of the spatial environment was
completed in an of ine process. In this chapter the qualieatepresentation of space is created dynami-
cally, at runtime. The second difference relates to coveeaiga. In Chapter 4 the entire spatial environment
was divided into zones. At runtime, a user was always postidn a zone. In this chapter we take a dif-
ferent approach. We treat POls (zones) as ‘islands' thategrarated by a method of travel and we assume
that there are unknown POls that have yet to be mapped. Tduges us to consider the zone membership
criteria in a different manner. In Chapter 4 zone membenghip determined by comparing a measurement
sample obtained at runtime against the centroids repiiegeséch zone. The closest matching zone was
returned as the user position. This was possible becausesénavasalwaysconsidered to be within the
spatial environment. In this chapter we cannot make thisrapon because we want to be able to dynam-
ically create representations of new, previously unmapp&ls (zones). To do this we need to establish

that the user is not located at any previously mapped POls.

POI membership is determined using position informatiochsas GSM ngerprints, and activity in-
formation such as, “the user is currently walking'. Uporeiming that the user is stationary, the next task
is to establish whether the user is in a previously mappeddP@Inew, unmapped POI. This is in uenced
by activity, e.g. if a user never walks to their of ce and thprevious mode of travel was walking then
the possibility of being in the POI that represents the ofi€scored lower. The next criteria to consider
is the distance between the position dependent measurethentrepresent the POI. In this implementa-
tion this is the distance between GSM ngerprints. As edshigld in Chapter 3, a typical GSM phone can
only concurrently monitor up to seven cells. This means tirajprocess of determining distance between
a centroid representing a POl and a measurement taken aheuistmore complicated; the centroid and
the measurement sample might not share the same cells. pte€iwe addressed this by substituting
unknown cells with a signal strength measurement that teeéthe number of common cells (cells in both

the centroid and measurement sample). In this chapter wihissspproach. We assume that if there are no
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common cells then the user is highly likely to be in a new PQ@ & initiate the process to create the POI
representation. If there are common cells then a probglafibeing located in a given POl is calculated
using the previous mode of travel and the ngerprint dis&fgone centroid to runtime measurement). A
threshold can then be used to determine if the user is loedtibe POI. This threshold can be learnt using

historical data.

6.2.3 POI Transitions

Knowledge of the method of travel used to transition betwteenPOls can be used to improve POI recog-
nition. For example, if two POls are close together, shasinglar ngerprints, but the user typically walks
to one but drives to the other then we can use the mode of t@ustrease reliability when distinguishing
between the two POIs. We can use frequency analysis teasiquake advantage of transition knowledge.

A simple Markov chain consisting of a one step transitionrima&nables this type of behaviour.

6.3 Results

We seek to assess the effects of fusing positional data withvledge of the activity a user is currently
performing. Our aims are twofold; rstly we aim to show that bsing both position and activity data we
can increase the accuracy and reliability involved in deiging position. Secondly we aim to show that by
using both position and activity data we can increase tharacy and reliability involved in determining
the activity of the user.

In order to assess this behaviour a volunteer carried a mgbibne and maintained a diary of their
activities (for ground truth information). Data was cotied over a seven day period. During this time the

volunteer was primarily located at the following POls:

Home - Evenings and night-time
Of ce - Weekdays during the day

Hotel in London - Two days (daytime and night-time)
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Other POls that the volunteer was located in during the waekide: shops, petrol stations, and a
restaurant. Activities that were performed during the wes#uded: walking, driving, and remaining
stationary (sitting, standing still).

The data was processed in the following manner. CSSF wastasddntify what activities had been
performed at what times. This highlighted when the voluntess stationary. POIs were created using the
stationary state information from CSSF. The resulting P&id activities were compared against the GPS

data (ground truth) and the volunteers diary. Performasidéscussed below.

6.3.1 Activity Performance (Independent)

In Figure 6.1 we present an overview of CSSF performance. $&#e9uhours of trace data. Figure 6.1a
shows the levels of signal strength uctuation using a 15sdcsample window. Figure 6.1b shows the
levels of cell uctuation using a 600 second sample windowgue 6.1c shows the activity ground truth.
Figure 6.1d shows the CSSF interpretation using the 60Msecell uctuation sample period and the 15
second signal strength uctuation sample period.

Initially the volunteer was driving in the centre of Londohhe annotated diary reports heavy traf ¢
congestion and that the volunteer was frequently statjorielre volunteer parked their car and walked to
their hotel. Once at the hotel the volunteer worked at a desk approximately 1pm. At this time they
walked back to their car and drove from London to Bristol. bpaeriving in Bristol the volunteer completed
a few errands before returning to their of ce at approxinhatEb:45. Aside from brie y stepping out of
their of ce at 16:30 the volunteer remained at their desklun:30.

When comparing the activity ground truth and the CSSF in&gpion it is clear that CSSF correctly
identi es the current activity the majority of the time. Lkiog only at times when the volunteer was
stationary shows a very high CSSF performance level. CS8&samally placed the volunteer as driving
when they were walking and vice-versa. CSSF performed podien detecting the volunteer was driving
at the start of the day. In contrast, CSSF provided exceperformance when detecting when the user
drove from London to Bristol at approximately 13:10. The niong classi cation was poor because the

volunteer was stuck in heavy traf ¢ close to the centre of don. This meant the volunteer was frequently
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6.3. BELTS
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Table 6.1: (a) Ground truth - total time spent in each agtiViiy) CSSF Confusion Matrix. Each row is an
activity performed; each column indicates what the intetation was. The overall classi cation accuracy
was 84.33%.

Total time in each activity Stationary| Walking | Driving

Stationary 56.83 % Stationary| 98.83%| 0.61%| 0.56%

Walking 6.04 % Walking 82.65% | 12.01%| 5.34%

Driving 37.13% Driving 23.35%| 2.75%| 73.90 %
(a) Ground truth (b) CSSF Confusion Matrix

driving at walking speed, and remaining stationary. Therafton drive from London to Bristol was very

clear. The CSSF classi cation re ects both of these sitagi

In order to assess the bene ts of fusing location and agtiviformation we rst need to assess the
performance of CSSF without the use of location informaindependent performance). Table 6.1a shows
the total time spent performing each activity over the niparhperiod. Table 6.1b shows the confusion
matrix for sensing the three activities over the same ning period. This shows the CSSF performance
was excellent when detecting the stationary state. Pedioce suffered when detecting that the user was
walking. However the ground truth suggests that in totaliger was walking for just 6% of the time during
the entire trace. The poor performance was due to the typeliing journeys that occurred during the
creation of the data set. For example, when the user walkeof dloe hotel to the car park a large spike in
signal strength uctuation occurred. Typically a spike loistnature would indicate driving. We suspect the
overall performance level would be increased had more datdben collected whilst the user was walking
for longer continuous periods of time. Driving detectiorifered due to the slow moving traf c that was
encountered in the centre of London. The overall classiczaiccuracy was 84.33%. Whilst encouraging

it should be noted that these results have been obtained asitinimal amount of data.

In the next section we look at the performance of the modethfitee perspective of position and activity.
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6.3.2 Position and Activity Performance

When the user is stationary they are at a POI. The POl is eitiettt the user has previously visited or a
new unknown POI that has yet to be mapped. We use the actifdynation obtained from CSSF in the
previous section to determine when the user is stationaeyu$® the same nine hour data extract that was

used in the previous section to assess performance.

In Figure 6.2 we present an overview of CSSF performanceaur€i§.2a shows the POI ground truth.
Figure 6.2b shows the location service interpretationsTlhistrates that the major POIs (hotel room and
of ce) were successfully identi ed. Due to the noise assded with CSSF an additional 18 POls were
created. Eight of these were created at the start of the whee the volunteer encountered slow moving
traf c. Further POIs were created when initially leavingethotel (driving through London). We now

discuss the causes of this behaviour in more detail.

Initially we used the CSSF activity data to create a uniquéfBGeach time the volunteer was detected
as stationary. This resulted in the creation of 100 candi@&ls. The ground truth indicated there were
7 POls. Between them, these were visited a total of nine tifBesne of these visits lasted just a single
minute. Of the 100 POIs that were created, 72 of them werdedeshen the CSSF detected the user
as being stationary for than 30 seconds. Increasing thésiiotd to two minutes reduces the number of
created POIs to 14 and a ve minute lter resulted in just 8 BOThe 8 POls did not correlate directly with

the ground truth.

Making assumptions about the time needed to be located aitiopafor it to be considered as a POl is
potentially problematic. For example, requiring a persmbé located at a POI for ve minutes may miss
POls such as car parks and shops. That said, CSSF takes armafrabeonds to detect state changes and
it is subject to occasionally sensing a user as stationagnwthey are driving (traf ¢ lights). Therefore
the use of a 30 second lter is an appropriate approach to vergainnecessary POls. Applying this lter
reduced the set of candidate POls to 28. Table 6.2 providesemwiew of these 28 POIs. We now discuss

how to merge candidate POIs that represent POI.
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Figure 6.2: POI ground truth against the 9 hours of test data
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Merging Candidate POls: Method

We need to establish if any candidate POls represent the B&haNe have the following available infor-

mation:
Common cells- Cells that are seen in both candidate POls.

Cell signi cance - An extension of a common cell. If a POI consisted of 10,000sas and a
particular cell was seen in all samples then that cell is g#gpi cant to that POI. Conversely, if a
cell was only seen 1% of the time than, from the perspectividaritifying similar candidate POls,

that cell is of little signi cance.

Signal strength- Closely matching signal strength levels indicate the @atd POls are likely to be

close to each other.

Given this information we need to establish a threshold &exmnining that two candidate POIs repre-
sent the same POI. To do this we rst calculate the signi o€ each cell by assigning a score based on

the number of times it has been seen:

f

wherej is a cell ands; is the signi cance scordf,; is the number of times the cell has been seen (in
the candidate POI cluster), amnds the total number of samples in the candidate POI clustells €hat
appear infrequently are assigned lower values than th@geth consistently seen. We then compare the
“signi cance' of the cells in each candidate POI using:

q__
cs = (cpls  cp2s)? (6.4)

wherecpl; is a cell from candidate PGLP 1 andcpljs is the signi cance score, anchz; is a cell
from candidate POCP 2, andcpl;s is the signi cance score, armh is the common signi cance score for
the cell. Common cells that are equally signi cant to bothIB@ill be assigned lower scores (closer to

zero) than those that vary in signi cance. If a cell exist®ire candidate POI but not in the other candidate
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POl then the signi cance score for the missing cell is asstha value oD. For example, itpl; = 0:9and
cp2; is missing,cp2; is assigned a value @fresulting incs = 0:9. Using the common signi cance score

cs for a given cell we compare the mean signal strength levels:

P
(cpLik  cp2k )?

ss =
! r

(6.5)

wherecplj, is the signal strength level for cgllin candidate POCP 1 andcp2j. is the signal strength
level for cellj in candidate POCP 2 andr is the maximum possible difference in signal strength kevel
andss; is the normalised distance between the mean signal stréegils. The further apart the signal

strength levels the higher the valuessf .

We can then calculate the total distance between two cetigus

d =cs ss (6.6)

wherecs; is the common signi cance for the cell aisg; is the normalised distance between the mean
signal strength levels ard] is the total distance between two cells. Repeating thisge®dor each cell
and summing produces the total distance between each P@®higher this number the further away we

consider the candidate POls to be.

The next stage is establish the threshold that should betosiadicate that two candidate POls are
close and should therefore be considered as the same POlaWearn this value using historical data
(the annotated diary - ground truth). In our case we genaratg of POIs using the above scoring method
and compare the generated POls against the ground truth.rddniires a range of values to be tested and

performance assessed.

Given a set of generated POl's we can assess performanagthsitoSM measurement data. Given
a measurement we establish the POI that we were currengydddn at a given time. By repeating this
process for the entire set of measurement data we can shtallien a person arrived at and left each can-
didate POI. Our algorithm does not automatically infer tamantic meaning or name of a POI so instead

we compare arrival and leaving times against the groundi.trat generated POI that was visited/exited
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at approximately the same time as a reported ground truthvid@exit enables us tpair the POls. At
present we complete this pairing process by hand. Oncestliismpleted we can calculate how often the
user was correctly positioned in a POI (according to the gdawuth). We then repeat this process using
a range of threshold values. Each value will produce a diffeset of candidate POI's. The larger the
threshold the smaller the number of candidate POIls. Onceawe lepeated this process we can compare

performance to establish the optimum threshold value favengset of training data.

Merging Candidate POIls: Results

We use the technique described in the previous section tergtna set of candidate POls. The results of
this are shown in Figure 6.2b. This successfully mergesidatal POls that represent the same position,
e.g. the of ce. Itis important to note that our approach doesmap the centroid that represents a POI to
a semantic meaning. For the ease of explanation we manwsaligrathe semantic meaning to candidate
POls by comparing against ground truth information.

Comparing the inferred POI against the ground truth POIrintion resulted in the following perfor-

mance levels:
Hotel Car park - 100.00%
Hotel Room - 100.00%
Outside Of ce - 97.78%
Of ce - 97.69%

The user was successfully located at Hatel Roomfor the entire time that the ground truth (diary)
reported they were there. This gure doesn't show that theyensensed at being at this POI six minutes
before the ground truth suggests and one minute after thendrivuth suggests they left. The same is true
for the POIHotel Car park The user was successfully located in the POI for the eritive that the ground
truth suggests the user was there. However they were senethg at this location for an additional four
minutes (two before and two after). The additional time $@ePOIs is likely due to the time it takes for

CSSF to detect changes in activity and small errors in grawritl information (the annotated diary). The
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overall performance level as determined by comparing tbergt truth against the generated POI's resulted
in a performance level of approximately 91%.

It is important to note that the results presented here haea enerated by calculating the optimum
threshold for merging candidate POI's for this speci c datt. The threshold was calculated and the
candidate POIl's merged using the method presented in tk@peesection. Whilst this approach produced
promising results for this dataset, use of this thresholdoislikely to be transferrable to other datasets
collected in disparate environments. If a single, xed #ireld were used we would expect performance
levels to vary. Good levels of performance should be acldiavenvironments where the behaviour of radio
signals matches that of those in the environment where tieshbld was initially calculated. In contrast,
environments with different radio characteristics suchlifferent cell densities are likely to experience
poorer performance levels when using a single thresholgevahspects of performance that are likely to
be affected are the coverage are of POl's and the relialafitymatching POIl's. From a user perspective
some of the places they visit might be indistinguishablenfaihers. For example, the POI representing the
home of a user may also encompass the house of a friend liviemy doors away. There are two possible
causes. The rst may be a lack distinguishable radio sigpedsent at the two POI's. The second would
be an overly large threshold value. That is, a thresholdevtiat results in measurement data collected at
different locations being merged into a single POI. The sdqaroblem can be addressed by adjusting the

threshold value depending on the environment.

6.3.3 Position Performance (Independent)

In this section we demonstrate the bene ts of using bothtlonaand activity data. We show that knowledge
that the user is stationary and therefore has not left a P@beaised to improve performance characteristics
such as the reliability of matching POI's. We also show thadwledge a user is moving can be used to
improve the responsiveness of detecting that a user haa RAI. In order to illustrate these bene ts we
must rst show the effects of not using motion (activity) amfation. We do this by determining when we
are located at a POI using only position information. To de the use the POIs that were created in the

previous section. Each POl is represented by a GSM ngetpVife process the raw data to nd the closest,
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in terms of Euclidean distance, POI. Figure 6.3a shows tigubwf this process, the POI interpretation
using only positional information. For convenience and ith @mparison we repeat Figure 6.2b and

Figure 6.2c, to show ground truth information, fused positand activity interpretation.

From looking at these graphs it is clear that using just posinformation results in a far more noisy
interpretation of the current POI. For example, during thnetthe ground truth information reports that the
user was located at the Hotel Room POI the position POI uetdd&etween nine different POI's. The user
was positioned in a single POI 82% of the time and uctuatetiieen the remaining eight POI's for the

remaining time. It is possible to address this behaviour bygimg multiple POI's into a single POI.

The main issue with only using position information relatethe POI entry and exit times. If POl's are
merged then the difference between the ground truth PO}/erit times and those reported by the position
only method is increased. This is to be expected when usisgig@o information alone. Membership to
a POl is determined by calculating the Euclidean distand¢ed®En a measurement taken at runtime and
the ngerprints that represent the POl's. A threshold islagapto the Euclidean distance to determine POI
membership. That is, the closest matching POI with an Eealiddistance within the allowed threshold is

considered as the users current location.

Given this approach to POl membership the user is likely todsitioned at a POI before they physically
arrive and may still be positioned at the POI after they hade [This is because the Euclidean distance
threshold is likely to cover areas outside of the POI. Thahis threshold is unlikely to perfectly align with
the physical boundary of a POI e.g. the walls of a persons hdtherefore the user is likely to be within

the Euclidean distance threshold before they arrive amd tifey have left.

This problem occurred when using only position informatiordetermine if the user was located at
the Hotel Car park POI. The ground truth suggests that thearsged at the POI at 9:45am. The method
that only used position information alone reported thatuber arrived 4 minutes earlier. An exception to
this behaviour occurs when the user enters their of ce. @gdhcasion the position only method correctly
recognised the transition to a new POI within 30 seconds @fréiported ground truth. This is because
the user was previously located in a POI with no cellular cage, an underground car park. Without cell

information it is not possible to determine position. THere cell coverage is not availabhearthe Of ce
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PO, it is only available at the Of ce POI.

The use of activity information helps to address the probtémositioning the user at a POI before
they arrive and after they have left. This is because we deeseiato have left a POl as soon as motion is
detected. Of course, when stationary, this approach Isssteptible to the same problems as only using
position information, for example, a person could wait (tzisnary) outside of their of ce (POI).

In summary, the primary bene t of combing activity and pasitinformation is the increased accuracy
when detecting arriving at and leaving POIl's. Analysis a$tliataset showed using position information
alone can result in indicating that the user has arrived a®Dbaup to four minutes before they actually
did. Whilst we do not believe this four minute error to be canstin other datasets we would expect the

principle behaviour (positioning a user in a POI before theye and after they have left) to be true.

6.3.4 Limitations

Before driving CSSF normally detects the user as walkingthad remaining stationary. This re ects the

real process; you walk to your car, sit in it, fasten your lselitand start the engine before driving away.
Excluding changes of speed when travelling on foot (runtingalking), as humans we always transition
through a stationary state when changing modes of traviVifg. For example, a car needs to come to a
complete stop before a person can get out.

As such, maintaining ane-stePOl transition matrix that models the methods of travel usetiove
between POls seems sensible. However due to limitatioatimglto CSSF ability to sense periods when
a user is briey in a stationary, state transitions betwe@€isPcan appear to involve multiple modes of
travel; more than one activity. For example, when a perstsigo a car CSSF does not always detect the
stationary state. This occurs if a person gets into theiaodrdrives away relatively quickly. CSSF will
sense the person as having previously being walking anddiiéng.

There are two approaches to handling this. The rst is to ipocate this behaviour into the transition
matrix representing the likelihood of transitioning fromeoP Ol to another. The second is create a POl upon
detecting a change of motion state, e.g. walking to drivingice-versa. The rst approach requires the

transition matrix to model multiple activity transitiorsitnove between two POIs. For example, a transition

136



CHAPTER 6. Fusing Activity and Position Information 6.3. RBLTS

T T T T T T T T T
o T e (wn ma mnn TS
Y L i
S
S L _
<
Q
3] E 3]
=
[a]
L JTM_‘ 1 1 1 1 1 1 1 1 i
09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
(a) Using only position information
u oW 18 F T T T T T T T T T ]
U OWN 17 M B
U OWN 16 |- —
U OWN 15 - B
U OWN 14 |- —
U OWN 13 - B
V] OWN 12 | —
U OWN 11 B
V] OWN 10 | —
— U OWN 9 - i
o V] OWN 8 | —
o U OWN 7 -
° V] OWN 6 | 1
& U OWN 5 - i
S UNKNOWN 4 | b
n U OWN 3 - n
U OWN 2 - B
V] OWN 1 | —
OFFICE | -
UNDERGROUND CAR PARK |- —
OUTSIDE OFFICE B
HOTEL ROOM | —
HOTEL CARPARK m B
MOVING [ —
09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
(b) Using position and activity information
OFFICE | E
UNDERGROUND CAR PARK [ -
% UNIVERSITY BUILDING [ i
°
S UNIVERSITY CAR PARK [ -
o
g OUTSIDE OFFICE | —
8 HOTEL ROOM | E
HOTEL CARPARK |- —
MOVING | u L4
09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

(c) POI ground truth

Figure 6.3: POI ground truth against the 9 hours of test data
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from POI A to POI B may involve walking, driving, and walkinglhis probability can be contained in
the transition matrix. The second approach is undesiraletioe noisy nature of CSSF when classifying
driving during times when the driver is stuck in congestaficr CSSF classi cation may uctuate between
walking and driving, resulting in the creation of many PQiattmay never be visited again (the person may
be unlikely to get caught in traf ¢ in the exact same spot).sTiehaviour also has an impact of the rst
approach. If the identi cation of transitions between tw@IB does not allow for frequent uctuations
between walking and driving then lower probabilities cardime associated with valid POI transitions.
For example, a transition from POI A to POI B may involve walki driving, and walking. Performing
this sequence of activities may indicate that the user ishilikely to be going to POI B. However CSSF
may also sense this as walking, driving, walking, drivingg avalking. This different sequence of activities
might result in a lower probability being associated wit tikelihood of transitioning from POI A to POI

B.

6.4 Related Work

There has been much work using GPS to identify places ofesteand recognise transportation rou-
tines [PLFKO03, LPFK07, LLKO5, ZFL 04]. Liao et al. [LFK05] demonstrated that by using GPS lmrat
data it was possible to identify places of interest. Thiskwecognised the home, work place, and when the
user was shopping or dining. This was implemented by fugngpbral information with the GPS location
data. A Relational Markov Network was used to assign semamaning to locations. Similarly, Ashbrook
and Starner [AS02, AS03] used GPS data to learn signi cargttions and predict movement between those
locations. This work clustered GPS data that had been tetlexwer an extended period of time. The larger
the cluster the greater the signi cance of the location ®uker. Marmasse and Schmandt [MS00] devel-
oped a GPS based system for identifying buildings that wémsterest to a user. The system, known as
ComMotion, continuously sampled the GPS receiver. When #8 failed to return a position ComMotion
used this information to signify that the user had entereithdoor environment. Subsequently, obtaining a
position indicated leaving that building. Whilst succes#fiis approach does suffer from limitations asso-

ciated with GPS including poor performance in cities withttaildings. This results in the system thinking
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the user has entered a building when they are still outsidagket al. [KWSBO05] presented an algorithm
for recognising places that was from a positioning perspedhdependent. That is, it could recognise
places using positional information obtained from dispasmurces e.g. GPS, WiFi, cellular. This required
positions obtained from the location service to be mappedcmordinate scheme understood by the system
(place recognition algorithm) and that the positions (dowates) were time stamped. Temporal point clus-
tering was then applied to recognise places. Patterson[@tlatK03] used particle lters to recognise the
current mode of travel and the most likely route. Althoughf@enance was assessed using labelled GPS

log les, mappings (GPS to mode of travel) were learnt in asupervised manner.

GSM data has also been used to recognise places of interb¥1§M The most similar related work to
ours comes from Kim et al. [KHGE09] and Hightower et al. [HQ15]. Kim et al. [KHGEO09] presented
an algorithm that discovers places by looking for stable RRals. The RF signals are considered stable
when there are minimal changes to the list of visible beag@vifi access points and Cell-ID's). This
behaviour is used to signify the entrance to a place and wieRF signals start to uctuate this is used to
infer leaving a place. In our work we applied the CSSF agtikgcognition technique to identify entering
and leaving places. Hightower et al. [HC05] presented an algorithm called BeaconPrint that used RF

ngerprints (WiFi and GSM) to recognise places. Again seaBF signals were used to indicate the arrival
at a place. This work did not seek to assign semantic meaniqdates instead it sought to recognise
previously visited places and create representationsdarpiaces. This work showed that if a place was
visited on two separate occasions or for more than 10 mirib&gsrecognising a later visit would produce

an accuracy of 80%.

Liao et al. [LFKO7] presented a labelling algorithm to renisg types of signi cant places. The al-
gorithm used temporal information (time of day etc) togethéh stereotypes of human behaviour e.g.
amount of time typically spent working and sleeping. Thisuteed in a system accurate over 80% of the

time when recognising when the user was working, sleepidgraplaces that represented leisure activities.
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6.5 Summary

In this chapter we have demonstrated that by fusing actauitgt location data it is possible to make a
stronger inference of either aspect of context. We haveepted an approach to recognising whether the
user is located at an existing POI or at a new, previously ynpad POI. We have highlighted that the limi-
tations of positional dependent measurements (in our c&d¢)@an create problems when distinguishing
between POls located close to each other.

We have also shown how it is possible to recognise POlIs teaifanterest to a speci ¢ user. This work
can be extended to infer the semantic meaning of a POI by disimggof-day information. For example,
if a user is regularly located in a POI between the hours ofri@p 7am then we can infer that the POI
represents their home. Equally, if a user was consistehthessame POI between the hours of 9am to 5pm
then we can assume that this is their workplace.

In the GSM implementation presented in Section 6.2 we cdaades POIs when the user was stationary
and not located in a previously mapped POI. This dynamicaaagr provides the bene t of not requiring an
of ine calibration process. However, the longer the apgtion is used and the more places that are visited
the greater the risk of performance degradation. This iqlie whenever the user is detected as being
stationary a process of identifying the user's current RGnitiated. This involves comparing their position
(and previous activity) against all POIs. Obviously, therenBOls the greater the computation. There are
two methods to addressing this. The rstis to intelligenttgr the candidate POls. For example, remove
the POls that share no common cells. The second approacheisitive POls that are not of interest to the
user. In order to implement this we could use time-of-dayissu$sed earlier in this section. This would
enable the identi cation of key POls such as the home andefROls that the user infrequently visits for
a short period of time could also be removed.

In summary, this chapter presents an approach to idergifyi@ls such as the of ce and home in an

automated manner, and without the use of additional haelwar
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Table 6.2: POI Creation using 30 second lter.
POI | Starttime| End time | Unique cells| Sample size Ground truth
1 09:00:12| 09:02:10 12 117 Moving
2 09:02:40| 09:06:25 17 225 Moving
3 09:08:04| 09:08:38 7 35 Moving
4 09:11:32| 09:12:07 5 36 Moving
5 09:13:17| 09:14:46 10 90 Moving
6 09:23:19| 09:25:20 10 121 Moving
7 09:26:50| 09:29:10 10 140 Moving
8 09:31:21| 09:39:01 10 459 Moving
9 09:41:03| 09:42:33 9 91 Moving
10 09:43:49| 09:51:14 9 444 Hotel Car Park
11 09:51:19| 12:53:26 11 10878 Hotel Room
12 12:53:36| 12:54:40 7 65 Moving
13 12:57:45| 13:00:44 9 180 Moving
14 13:00:54| 13:01:44 8 51 Moving
15 13:03:39| 13:06:58 8 200 Moving
16 13:08:34| 13:09:04 7 31 Moving
17 13:19:27| 13:20:16 5 50 Moving
18 14:13:02| 14:13:51 5 50 Moving
19 14:14:01| 14:15:01 9 61 Moving
20 15:08:05| 15:09:20 8 75 Moving
21 15:13:08| 15:19:17 9 369 Outside Of ce
22 15:19:22| 15:28:48 8 565 | Moving & University Car Park
23 15:31:42| 15:39:20 5 456 | University Building & Moving
24 15:41:58| 15:44:42 8 165 Underground Car Par
25 15:44:57| 16:28:13 15 2586 Of ce
26 16:28:28 | 16:29:23 7 56 Moving
27 16:29:38| 17:33:24 18 3809 Of ce
28 17:34:56| 17:36:55 9 120 Moving
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Chapter 7

Conclusions

The aim of this thesis has been to demonstrate that a suleatgkof context-awareness can be provided
on mobile phones without the use of additional sensor haielaiach as GPS receivers and accelerometers.
We have presented a novel, low-power method for inferrirgdinrent activity of the carrier of a mobile
phone. We have shown how space can be managed in a qualitetiveer with inconsistencies in position
determination handled within the spatial model. We havegmed a method for fusing qualitative (zone-
based) positional data with knowledge of the current agtiof the carrier of a mobile device. We have
shown that considering these two aspects of context simediasly enables a stronger prediction of both
location and activity. This data fusion technique build®mphe method for inferring the current activity
of the carrier of a mobile phone using raw cellular data ardapproach to identifying locations again
using GSM data. In this chapter we review the relevance efitlurk from the perspective of commercial

applications before providing an overview of the limitatsoand highlight possible areas of future work.

7.1 Applications

The functionality and capability of mobile phones has mavegond the ability to make and receive phone
calls. They are increasingly being used to display richéghber interfaces, play audio and video, provide

location-aware behaviour via GPS and use high speed datectons (WiFi, UMTS). The increase in
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power consumption has meant that power saving is still oéluigni cance despite advancements in battery
technology. In addition, the increase in functionalityuigs a user interface that provides the means for
the user to take advantage of all of these features withanglmerly complicated or cumbersome to use.
Arguably the use of context-aware behaviour can be usedadd® bene ts that address both of these

themes.

In order to adapt the behaviour of a mobile phone based upatexioial information the device must
rst sense context. Using accelerometer based techniquescbgnise activities such as walking, running
and driving is computationally expensive. The acceleremeeeds to be sampled many times a second.
Velocity based approaches to activity recognition thatdete obtained from GPS receivers consume sub-
stantial amounts of power (powering the GPS receiver). imrast, CSSF uses a minimal amount of power
to recognise activities. CSSF is not however as fast at tlegestate changes as an accelerometer. This
could be addressed by intelligently swapping between rdiffeactivity recognition technologies. For ex-
ample, an accelerometer could be used to quickly deteetatainges before switching to the CSSF method

to conserve power.

Given knowledge that the mobile phone is stationary offengraber of opportunities to conserve power.
For example, GPS receivers provide users with informatimuatheir current position. GPS receivers are
now integrated into some mobile phones and other mobilecdsyiContinuously powering a GPS receiver
is, in terms of power consumption, expensive. When a useatmsary they are provided with no new,
useful information about their location; they have not ntbvé&herefore switching the GPS receiver off
when the user is stationary will save power. The problem thithapproach is determining when to switch
the GPS receiver back on, i.e. detecting when the user hdsdsta move. Both the activity recognition

work presented in Chapter 5 and the positional work in Chiaptdfer potential solutions to this problem.

In order to provide support for handover a mobile phone noogsithe neighbouring cells. If a phone is
aware that it is stationary is can reduce the scan rate usadndor neighbouring cells. This will conserve

power. CSSF could be used to implement this behaviour.

Similar to the stationary state, knowledge that a mobilenghis moving can also be used to conserve

power and provide a better user experience. On a mobile pBdnetooth is predominately used to enable
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the use of hands-free-kits. In the UK these kits are legalyuired if the user wishes to talk whilst driving.
They are also used by people who like to talk whilst they arkkiwg. Continuously powering a Bluetooth
device is, in terms of power consumption, expensive. Uguabbile phone carriers do not turn off the
Bluetooth device when they are not using it. This is typicallconvenience factor; switching it on and
off is a laborious task. The activity recognition work pnetgzl in Chapter 5 and the positional work in
Chapter 4 address this by enabling the smart managementioédesuch as Bluetooth transceivers. There
is a similar extension of this for 802.11 (WiFi). People pmadnately use WiFi whilst they are still so they
can check their email etc. If the mobile device knows theieaof the mobile phone is driving then the

802.11 device may be switched off in order to conserve power.

Additional user bene ts can come from adapting the usenfate based upon the motion state. For
example, if the mobile phone is aware that the carrier isequly using the interface whilst walking then
the font size of the display could be increased, or the lefsdetail that is rendered reduced. This provides
better support for a user whose concentration will be sgiitiveen the mobile phone and the process of

walking.

In summary, power can be conserved and the user experiepecevied by activating and deactivating
services based upon the state of motion, the activity of ee. (Bimilarly, this approach can also be applied
using location information. For example, if a user only uieglr mobile phone is make and receive SMS
messages when they were at their home then a 2G data commeotitd be used instead of a 3G data
connection. This would conserve power. This behaviour daeatiuire recognising when the user was at
home. Both the location work presented in Chapter 4 and the pbinterest work presented in Chapter 6
could be used to implement this behaviour. For mobile devempiipped with WiFi power could be saved
by only scanning for known WiFi connections in areas wheesctirrier of the mobile phone uses WiFi e.g.
their of ce and their home. At other times WiFi could be disaband require explicit user interaction to

enable.

From the perspective of the user experience knowledge ofuhent location could be used to acti-
vate/deactivate certain services. For example, pro laddde switched depending on whether the user

was in their of ce or at their home or calls could be rediretcte
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7.2 Limitations

Both the position determination methods presented in @naptand the activity recognition techniques
presented in Chapter 5 perform more favourably in particsitaations and environments. From an activ-
ity recognition perspective travelling via a bicycle pretseproblems when trying to distinguish between
cycling and walking. Equally, distinguishing between rimgnand walking presents classi cation prob-
lems. It would be possible to extend the activity recognitgpproaches to either fuse CSSF data with other
sensor data or extend CSSF to recognise these additionaliest If extending CSSF was opted for then
the activity determination delay may need to be increaseddar to distinguish between activities such as
running and cycling. This requires the use of cell paransedach as the number of unique Cell-ID's that
have been monitored over the last 120-180 seconds. Theiietation of this data is obviously extremely
dependent upon the spatial environment. Cellular coveragense urban environments will involve a far

greater number of unique cells when compared to rural, spygpepulated areas.

The inconsistency in cell density in cellular networks dgnalso impacts position granularity. As one
would expect, in highly populated areas such as cities tipasgranularity is ne-grained because there
are many cells with a low-coverage area. Conversely in remalronments position granularity is low.
This behaviour requires a radio survey to be conducted poitihhe deployment of the location technique
presented in Chapter 4. Conducting the radio survey maynhbe ¢onsuming depending on the desired

coverage area.

From the perspective of the activity recognition arguahbyIbiggest limitation relates to the amount of
time taken to recognise a change from one activity to ano@86F is not as fast at detecting state change
as an accelerometer. There is no way of improving this gilemtture of signal strength uctuation. The
uctuation measurement is calculated over time (typicdlfyseconds) and cannot be measured instantly.
However this does lend itself to the classi cation of driginThis is because short pauses in the process of
driving such as stopping at traf c lights will be Itered oult is impossible to reliably classify 5 seconds of
little uctuation after 20 minutes of heavy uctuation: itozild be a traf c light, or the user could have got
out of the car. A prior knowledge will cause driving to petskaut it will also increase the time to sense a

change in activity.

146



CHAPTER 7. Conclusions 7.3. FURTHER RESEARCH

7.3 Further Research

The aim of this thesis has been to present practical appesactinferring contextual information such as
current position and activity. This has successfully begmieved. During this work natural extensions
have been identi ed. These include the use of machine legri@chniques to automatically identify types
of POIs (zones). Understanding the semantic meaning of@m@ay. home, of ce, shop, will enable a
richer set of behaviours. This is possible by comparing tme prior locations. If the user is located at a
POI and the time is 4am and they have been there for the lasirs tiwen it is likely that they are asleep at

their home.

The clustering approach used in Chapter 4 to create thelzased representation of the spatial environ-
ment required the deployer to specify the number of zoneg wdated. Additional work could be carried
out to automatically calculate the optimum number of zoriesrga set of measurement training data. For
example, in a location ngerprinting system the number dftidiguishable zones could be calculated by
looking at the range in signal strength levels and the nurobdistinct beacons groupings (combinations

of visible beacons). These would enable a simpli ed loaaservice deployment.

The activity recognition work could be extended in two walestly, the sensing of additional states
such as cycling could be developed. This may involve inaeéaglays when initially identifying activities
but it should be possible. The second area of extension wamitd fuse the cell signal strength uctuation
method of recognising activities with other activity reaitgn technologies such as accelerometer based

approaches. This should improve classi cation accuracy jrower ef cient way.

The Point of Interest work presented in Chapter 6 presente@éthod for automatically identifying
places that are of interest to a user, e.g. their home, the#& etc. This method involved two phases. The
rst phase identi ed the Points of Interest. This phase wagied out of ine. This approach mirrored that
of deploying a location ngerprinting service in that it néiged the collection of training data that, in the
case of POIs, could be processed to extract ngerprintspoesent the POls. Measurements collected at
runtime would then be compared against the ngerprintsitaptesented the POIs. The POl associated with
the closest matching ngerprint would be considered as #eFsicurrent location. Activity information was

used to initiate the POl matching process. That is, the Bystdy considered the user to be located at a POI
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when they were stationary. At all other times the system idened the user to be transitioning between
POls.

A future extension for this work would be to remove the of ipeocess, making the creation and
maintenance of POI representations ( ngerprints) dynanficguably the ability to deploy this type of
system without an extensive calibration process would bergil if this type of system were to be used in
practice. A dynamic system requires the ngerprint ideats that represent the POIs to be maintained at
runtime. This is important because cell towers may be dedssiomed, new ones added, or other obstacles
introduced to the environment that change radio behavide.process for implementing this behaviour is

as follows:

Is the user at a previously visited POI?
If not, create a new identi er for the current location

Else, update the identi er for the POI

Implementing this behaviour is complicated because norgtdruth information is available. If the
identi er for a POI is updated by adding new radio data andrdmtio data is collected when the user is
at a slightly different position then the POI will grow andinmlately cover a much larger geographic area.
Alternatively if new radio information is added to a POI idiezr and old radio information is removed
the real world position of the POI may move. Both of this agttes contain problems that will limit the
usefulness of the system. As such, an area for future rdsesatice investigation of different methods for

dynamically updating ngerprint identi ers.

7.4 Closing Remarks

This thesis has demonstrated how a typical mobile phonee&laaMe in a context-aware manner without the
use of additional sensor hardware. Mobile phones will iasiegly be tted with accelerometers and GPS
receivers. However there are still power consumption gnoisl meaning these cannot be used to provide

continuous context data. In contrast, the activity recogmiwork, the approach to position determination
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and the method for fusing position and activity data can Ipecantinuously, over a 24 hour period without

the need to stop and recharge the battery.
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