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Abstract

A mobile device that adapts its behaviour to complement the user experience has long been a goal for

the pervasive and ubiquitous research communities. Known as context-awareness, this enables behaviours

such as diverting incoming phone calls to an answer phone or hands-free-kit if the carrier of the phone is

currently driving. Another example is the automatic �ltering of content to show only relevant data, e.g. the

locations of the closest restaurants.

Traditionally, positional information has been determined via the use of GPS receivers; everyday ac-

tivities such as walking and driving have been recognised using machine learning techniques to classify

patterns of accelerometer data. Both of these sensors require additional hardware and in terms of power

consumption, are computationally expensive to run.

In this thesis we demonstrate how a similar level of context-awareness can be achieved without the use

of quantitative positioning techniques involving a GPS receiver and without the user of an accelerometer to

recognise everyday activities such as walking, travellingin a car and remaining stationary. We show how

patterns of signal strength �uctuation can be classi�ed as occurring whilst undertaking activities such as

walking and driving, and show how this behaviour enables accelerometer free activity recognition. A quali-

tative approach is presented for modelling the spatial environment that shields the user from inconsistencies

in positioning system performance. We demonstrate how position and activity data can be used to improve

the performance of both the activity sensing and positioning services. In conclusion this thesis argues that

for many applications this level of context-awareness is suf�cient.
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Chapter 1

Introduction

As humans, we adapt our behaviour to re�ect the current context. We dress with consideration of the

weather and we increase the volume of our voice in noisy environments to ensure we are heard. This

process of adapting our behaviour to match the environment enables us to complete tasks in an effective,

optimised manner. From a computing perspective we refer to this behaviour as `context-awareness'. Similar

to humans, devices and software programs that dynamically alter their behaviour to re�ect the current

context that they are being used in are said to be context-aware.

In order for a computer application or device to behave in a context aware manner it will need to

sense aspects of the current situation in which it is being used. In the pervasive and ubiquitous research

communities there have been numerous projects focusing on developing this type of context-aware be-

haviour [WHFG92, PLFK03, BP00, Kra06, SBG98, The06]. To lookat one example in more detail, the

SenSay project [SSF+ 03] sought to provide context-aware behaviour on mobile phones. This included the

functionality to adapt the ring tone volume on the phone to re�ect that of the ambient noise level in the

current environment. In addition, SenSay used three accelerometers to capture the motion of the user with

the aim of adjusting the behaviour of the phone in keeping with the activity of the user. For example, raising

the ring-tone volume when the carrier of the mobile phone wasdetected as being mobile, i.e. walking.

Although numerous factors in�uence the current context notall will be relevant for all situations. For
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CHAPTER 1. Introduction

example, the current weather conditions are arguably irrelevant from the perspective of how a mobile

phone should react to the event of receiving a phone call. In contrast, knowledge of whether the carrier

of the mobile phone is driving a motor car is extremely usefulcontextual data; the call could be automat-

ically diverted to an answer phone, reducing the risk of driver distraction. As humans we subconsciously

�lter irrelevant information and react to contextually relevant information. In order for devices and soft-

ware programs to replicate this behaviour they must be equipped with the `logic' to fuse and �lter the

data obtained from sensors attached to the device. To meet this need, numerous projects have sought to

develop software frameworks and inference engines to fuse and �lter data from multiple, typically hetero-

geneous sensors [PLFK03, HI04, KMK+ 03]. An example of this type of work comes from the MIThril

platform [DD01]. In this project accelerometer data was fused with IR tag readers, 802.11 (WiFi) data in

addition to otheron-bodysensors. This work enabled the identi�cation of activitiessuch as walking, driving

and cycling.

Machine learning enables context-aware devices to interpret raw sensor data and adapt behaviour ac-

cordingly. The term `machine learning' refers to the process of a software program learning how to interpret

raw data from sensors. Two forms of machine learning - supervised and unsupervised learning - are dis-

cussed in Chapter 2. From the perspective of context aware applications machine learning limits the amount

of human involvement in deciding how a context-aware application should adapt its behaviour given the raw

sensor data. In addition, machine learning eases the process of introducing different parameters, sensor data,

and events to a context-aware device.

The approach taken to fusing data from multiple typically disparate sources has generally been to apply

machine learning techniques such as Bayesian based methods[ARS05, DC93, DD01]. Using data obtained

from accelerometers, Muller and Randell [RM00] successfully developed an Arti�cial Neural Network to

identify activities such as walking, driving, climbing stairs and sitting still.

Whilst there are many sensors capable of sensing a wide variety of events, it is worth noting that a con-

siderable research effort has focused on the development ofmethods for inferring location. This knowledge

enables a context-aware application to deliver information to a user based upon their current location. For

example, providing reminders of required shopping items when near the appropriate stores or playing an

4



CHAPTER 1. Introduction

audio commentary to visitors of a museum that re�ect the speci�c exhibits they are closest to.

Perhaps the most popular method of obtaining positional information is via the Global Positioning

System, or better known in its abbreviated form - GPS [Get93]. GPS enables context-aware applications to

typically be aware of their location to within a 10-metre zone in outdoor environments. Unfortunately GPS

is not without its limitations. GPS relies on the ability to see four or more satellites in the sky in order to

determine the position of a GPS receiver. As such, if you are indoors or the view to the sky contains other

obstacles, the GPS receiver will not see a suf�cient number of satellites, meaning the application will not

be able to determine position. In addition, a GPS receiver isexpensive in terms of power consumption and

typically is only �tted as standard on today's high-end mobile devices.

Due to some of the limitations associated with GPS, the ubiquitous and pervasive research communities

have looked for alternative methods that utilise wireless platforms including 802.11 (WiFi) and cellular

telephony. The interest in cellular methods is arguably dueto the ubiquity of mobile phones. In 2004

there were an estimated 61 million mobile phones in the UK against a population of just under 61 mil-

lion [CIA07]. As such, there has been much excellent work developing positioning methods for cellular

devices [OVMdL05, LLN01, WNL04, Wil98, SR00].

Aside from location there has been much work focusing on how the behaviour of a mobile phone

could be improved given contextual data. The Context Aware Cell Phone Project [The06] from MIT is an

example. This project sought to load different user pro�lesdepending on whether the carrier of the mobile

phone was driving, in a restaurant, at work and so on. The sensors used to achieve this behaviour included

a GPS receiver, a three-axis accelerometer, an IR tag readerand a microphone.

Whilst there has been much successful work focused on providing context awareness on mobile devices

it is not without its limitations. The main issue relates to the fact that the contextual data has always been

obtained from sensors not present on today's mobile phones.In this thesis we present alternative methods

for inferring the current activity of the carrier of a mobilephone and for recognising locations. These

methods use cellular data present on all mobile phones. We demonstrate that this approach can provide a

level of context-awareness similar to that obtained from using accelerometers and GPS receivers.

A cellular network consists of a series radio transmitters -Base Transceiver Stations - that are deployed

5



CHAPTER 1. Introduction

at �xed locations. Each transmitter provides a coverage area that is referred to as a `cell'. In order to satisfy

demand and enable a user to travel from the geographic coverage area of one cell to another without a

break in service, the management of the mobile phone must be migrated from one radio transmitter (cell) to

another. This process is referred to as `handoff' or `handover' in the US. Aside from the physical location

of the mobile phone the cell signal strength will also in�uence the decision for initiating handoff. As such,

a mobile phone typically monitors six neighbouring cells inaddition to the current serving cell. If the signal

strength drops below a predetermined minimum level the handoff process may be initiated to mitigate the

risk of a break in service.

Our approach to activity recognition utilises this architecture. We use the number of unique cells that

a mobile phone monitors over a given time interval as an indication of current activity. The hypothesis

that makes this possible is that the faster you travel, the greater the geographic area you will cover and,

as such, the number of cells that will be detected by the mobile phone will increase. We also demonstrate

how the level of signal strength across all visible cells (current and neighbouring) will �uctuate in speci�c

patterns depending on the current activity of the carrier ofthe mobile phone. This pattern of signal strength

�uctuation, together with the previously mentioned cell �uctuation, enables the identi�cation of activities

such as walking, travelling in a motor car and remaining stationary.

From a position determination perspective we use the fact that the base transceiver stations in a cellular

network are deployed at �xed locations. We extend the location �ngerprinting technique presented by

Bahl and Venkata in 2000 [BP00]. The term `location �ngerprinting' refers to the method of positioning a

mobile device using signal strength levels from wireless beacons such as 802.11 access points and cellular

base stations. Deploying a location �ngerprinting positioning service is a two stage process. Firstly, an

of�ine calibration phase is undertaken where the signal strength levels are recorded at �xed points in the

application environment. The positions and associated signal strength levels (�ngerprints) form a radio

map of the environment. At runtime, users match their current signal strength levels from visible beacons

against those in the radio map. Typically the position associated with the closest matching �ngerprint

(shortest Euclidean distance of the signal strength) is returned to the user as their current position. The

hypothesis is that the same signal strength levels will be encountered at the same physical position.
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CHAPTER 1. Introduction 1.1. CONTRIBUTIONS

Problems occur when deploying this type of system when the nature of the environment creates incon-

sistent performance levels. This will occur when static obstacles such as walls and desks are present in

parts but not all of the environment. Equally, dynamic obstacles such as those created by people moving

through the environment also cause issues with the reliability of positional information. In this thesis we

address these issues by taking a qualitative approach to delivering positional information to context-aware

applications. We argue that for most situations, knowledgeof being in a particular zone or place is more

useful than providing a position in the form of a Cartesian coordinate that has an associated error that must

then be mapped to a place.

Neither the activity recognition nor position determination techniques that are presented in this thesis

require anyactive network participation. Thus user privacy is maintained whilst also ensuring that the

solutions presented in this thesis are scalable.

1.1 Contributions

The contributions of this thesis are summarised below:

� An analysis of the behaviour of wireless data in heterogeneous environments and the effect this

behaviour has on localisation techniques [AM06b, AM08]. (Chapter 3)

� A spatial model for developing context-aware applicationsthat is re�ective of both measurement and

environmental limitations [AM05]. (Chapter 4)

� An automated and unsupervised approach to constructing a qualitative representation of the spatial

environment [AM05]. (Chapter 4)

� A model for fusing wireless positional data for use in qualitative representations of the spatial envi-

ronment [AM06d]. This enables behaviours such as the activation/deactivation of speci�c services

depending on whether the phone is at the of�ce or at the home. (Chapter 4)

� A model for recognising everyday activities such as walking, travelling in a motor car and remaining

stationary using wireless data [AM06a]. Activity data suchas the knowledge that someone is driving
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enables calls to be silently diverted to an answer phone. Thecaller can be played a message letting

them know that the person they are trying to contact is driving. The driver can then be alerted that

they missed a call when they �nish driving. (Chapter 5)

� An unsupervised activity recognition calibration procedure for learning the optimal settings for a

speci�c environment [AM06c]. Given knowledge of the current activity of a mobile phone it is

possible to conserve power. For example, people generally use Bluetooth only when using hands-

free-kits. Therefore we could switch Bluetooth off if we know the user is currently stationary. In

addition, if a mobile phone was equipped with a GPS receiver we could switch off the GPS receiver

when we are stationary or when we are indoors. Or we could reduce the frequency of cellular network

scans (scans to assess the current and neighbouring cells).(Chapter 5)

� Methods for fusing data produced by the activity recognition and positioning algorithms and iden-

tifying points of interest. Fusing activity and location data increases the accuracy and reliability of

the behaviour of a context-aware mobile phone. For example,if the carrier of a mobile phone always

walked to the shop and always drove to their of�ce, passing the shop on the way then an application

that provided shopping reminders should look at both location and current activity before supplying

a reminder. If the user is driving then it is not worth providing a reminder when the user is near the

shop; they only visit it on foot. (Chapter 6)

Other papers . In collaboration with Glasgow University the activity recognition technique presented in

Chapter 5 has been used to raise health awareness [MSB+ 06, AMS+ 07].

1.2 Thesis Structure

The rest of this thesis is structured as follows.

� Chapter 2. This chapter introduces context-aware computing, providing an overview of the state-

of-the-art in terms of position determination and activityrecognition. This chapter also provides an

overview of supervised and unsupervised machine learning techniques.
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� Chapter 3. In this chapter we present the results of a series of experiments designed to assess the

behaviour of wireless signals such as GSM and 802.11 (WiFi).We evaluate the reliability of signal

strength levels, i.e. at the same physical location will we experience the same signal power levels

from the same beacons. We also present an investigation of the variance of signal power levels given

obstacles in the environment and the signal power degradation as the mobile device is moved further

away from a wireless beacon.

� Chapter 4. This chapter presents an alternative approach to modelling space in context-aware appli-

cations. We argue that location aware applications should model the application environment with

consideration of the underlying positional service. We present a method and set of algorithms for as-

sessing the positioning service performance in a given environment and generating a zone-based rep-

resentation of the environment that re�ects the performance of a given positioning service in a given

environment. Towards the end of this chapter we demonstratehow to fuse multiple homogeneous or

heterogeneous sources of positional data with the aim of increasing the accuracy and reliability of the

positional data. These algorithms have been developed to operate within the qualitative, zone-based

approach to managing space.

� Chapter 5. In this chapter an approach to inferring the current activity of a carrier of a GSM mobile

device is presented. We demonstrate how it is possible to distinguish between various methods of

movement such as walking, driving and remaining stationaryusing GSM data. This method differs

from traditional approaches using accelerometers.

� Chapter 6. In this chapter we present an approach to fusing position and activity data. We demon-

strate how by combining this information it is possible to make stronger predictions of activity using

positional data and vice-versa. We use this approach to identify points of interest in an automatic to

another.

� Chapter 7. This is the �nal chapter and concludes this thesis by summarising contributions and

results. In closing, suggestions of areas for further research are presented.
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Chapter 2

Background

In 1991 Mark Weiser wrote a seminal paper titled “The computer for the 21st century” [Wei91]. In this

paper he presented a vision for a new age of computing that he and his colleagues at PARC [Pal] described

asubiquitous computing. This vision describes a transition from traditional desktop computing to an era

of mobile, always available computing that would help overcome the problem of information overload.

Ubiquitous computers would assist in the completion of the same everyday tasks but now these tasks could

be completed quicker thanks to ubiquitous computing. Mark Weiser described the technology required for

ubiquitous computing as:

“[...] cheap, low-power computers that include equally convenient displays, a network that ties

them all together, and software systems implementing ubiquitous applications” [Wei91].

Since 1991 all of these requirements for ubiquitous computing have been met. Computer processing

power has increased substantially with Moore's Law [Moo65]. Gesture based touch screen interfaces such

as the Surface Table from Microsoft have been developed [Mic09]. The Surface Table integrates a computer

and a touch screen display into a coffee table. The touch screen provides intuitive methods for everyday

tasks such as viewing and sharing media in social environments. This serves as a �ne example of a ubiqui-

tous computer.
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The term “context-aware computing” �rst appeared in 1994 inpublications from Schilit and Theimer [ST94]

and Schilit et al. [SAW94] and in a special issue of Human-Computer Interactionon Context in De-

sign [Mor94]. These early papers discussed the need for the behaviour of applications to be re�ective

of the current context that they are being used in [SAW94, STW93]. Context was de�ned by Brown et al.

as:

“Context is any information that can be used to characterizethe situation of an entity. An entity

is a person, place, or object that is considered relevant to the interaction between a user and an

application, including the user and applications themselves.” [ADB+ 99].

In order for a device or application to behave in a context-aware manner the device or application must

be designed to support dynamic recon�guration at runtime and must be provided with the ability tosense

the relevant aspect(s) of context. For example, if the carrier of a mobile phone is driving then all incoming

calls could automatically be diverted to an answer phone. This requires the ability to sense that the carrier

of the mobile phone is driving and that the mobile phone has the ability to redirect calls. There has been

much work focusing on how tosense contextand secondly, how to design applications and devices to

support dynamic recon�guration. In Section 2.1 we present an overview of the state-of-the-art in context-

aware computing. We provide reviews of methods for determining position and methods for recognising

activities.

The term “Machine Learning” is used to describe the process of a computer program learning how to

complete a task. In terms of ubiquitous and context-aware computing, machine learning has been heavily

used in the processes of identifying aspects of context using raw sensor data. For example, accelerometer

data is typically processed using machine learning techniques to recognise everyday activities such as walk-

ing, running, and cycling. In Section 2.2 we present an overview of machine learning techniques, including

the use of both supervised and unsupervised approaches.
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2.1 Context-Awareness

There are numerous aspects of context that will potentiallyin�uence the desired behaviour of an application.

The most popular are: location and activity. In this sectionwe provide an overview of the state-of-the-art

activity recognition techniques and position determination methods.

2.1.1 Position

The ability to accurately determine personal position is anessential requirement for many context-aware

applications. To address this issue, many positioning systems have been developed using a variety of

different technologies, ranging from Infrared and opticaltechniques to the use of radio and ultrasonic waves.

All of these systems provide users with varying levels of positional granularity. For example, the Global

Positioning System (GPS) can place a user within 10 metres area whereas ultrasonic systems can provide

a sub 25cm level of accuracy. This varying degree of accuracyoccurs because positioning systems are

designed to solve speci�c problems, i.e. to be low-cost, offer high levels of accuracy, or self-calibrating.

There is no single technology that would meet all positioning needs.

Therefore developers of context-aware applications select the most appropriate positioning technologies

to meet the requirements of their application and if need be,complement them with other systems and fuse

the positioning data.

In this section we provide an overview of infrastructure-based position determination methods. We use

the term positioning infrastructure to describe a system that determines the position of a user via the use of

external data. An example of this would be the GPS where a receiver is used to listen for signals containing

position information being broadcast from satellites. Without the information from the satellites it is not

possible for a GPS receiver to calculate a positional �x. We present a review of positioning infrastructures

that have been created using a wide selection of technologies including: Infrared, RF, and Ultrasound,

before concluding with a review of autonomous positioning techniques.
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GPS

The Global Positioning System (GPS) [Get93, EPG85] provides positional information in most environ-

ments that provides a clear view to the sky. GPS uses information sent from satellites orbiting the Earth to

calculate position. This process of position determination requires visible satellites and uses trilateration.

Each satellite transmits the time each message is sent. The receiver uses this to calculate the satellite's

distance from the earth. Position determination is only possible if four or more satellites are visible. This

means that GPS will fail in indoor environments and in dense urban environments (i.e. city centres where

tall buildings create obstacles and cause signal re�ections and refractions).

Infrared

Initially, the primary focus of context-aware behaviour inmobile applications was centred around location.

This is illustrated by the research at the time. One of the �rst in-building positioning infrastructures was the

Active Badge system [WHFG92]. The positioning aspect of the application was able to offer room level

location granularity. This was used to locate the nearest printer or route incoming calls to the nearest phone.

The architecture for this system was centralised in that a single master station polled sensors distributed

throughout the building for `sightings' of users. Users were sighted by wearing badges that periodically

emitted unique codes detectable by sensors placed at known locations. The underlying technology used in

this system was Infrared. This technology was selected because the Infrared signals will not pass through

walls, hence if only one receiver is placed in each room then auser will only be detected by one receiver.

Secondly, Infrared beams are re�ected by walls meaning the direction a user is facing does not matter, the

signal will still get to the receiver. This system tracked users and was one of the �rst applications to raise

the still current issue of privacy concerns.

The scalability of infrared based systems is limited because they suffer from dead spots, have limited

range and will perform poorly in sunlight i.e. rooms with large windows. It is also expensive to install and

maintain and cannot easily be extended to offer a �ner level of location granularity. Other problems occur

when there are many concurrent users of the application attempting to transmit IR signals at the same time.

Another key characteristic of this system is that the badge or Infrared signal never knew its location, instead
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location information was provided by the application infrastructure.

The IR technology has been used in other positioning systems[PE03] to provide absolute ground truths.

RF

The prison guard Duress Alarm System (DALS) [CGL93] was designed to extend existing duress systems

that broadcast messages to inform other staff that someone is `in trouble' including the location of that

person. The system had to use the existing infrastructure wherever possible.

This system uses a network of distributed sensors that relayRF signal strength measurements to a central

point. Traditionally, to �nd RF signal direction requires two line of bearing signals which will locate the

transmitter in two directions: azimuth and radial distance. The problem with this system was that a prison

is primarily constructed using RF re�ective materials suchas steel grids and reinforced masonry. This

prevented the use of such classic radio location techniques. Instead, a combination of radio, carrier current

transmission and digital signal processing had to be used. The solution consisted of guards wearing VHF

transmitters on their body that would transmit the distresscall when activated. Throughout the prison a

series of sensor/relay modules record the strength of the RF�eld strength and output a proportional signal

to a central PC. The signal strength can then be mapped on to a calibration matrix outputting a set of

coordinates that represent an X/Y location on the prison �oor.

Although this system met the requirements of the application the initial setup of the system was expen-

sive and a detailed structural knowledge of the �oor was required.

RF and Ultrasonics

In recent years a number of positioning infrastructures [PCB00, RMMR02, HW02, HH06] have been de-

veloped using a combination of RF and Ultrasonic signals to determine position. Both signals are typically

used in the following way to calculate position:

RF and ultrasonic signals are broadcast concurrently from abeacon when the RF signal is received

by the listener, the ultrasonic receiver is switched on and atimer started. RF signals travel at the speed

of light so the RF signal is received at the listener almost instantaneously, however ultrasonic signals are
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considerably slower, travelling at the speed of sound. As these signals travel at a constant speed (assuming

no signal interference and a clear line of sight between transmitter and receiver), the time difference between

receiving them can be used to calculate the distance betweentransmitter and receiver.

The Cricket system [PCB00] uses both RF and ultrasonic technologies in the manner described in the

previous paragraph to determine position to within a few square feet. The decentralised system architecture

consists of beacons placed on ceilings and walls that disseminate location information to `listeners'. In the

Cricket system a listener is a small device that can be attached to a node (static or mobile) that provides a

simple API to programs running on the node. The API allows programs to advertise themselves by regis-

tering with a map server and use a resource discovery service. Essentially this system acts as a positioning

infrastructure that context-aware applications can be deployed on. The decentralised beacon network and

the need to con�gure components has been kept to a minimum. There is no need to con�gure the listener

and the beacon con�guration only requires the setting of a string to represent the space that is disseminated

by that beacon. This system does not require beacons to be placed at known locations. This has a positive

affect on system scalability but it does create the problem that it is not possible to coordinate RF transmis-

sions (even if it was possible it would have a direct affect onsystem scalability). In the Infrared section the

Active Badge system [AGS+ 93] broadcast Infrared signals every 15 seconds to avoid signal collision, the

Cricket system however uses randomisation to avoid the problem of repeated collision.

The Bat system [HH94, WJH97], like the Cricket system [PCB00]uses a combination of RF and ul-

trasonics signals to determine location. The system has been designed to determine the three dimensional

position of objects to within 15cm of their true location. Inthe Bat system, wireless transmitters are at-

tached to all objects that are required to be located. The receiver architecture is centralised with a single

controlling PC. Receivers are arranged 1.2m apart in an array at known locations. When determining an

object's location, the PC sends a reset signal to all receivers over the serial network and at the same time

it instructs a RF base station to broadcast a message containing a transmitter address. Upon receipt of the

message the transmitter will then send out an ultrasonic pulse which will be detected by the receivers. The

ultrasonic receivers are then monitored for 20ms until the signal peak is retrieved. The controlling PC then

retrieves the time difference that the receivers encountered from receiving the reset signal to receiving the
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ultrasonic spike. The PC can then calculate the position of the object using multilateration to sub 15cm

levels of accuracy.

Although this tracking system provides excellent levels ofaccuracy it does have some limitations, par-

ticularly concerning scalability. Primarily, it is only possible to identify one object at one exact time. This

would limit a context-aware application to a single user at asingle time. Deploying over a large environment

such as throughout a building would be a time consuming task because transmitters need to be arranged in

patterns at known locations.

Hazas and Hopper [HH06] investigated the use of broadband ultrasound in location systems. This

work demonstrated that the use of broadband ultrasound offered many bene�ts of narrowband ultrasound

including: reduced position determination latency, increased robustness and increased update rates.

The low cost ultrasonic system [RM01] developed at the University of Bristol can be implemented for

around 150 U.S. dollars, providing coverage for a typical room in an area greater than 8m by 8m with

accuracies of 10-25cm. The system consists of a single RF transmitter and four ultrasonic transmitters. The

client is equipped with an RF receiver, decoder and a PIC micro-controller. The RF transmitter sends out an

eight byte coded packet containing an identi�er byte, an IP address, and a �oor and room number. The RF

`ping' is primarily used for clock synchronisation. Following this ping four ultrasonic chirps are sent. The

client can then use these time-of-�ight measurements to calculate their position relative to the transmitters.

Using four transmitters increases the system range, compensates for occasional signal loss and simpli�es

geometric calculations. The accuracy of this system has been improved by using a signal �tness selection

that removed the poorest values. In this system the privacy of the client is maintained and they alone know

their position. This does require an of�ine initial setup where the client (receiver) is told the arrangement

and location of the ultrasonic transmitters. In order to deploy this system in multiple neighbouring rooms

the range of the RF ping needs to be con�gured. One of the most interesting parts of the low cost ultrasonic

system at Bristol is how the RF ping is utilised not only for clock synchronisation issues but also to provide

general information about the room via an ID number.

This system does have an advantage over the Bat system in thatit provides support for multiple re-

ceivers. However is does suffer the same problems when the system is deployed over a large spatial envi-
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ronment, i.e. throughout a building.

Ultrasonic

The positioning infrastructures described in the previoussection have used a combination of RF and ultra-

sonic signals to determine a users position [PCB00, HH94, WJH97, RM01]. In all of these systems clock

synchronisation between transmitter and receiver must be achieved. This is one of the main reasons for

using both RF and ultrasonics. RF signals travel at the speedof light, whereas ultrasonic signals travel

considerably slower, at the speed of sound. Therefore the RFsignal can be used to either start a timer, or act

as a trigger so that the ultrasonic `chirps' can be sent concurrently. This gives times-of-�ight measurements

that can be converted to distances and by using multilateration, determine a user's location.

This technique has proved to be successful, however it does require more circuitry than using only RF

or ultrasonic components. Work at the University of Bristol[MM03], has shown that it is possible to create

a pure ultrasonic system, eliminating the need for RF to address clock synchronisation and with it the need

for the RF circuitry. This works by using a ping to indicate the start of a transmission cycle as opposed

to the transmission of a single RF chirp. Both the transmitters and receivers use a previously agreed delay

between the transmission of the ping and the transmission ofthe chirps. This is particularly useful for

wearable computers where small size and weight are paramount. Another advantage of this system is the

elimination of clock synchronisation errors that typically occur when using a ping to indicate the start of a

chirp transmission sequence.

In conjunction with the development of this RF free ultrasonic system an auto-calibration algorithm for

determining the location of the transmitters has been developed [DM03]. This is particularly useful to the

deployers of context-aware applications as it removes the overhead involved in measuring the positions of

location transmitters.

Location Fingerprinting

The IEEE 802.11 standard [IEE07] or WiFi as it is more commonly known de�nes a set of protocols

for creating Wireless Local Area Networks (WLANs). Althoughlaptops have traditionally been the most
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popular use for 802.11, in recent years we have seen an increasing number of mobile devices such as phone

and PDA's become augmented with 802.11 transmitters and receivers.

WiFi provides us, from a context perspective, with two useful bits of information:

� a base station ID

� a signal strength

The RADAR [BP00] user location and tracking system uses the WaveLAN NIC Signal Strength (SS)

and the Signal-to-Noise Ratio (SNR) to determine the location of a user. Users periodically emit broadcast

messages that are received at multiple base stations. The SSand SNR data allows the controlling application

to offset the strength of signal readings at each of the base stations and calculate the users location. The

results showed that this system could determine a users' position with a median accuracy of 2-3 metres.

This system had to address the issue that a clients' WaveLAN NIC signal strength will vary depending

on whether a user is inside a room and the type of walls in that room. This means initial system setup

is complex, requiring a detailed structural knowledge of the environment, i.e. type of walls and how they

affect signal strength.

The use of WaveLAN does have the advantage that communication between the client and positioning

infrastructure and in turn the context-aware application is simple because the network connection is already

available.

This project �rst demonstrated that it was possible to determine the position of an object by comparing

signal strength levels recorded at the objects position with those stored in a radio map of the application

environment. This technique, now known by the term `location �ngerprinting', appealed to the ubiquitous

and pervasive research communities largely because it can be built on existing infrastructures such as 802.11

Wireless Networks (WiFi).

In order to deploy a location �ngerprinting system, an of�ine calibration process must �rst be under-

taken. The purpose of this procedure is to assess the behaviour of the RF signals in the given environment.

This process requires the deployer of the system to record sample signal strength measurements throughout

the application environment. Each of these samples, known as �ngerprints, contains the signal strength

levels for all visible RF beacons at that point in the environment. Fingerprints are then typically associated
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with an arbitrary coordinate representing the position where the RF samples making up the �ngerprint were

recorded. At runtime the position of an object is determinedby comparing the received signal strength

levels from visible RF beacons with those stored in the radiomap that represents the environment. The

position associated with the `closest' matching �ngerprint represents the current location of the object.

Autonomous Positioning

Positioning infrastructures typically operate within setspatial ranges, for example, a single room or build-

ing. When an application user leaves this range and stops communicating with the positioning infrastructure

they lose track of their personal position. Outside of this range autonomous positioning systems capable

of determining position independently of any external datasource must be used. Here we consider some

autonomous positioning techniques and the effect they haveon the development of context-aware applica-

tions.

Originally, dead-reckoning was a navigation technique used by sailors to calculate a target position

based upon a known relative location. For example, if a ship is leaving the Dover shipping port in the UK

at 9am and travels due South for two hours at a speed of 20 knotsit should expect arrive in Calais, France

at 11am. Historically, the speed at which the ship was travelling would be calculated by throwing a buoyant

object from the bow of the ship and timing how long it took to reach the stern and the direction that the ship

was travelling in would be determined by using either a compass or astronomical charts. This technique

has since been updated and applied to the problem of maintaining personal position.

A series of experiments have been carried out to assess the practicality of using dead-reckoning tech-

niques to maintain personal position by measuring steps [RDM03]. They have shown that dead-reckoning

techniques can provide satisfactory results for maintaining personal position over short distances. But over

longer periods of time the quality of the data produced will start to deteriorate and subsequently the users

personal position will drift away from their actual location. This is largely due to the unreliability of the

human step. For example, when walking over cobbled surfacesshorter steps are taken then when walking

along a smooth tarmac path. Although it is possible to improve this data by using facts about the way we

walk such as stride length being proportional to the speed wewalk, there will still be an issue of drift. To
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address this, dead reckoning systems must be built with either periodic recalibration in mind or they must

be coupled with another source of positional information such as GPS. The success of these systems also

depends upon the stability of the host that they are deployedupon. For example, an autonomous position-

ing system designed to run on a car will provide better results than the equivalent system deployed on a

pedestrian.

Cellular Positioning

The mobile phone is ubiquitous. Chen et al. [CSC+ 06] noted that there are more GSM subscribers than

there are Internet users [Com04, GSM05]. In developed countries such as the United Kingdom, Germany,

Spain there are more mobile phones than people [WiK09]. Given this popularity and the features of modern

mobile phones such as an always available Internet connection (assuming network coverage is available),

a long battery life and the fact people generally carry theirmobile phone wherever they go, the mobile

phone is particularly appealing as a platform for sensing aspects of context. As such, a number of different

methods for determining the position of a mobile phone have been developed. In this section we �rst

describe GSM before reviewing cellular positioning techniques.

The Global System for Mobile Telecommunications (GSM) is currently the most popular cellular stan-

dard with over a billion users worldwide. Aside from Canada and the USA, GSM networks typically operate

in the 900MHz and 1800MHz bands. These bands are further divided into the uplink and downlink bands.

For example, the 900MHz band is split into the 890-915 MHz uplink band and the 935-960 MHz downlink

band. Channels are spaced throughout these bands at 200 KHz intervals creating 124 separate channels. On

each of these channels GSM networks operate a Time-DivisionMultiple Access (TDMA) system enabling

multiple mobile stations to share the same channel. To satisfy demand within these bandwidth constraints,

channels are reused at base transceiver stations that are far enough away not to cause signal interference.

Channels are managed by the base station subsystem part of a GSM network. The base station sub-

system consists of multiple base station controllers each controlling multiple Base Transceiver Stations

(BTSs). A BTS is typically equipped with between 1-16 directional antennas and transceivers broadcasting

on different frequency channels.

21



2.1. CONTEXT-AWARENESS CHAPTER 2. Background

A cell is allocated a number of channels depending on the predicted usage for that given area. Estimated

usage is calculated by carrying out multiple radio surveys of the environment and analysing the expected

customer base for that area. Once a usage model has been constructed the network designers will select

the number and types of cell required to provide coverage forthe given area. Cells are classi�ed as being

either macro, micro, pico or umbrella, depending upon the transmitting power of the base transceiver station

antenna.

The number of channels allocated for a particular cell varies depending upon the environment and the

predicted usage. In dense urban environments a high number of micro (short-range) cells are typically used.

This provides a greater network capacity, a necessity for metropolitan environments. In contrast, coverage

in rural areas tends to be provisioned by macro cells. Macro cells consist of high powered directional

antenna giving a cell coverage range of up to 35km.

In order to maintain mobile-to-base station communicationwhilst a mobile communication device is

moving, a cellular network must provide support for migrating service provision to the mobile device from

one cell to another. This process, referred to as handoff, will occur when a signal level and a received power

level on the mobile communication device drop below a predetermined threshold. To provide support for

this behaviour, the mobile communication device maintainsa list of typically six or seven neighbouring cell

signal strength levels.

The mobile communication device monitors signal power levels of the BTS which is currently serving

it (also referred to as the current cell), and of BTSs associated with neighbouring cells. In order to identify

these neighbouring cells, the mobile communication devicecan use a Broadcast Common Control Channel

(BCCH) on the serving BTS. The purpose of the BCCH is to transmit system information, including a list

of neighbouring cells, known as a BA list, that the mobile communication device can expect to detect, given

that the mobile communication device has an active connection with the serving BTS. When a BTS is in

a passive state (i.e. when the BTS is not actively managing a mobile communication device), the BCCH

is used to send system information messages. In a GSM system,a set of prede�ned system information

messages (called SYSINFO) are provided. Thus, in a passive state, the serving BTStransmits a message

providing the mobile communication device with a description of the neighbouring cells. The description
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is made up of a list of channels that the mobile station could potentially use to receive a better signal

power. The neighbouring cells in the list are represented using Absolute Radio Frequency Channel Numbers

(ARFCN). An ARFCN is an identi�er for a channel used by the airinterface in a cellular system.

While the mobile communication device is idle, it scans the BCCH for neighbouring cell informa-

tion. This initially produces a list of up to 16 ARFCNs (representing 16 neighbouring cells, each with

an associated BTS). The mobile communication device reduces this initial list of identi�ers to a list of a

predetermined number of identi�ers, typically six, of the best candidates for handover, on the basis of the

received signal strength associated with their BTS. Whilst we have described GSM the above principles

exist for other cellular networks such as UMTS. Handover, and hence monitoring cell strength is essential

to any mobile network. Using these characteristics we now review cellular positioning techniques.

Arguably the simplest approach is Cell-ID based positioning. This is a beacon based method where the

position of the wireless beacon, in this case a Cell-ID, is used to represent the users position. The position

of the wireless beacon is typically either the position of the RF antenna (the location of the BTS) or the

radio centre of the beacon (where the radio signal is strongest). This position is typically represented as a

coordinate e.g. a latitude/longitude pair. When the users' mobile phone is currently connected to a cell the

users' current position is considered to be the position of that cell. Deploying a Cell-ID based positioning

service requires a database of Cell-ID's and associated positions. If this information is not available a radio

survey must be conducted to determine the positions of the Cell-ID's.

The accuracy of this type of system is dependent upon the coverage area of the cells. If the coverage

area is large the accuracy will typically be poor. As such, the accuracy of this type of positioning service is

generally superior in densely populated city environmentswhere cellular coverage is provided by a larger

number of low powered micro cells when compared to rural environments cells generally coverage larger

geographic regions.

In 2004 Trevisani and Vitaletti [TV04] conducted a study into the viability of Cell-ID positioning. In

this study they argued that Cell-ID positioning did not provide suf�cient accuracy for many location aware

applications. Later work has sought to address these issuesby extending Cell-ID positioning. For example,

Varshavsky et al. [VCdL+ 06] argue that GSM phones are “the solution for localization”. In this work
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two extensions of Cell-ID positioning are discussed: �ngerprinting and centroid. Fingerprinting with WiFi

as the source of measurement data has been discussed earlierin this section. Using GSM data involves

the same principles; the comparison of visible beacons (Cell-ID's) and their associated signal strengths

with those stored in a database (the �ngerprints and associated positions). The centroid approach also

requires a database of Cell-ID positions. The centroid usesall visible Cell-ID's (serving and neighbouring)

to determine the position of the mobile phone. Position is calculated by averaging the position of each

Cell-ID. Compared to �ngerprinting the Centroid has the advantage of requiring less effort in training and

calibration but it offers poorer performance in indoor environments. This is due to the increase in obstacles

between the mobile phone and the cell towers.

Chen et al. [CSC+ 06] present a study of GSM beacon based positioning. In addition to the �ngerprinting

and Centroid approaches this work also uses a Monte Carlo localization with Gaussian Processes signal

propagation model. Data was collected throughout Seattle.All data (training and test) was collected whilst

driving. Fingerprinting offered the greatest positional accuracy in downtown Seattle whereas the Gaussian

signal propagation model provided the best performance in residential Seattle. The authors noted that

�ngerprinting required the most exhaustive survey and the most maintenance, i.e. it degraded at a faster

rate when new cells were added when compared to the other methods. This work showed that calibrating an

area the size of Seattle requires a 60 hour drive. This work proposes that the Gaussian signal propagation

model provides the best trade-off in terms of accuracy, calibration and maintenance.

In recent years a variation on traditional GPS known as Assisted GPS (AGPS) has been increasingly

integrated into mobile phones [3GP]. Assisted GPS (AGPS) provides the accuracy of traditional GPS but

with a shorter time to �rst �x. This is possible because the base station can provide the almanac of GPS

satellites meaning the mobile phone does not need to wait to download this information. The base station

can also provide other assistance such as accurate timing information (atomic time).

The previous cellular positioning methods have required a client application to determine position. We

now discuss methods that do not require explicit client interaction.

Pettersen et al. [PEL+ 02] assessed three network based methods for determining the position of a mo-

bile phone using network based approaches. These were: the use of Cell-ID and Timing Advance (TA)
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information, an extension of Cell-ID and TA information that incorporated signal strength measurements

and a method referred to as the Forced Handover method that required the mobile phone to perform a han-

dover from one cell to another. The �rst option (Cell-ID and TA) used the GSM Timing Advance parameter

to estimate the distance that the mobile phone is from the cell tower. The estimation is in units of 500

metres. The authors noted that due to the fact that the mobilephone and the cell tower were not in clear

site the Cell-ID/TA algorithm would typically overestimate the distance from the cell tower. This method

was re�ned by incorporating signal strength information (method 2). This methods improved accuracy by

between 30%-50%. Using TA information with a single cell provides a distance from the position of the

cell tower (or the centre of the cell). The TA information does not in�uence the position instead it provides

an indication of the accuracy of the position, e.g. positionX,Y accurate to 1000 metres. If however the

network has knowledge of TA information from more than one cell then a re�ned, more accurate position

can be determined. This is achieved using a weighted averagebetween the available TA information for

each cell. Compared to the other methods this provided an accuracy that had been improved in the region

of 40-55%.

Alternative network based approaches apply generic positioning techniques including Time Difference

of Arrival (TDOA) and Angle of Arrival (AOA) [DMS98]. In TDOAsystems the mobile phone listens

to signals sent from multiple base stations. Using knowledge of transmission time, arrival time and the

positions of the base stations it is possible to infer the position of the mobile phone. Due to the requirement

of synchronised transmission of base station signals this approach is not suitable for providing continuous

positioning for a high number of users. In AOA systems the angle of arrival for a signal received from a mo-

bile phone by a base station is used to determine the path thatthe phone is currently located on. Repeating

this process with another base station enables position to be determined by calculating the intersection of

the two lines. These methods are popular methods for determining the position of a mobile phone because

they do not require explicit user interaction.
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Summary

As illustrated in this chapter, developers of context-aware applications have a wide array of sources of

positional information available to them. There is howeverno single `perfect' positioning technology that

will meet the requirements of all context-aware applications. Hence developers must typically fuse data

from multiple positioning systems.

Positioning infrastructures are designed to solve particular problems. Therefore before designing a po-

sitioning infrastructure developers must consider a number of key issues that will ultimately decide the

behaviour of their system. The biggest of these is the structural design decision of whether to use a cen-

tralised or decentralised architecture. This decision hasa huge bearing on the design of the positioning

infrastructure. For example, positioning infrastructures that track objects typically exhibit a centralised ar-

chitecture [WJH97, BP00, CGL93]. Tracking systems can enable `thin clients', i.e. the less work a client

needs to do the smaller the hardware and software they have tocarry. But it is much harder to maintain

user privacy with a centralised architecture as user positioning data is routed through a single point. The

Cricket system [PCB00] was developed with user privacy in mind hence the architecture is decentralised.

In summary, systems that seek to maintain user privacy need more powerful clients.

The process of selecting sources of positional informationshould be carried out by the developer de-

pending upon requirements of the context-aware application. When deciding whether to use a tracking

system or a pure location system, a developer needs to consider whether the clients of their application will

be active or passive. For example, if a context-aware application is to play an audio commentary through

speakers located behind a painting when a user gets close, then tracking is appropriate and the client should

be passive. However if the commentary is to be played throughheadphones the user is carrying then the

client should be active.

A decentralised architecture typically offers more options in terms of scalability than a centralised one.

For example, increasing the number of users on a centralisedarchitecture creates a potential bottleneck.

Another scalability issue is signal collision. This is a particular problem for systems used by multiple

concurrent users. There have been a number of approaches to addressing this, invert the system, i.e. don't

track the users - broadcast to them all [Get93], periodic broadcasts [HH94] randomisation [PCB00].
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In terms of of�ine setup, the biggest issue lies with the installation of the transmitters/receivers in the ap-

plication environment. This becomes a problem if known locations are required and is further complicated

if a receiver pattern must be observed such as in the Bat system [HH94, WJH97].

Positioning infrastructures such as the Cricket system separate the process of determining object loca-

tion, and mapping this information to a hot-spot within the application environment. This can be imple-

mented in one of two ways, either the client has a local copy ofthe hot-spots or the client uses an external

mapping service. The advantage of having the information available locally is that there is no need for

additional hardware to enable communication, i.e. a wireless network card. But this requires greater client

processing power and comes at the expense of a static list of hot-spots that cannot be updated at runtime.

Systems such as RADAR [BP00] that use WaveLAN as part of the positioning infrastructure bene�t from

already having a network connection in place that can be usedfor both communication and to dynamically

collect additional data to maintain the positioning infrastructure.

Developers must consider limitations of the technology to use and the accuracy of position required.

For example, Infrared systems have the advantage (and disadvantage) that the Infrared beams will not pass

through walls and hence are limited to the room in which they are installed. Ultrasonic systems suffer

from loss of signal due to obstruction, false signals due to re�ection, and interference from high frequency

sounds such as keys jangling and rustling paper. The use of WiFi based location �ngerprinting provides the

bene�t of a network connection but suffers from a relativelycoarse accuracy.

When an application user leaves the range of positioning infrastructures autonomous systems such as

dead-reckoning must be used instead. These techniques can provide satisfactory results for maintaining

personal position over short distances. But over longer periods of time, the quality of the data produced will

start to deteriorate and subsequently the user's personal position will drift away from their actual location.

We use GSM data throughout this thesis to infer aspects of context. In Chapter 4 we use GSM to provide

measurement data to a qualitative location service. In Chapter 5 we use the list of neighbouring cells and

handovers to recognise everyday activities such as walkingand driving. In Chapter 6 we fuse location and

activity data (both inferred using GSM data) to increase performance to recognise context.
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2.1.2 Activity Recognition

Activity recognition is a term used to describe the process of recognising the current activity of a person

using data obtained from sensors. This knowledge enables devices and applications to behave in a manner

re�ective of a persons current activity. Satellite navigation systems for use in motor cars have been designed

with consideration of activity; the user will be driving. Itwould be unsafe for the driver to study the map

presented on the navigation system screen while driving. Toassist, a navigation system typically provides

verbal instructions. This user of this product only performs a single activity (driving), this means there is

no need to adapt the behaviour for other activities. Therefore the product is designed without the ability to

sense the current activity. In contrast, devices such as mobile phones are used whilst the carrier undertakes

a variety of different activities. People regularly uses phones when sitting still, jogging, walking, travelling

in cars, trains and buses. By designing a mobile phone to behave in a manner re�ective of these activities

the device can better assist the person. For example, when jogging the virtual buttons on a touch screen

could be made bigger or require a longer press [Lou08]. Another example is the activation of voice based

control (voice recognition) when the carrier is driving.

In order to realise these bene�ts the devices and applications need to be able to sense the current activity

of the user. As such, much work focusing on sensing activity in an unobtrusive manner has been carried

out [BI04, TIL04, PLFK03, LFK05]. In this section we review different techniques.

One approach to recognising activities involves the use of velocity data such as that obtained from a

GPS receiver. This method maps velocity to activities for example, a high velocity - upwards of 25 miles

per hour is likely to indicate that the carrier of the GPS receiver is travelling in a motor car. A low velocity

such as between two and four miles an hour is likely to indicate that the carrier of the GPS receiver is

walking. Patterson et al. [PLFK03] used a GPS receiver to distinguish between different modes of transport

such as walking, driving or taking a bus. Data was collected over a three month period and daily patterns

of behaviour were learnt using a graph-based Bayes �lter. The mode of transportation was then estimated

using a particle �lter. This work supports a high level prediction to be made regarding the purpose of a

user's journey. However, work from LaMarca et al. [LCC+ 05] showed that GPS positioning was typically

only available for 5% of a person's day.
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A second method for inferring the current state of the carrier of a mobile device uses accelerometer

signal data. Movement (stationary or moving) can be inferred by analysing signal data collected from

accelerometers. The SenSay project [SSF+ 03] used three accelerometers to capture the motion of the user.

The accelerometers were �tted inside a sensor box that was taped to the user's abdomen. This was used

to distinguish between states of low activity such as sitting, medium activity such as walking and high

activity such as running. The MIThril project [The06] also used an accelerometer to distinguish between

similar activities including cycling. Lukowicz et al. [LWTS06] combined the use of accelerometers with

microphones worn on the body. This allowed them to distinguish between an increased range of activities.

This was demonstrated in a carpenters workshop by tracking the progress of an assembly task. Lester et

al. [LCK+ 05] combined multiple, disparate sensors in order to provide �ne-grained activity recognition

capable of sensing eight different activities including: sitting, standing, jogging, walking, walking up stairs,

driving, cycling, and travelling in a lift.

Position and activity recognition are often implemented using machine learning, which is explained in

the following section. In Chapter 5 we present an alternative approach to activity recognition that uses ma-

chine learning and data available on standard GSM mobile phones. This technique can recognise everyday

activities such as walking, driving in a car and remaining stationary.

2.2 Machine Learning

The term “Machine Learning” is used to describe the process of a computer program learning how to com-

plete a task. Mitchell, in his seminal book on machine learning [Mit97], presents the following de�nition

of machine learning.

“A computer program is said tolearn from experienceE with respect to some class of tasksT

and performance measureP, if its performance at tasks int, as measured byP, improves with

experienceE.” Machine Learning by Tom Mitchell, page 2 [Mit97].

In this de�nition, Mitchell describes a computer program that consists of the following functional com-

ponents: a feedback loop, a method of assessing performance, and a method for re�ning behaviour to
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increase performance. The process of adapting behaviour distinguishes computer programs that learn from

other computer programs that use feedback loops.

In machine learning there are two different approaches to learning,supervised learningandunsuper-

vised learning. The termsupervised learningrefers to training a machine learning process by providing

inputs with the desired associated outputs. This is typically implemented in a recursive manner with the ma-

chine learning process re�ning its behaviour after each iteration. This is achieved by comparing the outputs

from the machine learning process with the supplied target outputs. The difference between the target and

actual outputs is the error. In contrast,unsupervised learningrefers to training a machine learning process

by supplying only program inputs. The inputs are not supplied with associated target outputs.

In the remainder of this section we introduce core machine learning concepts and algorithms that are

applied later in this thesis.

2.2.1 Bayesian Networks

Bayesian networks [Hec99] are directed acyclic graphs, where nodes represent random variables and edges,

also known as arcs, represent the causal relationships between nodes. Each node consists of a set of mutu-

ally exclusive states. At each node a probability distribution is de�ned. Nodes without parents are assigned

unconditional probability distributions and those with parents are assigned conditional probability distri-

butions, that is:P(A i jB1; :::; Bn ) whereB1; :::; Bn represents the parents ofA. The joint probability

distribution is calculated using the chain rule:

P(X 1; X 2; :::; X n ) =
nY

i =1

P(X i jP ai ) (2.1)

whereP ai represents the parents ofX i . By applying evidence at certain variables that isP(A i je)

wheree is evidence, we are able to use the chain rule to determine theprobability of an event occurring

given limited or partial information.

We will illustrate the power of a Bayesian network using a simple example for fusing positional data. In

this situation we seek to determine our current position using data from a GPS receiver and a self-declared

positional estimate made using a map of the environment. In Figure 2.1 we present a Bayesian network for
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Current
Position

GPS
Reported

Self
Reported

Figure 2.1: Bayesian network for fusing GPS and self-reported positional data.

fusing this data. In this network there is one root node called `Current Position' and two child nodes called

`Self Reported' and `GPS Reported'. The current position will in�uence both the self reportedposition and

the GPS position. We will demonstrate how, by applying evidence obtained from the self reported and GPS

position, we can make stronger estimates of the current position.

At each node in a Bayesian network a probability distribution must be de�ned. For nodes with no

parents this distribution is unconditional and for those with parents the distribution is conditioned upon

the parent nodes. Probability distributions are populatedeither by a domain expert or by learning from

historical data. In Figure 2.2 we present the probability distributions for the example Bayesian network.

For the purpose of simplicity we have restricted the number of possible positions to two and we denote

these asCP A andCP B. We now demonstrate how to add evidence to the Bayesian network to determine

the following probability:

P(CP = AjG = B; S = A)

where the Current Position (CP) is positionA and the current GPS reported position (G) is position

B and the current Self Reported position (S) is positionA. We start by looking at the probability of being
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POSITION True False
CPA 0.8 0.2
CPB 0.2 0.8

(a)
SELF SA=T, SB=F SB=T, SA=F

CPA=T, CPB=F 0.7 0.3
CPB=T, CPA=F 0.3 0.7

GPS GA=T, GB=F GB=T, GA=F
CPA=T, CPB=F 0.6 0.4
CPB=T, CPA=F 0.4 0.6

(b) (c)

Figure 2.2: The conditional probability tables for (a) `Current Position', (b) `Self Reported' and (c) G̀PS
Reported'. The attributes of these nodes are shown in column one.

in a particular zone given evidence about the position reported by the GPS receiver and the self declared

position. Using Bayes rule we can write this as:

P(CPjG; S) =
P(CP; G; S)

P(G; S)

whereP(CPjG; S) means the probability of the Current Position (CP) given theGPS reported position

(G) and the Self reported position (S). The states of Current-Position are mutually exclusive, it is not

possible to be in two zones at the same time, hence we are able to transform the denominator to give:

P(CPjG; S) =
P(CP; G; S)

P
CP 0 P(G; S; CP0)

By using the product rule we can now expand both numerator anddenominator to give.

P(CPjG; S) =
P(GjS; CP) � P(SjCP) � P(CP)

P
CP 0 P(GjS; CP0) � P(SjCP0) � P(CP0)

At this point we have an equation that is not representative of the conditional independencies in our

Bayesian network. We therefore need to update statements such asP(GjS; CP) with the relationships
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shown in Figure 2.1. This gives:

P(CPjG; S) =
P(GjCP) � P(SjCP) � P(CP)

P
CP 0 P(GjCP0) � P(SjCP0) � P(CP0)

If appropriate we would now simplify removing any common factors. In this situation there is no need

so instead we continue to determine the value ofP(CP = AjG = B; S = A) by substituting known

evidence.

P(CPjG; S) =
P(G = B jCP = A) � P(S = AjCP = A) � P(CP = A)

P
CP = A 02 (yes;no ) P(G = B jCP = A0) � P(S = AjCP = A0) � P(CP = A0)

We can now solve this by substituting the values from the conditional probability tables.

P(CP = AjG = B; S = A) =
0:4 � 0:7 � 0:8

(0:4 � 0:7 � 0:8) + (0 :6 � 0:3 � 0:2)

=
0:224

(0:224) + (0:036)

=
0:224
0:26

= 0 :86(2d:p:)

(2.2)

This results in a probability of0:86 that the user is currently positioned in Zone A given evidence of a

GPS reported position of Zone B and a self reported position of Zone A. This is an increase over the prior

probability of being in Zone A which was0:8. This therefore enables a stronger estimate of a users position

to made. In Chapter 4 we present a Bayesian network for fusingheterogeneous positional data.
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2.2.2 Markov Chain

TheMarkov propertyis a term used to describe a stochastic process where future states are conditionally

dependent only on the current state and not dependent upon any prior states. That is:

P(X n +1 = xjX 0; X 1; X 2; :::; X n ) = P(X n +1 = xjX n ) (2.3)

whereX i is a state,X n is the current state andX n +1 is the future state. An example of this type of

behaviour is a UK traf�c control signal. The next light to be displayed is conditionally dependent upon the

current light or lights being displayed. It is not dependentupon any states prior to the current state.

The termMarkov comes from the name of the Russian mathematician Andrey Andreyevich Markov.

Famous for his work in the �eld of stochastic processes, Andrey Markov helped create the Markov chain

research �eld and as such was accredited by the adoption of his name. As such, the termMarkovianis also

used to describe the Markov property.

A Markov chain is a sequence of system states. The sequence istime-ordered with the �rst position

in the sequence representing the �rst state of the system with subsequent positions indicating how the

state of the system changed over time. Changes from one stateto another are referred to astransitions.

The sequence of transitions behaves according to the Markovproperty, the next state of the system is

conditionally dependent upon the current state. That is:

P(X n +1 jX n ) (2.4)

whereX n is the current state andX n +1 is the future state. This is referred to as asingle-steptransition.

Markov chains can be extended to build knowledge of more prior states by extending the number of steps

to be taken into consideration during a transition. Put formally, that is:

P(X n +1 jX n ; ::; X n � k ) (2.5)

whereX n is the current state,X n +1 is the future state andk is the step count (the number of prior states

to use when calculating the conditional probability distribution). This method of applying the knowledge
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of multiple prior states has successfully been applied to linguistic processing tasks where multiple prior

word states are required to infer the context of a sentence aswell as other sequential data problems [Ben96,

Rab90].

In Chapter 4 we apply this technique to build a zone-based transition matrix modelling the probabil-

ities of moving from one area of a spatial environment to another. We show how this enables stronger

predications of a user position to be made.

2.2.3 Hidden Markov Model

One of the key characteristics of a Markov Chain is that the state is directly observable. In some situations

however, direct observation of the state may not be possible. For example, we may want to know whether a

person has stepped through a door way linking two rooms. Assuming that we do not have access to visual

data and instead only have access to coarse 802.11 �ngerprinting data then we cannot directly observe the

event of transitioning from one room to the other. We can however make observations of the 802.11 data.

This data will be in�uenced depending on which room the person is currently located in. We can therefore

use the behaviour of this data to infer whether a user has moved through the doorway. In this section we

discuss a machine learning technique referred to as a HiddenMarkov Model that models this behaviour.

A Hidden Markov Model (HMM), is a Markov Chain with a state that is not directly observable. Like a

Markov Chain, a HMM is used to infer the most likely next stategiven a prior state. In situations where we

cannot directly observe the state of the system we use observations of other events that typically occur in

speci�c states to infer the current state of the system. For example, we could use observations of whether a

lawn was wet to infer the current state of the weather. We are far more likely to observe a wet lawn when

the current state is raining as opposed to when it is sunny.

A Hidden Markov Model therefore takes a sequence of observations and determines the most likely

corresponding state sequence. The process uses three sets of probabilities. The �rst is the probability of

starting in a particular state, the second is the probability of transitioning from one state to another and the

third is the probability of an observation occurring whilstthe system is in a particular state. As such, a

Hidden Markov Model is de�ned as follows:
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� = ( A; B; � ) (2.6)

A is the transition matrix representing the probabilities ofmoving from one state to another.B is the

observation matrix representing the probability of being in a state given an observation and� is the initial

probability distribution.S represents the set of states of the HMM (thestate alphabet):

S = ( s1; s2; :::; sn ) (2.7)

V is the set of discrete observations. It comprisesn elements(v1; v2; :::; vn ). The observations are not of

the state of the system but instead are observations of events whose occurrence is likely to be in�uenced by

the current unobservable state of the system.

During operation of the HMM we will have a sequence of observations which will lead to a sequence

of states. There aret observationsO, andt matching inferred statesQ:

O = ( o1; o2; :::; ot ) (2.8)

Q = ( q1; q2; :::; qt ) (2.9)

The strength of a Hidden Markov Model is that it uses knowledge of previous states in order to predict

the most probable current state. This is represented in the transition matrixA. Hence if we remember �ve

prior states, the probability ofqt depends on states(qt � 5; qt � 4; :::; qt � 1):

P(qt jqt � 1
1 ) = P(qt jq1; q2; :::; q5) (2.10)

The matrixA captures these probabilities: It contains the probabilityof transitioning to statej given

the previous �ve states of activity in a sequence,q1; q2; :::; q5, that is:

aij = P(qt = sj jqt � 5; qt � 4; :::; qt � 1) (2.11)
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whereqt is the future state in a sequence. The observation matrixB contains the probabilities of an

observationk being produced whilst currently in statej :

bjk = ( vk jsj ) (2.12)

Therefore given a sequence of observations we seek to infer the most likely state sequence. To do

this we �rst need to determine the probability of a sequence of observations occurring. This is solved by

applying the Forward algorithm [Rab90].

The Forward algorithm is essentially an ef�cient method of searching all possible state sequences that

could have occurred. Givenk states and an observation sequence containingn observations, there arekn

possible state combinations. Calculating the probabilityof each of these state sequences occurring given

the observation sequence is computationally expensive. The Forward algorithm uses recursive methods

in calculations to avoid the need to calculate the probabilities for all possible sequences thus reducing the

computational overhead.

The probability of an observation sequence occurring is represented by the forward variable� t (i ). The

Forward algorithm is de�ned as:

� t (i ) = P(o1; o2; :::; ot ; qt = si j� ) (2.13)

with � t (i ) representing the probability of being in statesi at timet using the following:

� 1(i ) = � i bi (o1); 1 � i � N (2.14)

The above step calculates� for all states att = 1 . Then for all other time steps,t = 2 ; :::; T , � is

calculated using:

� t +1 (j ) = [
NX

i =1

� t (i )aij ]bj (ot +1 ); 1 � i � N (2.15)

The partial probabilities are then summed to give the probability of an observation given the HMM.
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P(Oj� ) =
NX

i =1

� T (j ) (2.16)

Similarly the reverse of this is the backward variable� t (i ), de�ned as

� t (i ) = P(ot +1 ; ot +2 ; :::; ot ; qt = si j� ) (2.17)

This can be solved by initially setting� t (i ) arbitrarily to1 and then using:

� t (i ) =
NX

j =1

aij bj (ot + 1) � t + 1( j ); 1 � i � N (2.18)

In Chapter 5 we use a Hidden Markov Model to improve the performance of a novel approach to activity

recognition use patterns of GSM signal strength �uctuation.

2.2.4 Clustering

The termclusteringrefers to the process of partitioning a set of data-points into groups of similar mea-

surements. We determine whether two data-points aresimilar by calculating the distance between them.

We de�ne the distance between two data points in a multidimensional space the Euclidean distance. The

Euclidean distance between pointsA = ( a1; a2; :::; an ) andB = ( b1; b2; :::; bn ) is de�ned as:

p
(a1 � b1)2 + ( a2 � b2)2 + ::: + ( an � bn )2 (2.19)

Other distance metrics include Manhatten (Taxi-Cab) and Mahalanobis [Mah36]. In this section we

present two well known clustering techniques and discuss their relevance to this thesis.

Hierarchical Agglomerative Clustering

Hierarchical Clustering creates a hierarchy (tree structure) of clusters [Joh67]. The process of hierarchical

clustering is as follows.

1. Given a set of data-points the �rst step is to assign each data-point a cluster.
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2. Find the closest two clusters and merge them into a single cluster.

3. Calculate the distances between all other clusters.

4. Repeat steps 2-3 until the desired number of clusters has been reached.

One advantage of hierarchical clustering is the ability to increase or decrease the number of clusters

relatively easily. This is possible because the clusters are stored in a tree structure hence it is easy to merge

two clusters. The number of clusters can also be determined using a distance metric. For example, clusters

can be merged until all remaining clusters are a certain distance apart.

K-means

K-means is perhaps the most well known method for clustering. K-means is used to producek clus-

ters where each cluster contains at least one data-point. Membership is determined by �nding the closest

matching cluster. The process of K-means clustering is as follows.

1. Initialise k clusters usingk data-points selected at random from the total set of data points to be

clustered.

2. For the next data-point �nd the closest matching cluster and add it to that cluster.

3. Re-evaluate the cluster centroids.

4. Check for changes in cluster membership.

5. Repeat steps 3-4 until there are no changes in membership.

6. Repeat steps 2-5 until all data points have been clustered.

The objective function to partitionN data points intoK clustersSj :

J =
KX

j =1

nX

n 2 Sj

jxn � � j j2 (2.20)
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wherexn is a vector and� j is the centroid of the data points inSj andjxn � � j j2 represents the distance

between the sample and the cluster centre is used to partition the training data. K-means can be initialized

with vectors selected at random from the training data. The Euclidean distance for each subsequent sample

xn to the centre of each centroid� j is then calculated. This samplexn is then added to the centroid that

it is closest too. The centroids are then recalculated and the membership of each of the pointsSj for each

centroid� j is then re-evaluated until there are no further changes in membership.

In Chapter 4 we use clustering to group together wireless beacon signal strength measurements. We do

this to identify areas of space that, in terms of signal strength, are distinguishable from each other.
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Chapter 3

Characterising Wireless Data

In our daily lives we are increasingly surrounded by a wealthof information that can be used to infer aspects

of context. We can use the sighting of a particular wireless beacon or combination of wireless beacons to

infer information about our current location. For example,if the MAC address of the WiFi access point in

your of�ce appears in an 802.11 (WiFi) scan, then you can infer that you are near your of�ce. A dynamic

example is that if the current serving cell that a mobile phone is connected to frequently changes then we

could infer that the carrier of the mobile phone is likely to be moving.

In order to make these inferences, it is essential that the inference process model the behaviour of the

wireless data. In this chapter we investigate the behaviourof wireless data (GSM, UMTS, 802.11) from the

perspective of providing contextual information. We assess behaviour in different environments including

busy metropolitan environments as well as sparsely populated rural areas. We focus on behaviours that

enable contextual inferences such as the stability of the signal strength; is the same level encountered at

the same position? The variance of the signal strength; how far does a mobile device need to be moved to

generate a distinguishable difference in signal strength?The behaviour of the wireless beacons; are the same

beacons visible at the same location? Does the previous pathtaken through the environment in�uence which

beacons are visible at a speci�c point? The behaviour of signal power data whilst undertaking activities;

does the signal power �uctuate whilst walking as opposed to remaining stationary? As an example, in
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a location �ngerprinting service [BP00], position is determined by matching the current received signal

power levels from all visible beacons against those stored in the radio map. The radio map is created in an

of�ine process that involves recording a snapshot of signalpower levels for all beacons that can be detected

from a �xed point in the application environment. This is repeated throughout the application environment.

The positions and associated signal strength levels (�ngerprints) form a radio map of the environment. At

runtime, users match the current received signal power levels from all visible beacons against those in the

radio map. The position associated with the closest matching �ngerprint is returned at the current user

position.

In this type of system the reliability and accuracy of the system are directly linked to the behaviour

of the base station signal power levels. If there is only a minimal amount of variation in the received

signal power level for a speci�c beacon across the coverage area of the location service, then using the

beacon alone will provide poor position granularity and it will be hard to distinguish between two different

positions. If at the same position the received signal powerlevel �uctuated erratically then the process of

matching a current snapshot of received signal power measurements to the reference database may result in

inconsistent performance with incorrect positional information being displayed to the user.

The rest of this chapter is structured as follows. Section 3.1 presents an investigation into the be-

haviour of GSM data. This includes beacon visibility and handover behaviour in addition to assessing

signal strength reliability and variance. Empirical data is presented from a series of experiments spanning

multiple heterogeneous environments. Section 3.2 takes a similar format to Section 3.1 but with WiFi be-

ing the wireless technology that is being investigated. In Chapter 4 we will use these characterisations to

demonstrate how to create qualitative location services. This qualitative approach both shields the end user

from inconsistencies created by the behaviour of wireless data and enables a more relevant location to be

supplied to the user, for example, a spatial zone that represents the coverage area of a shop.

3.1 GSM

In 1999 Bahl et al. [BP00] �rst demonstrated that it was possible to determine the position of an object

by comparing current RF WiFi signal strength levels with those stored in a radio map of the application
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environment. One can use GSM instead of WiFi as the underlying measurement service. This has the

advantage that GSM as a technology is more ubiquitous than 802.11 both in terms of coverage and user

accessibility; everyone has a cell phone. Although there has been some excellent work from Varshavsky et

al. [OVMdL05], the practicalities of tracking mobile objects in outdoor environments has yet to be fully

investigated.

In this section we report on an investigation into the use of GSM signal strength levels as a method of

determining position. In particular we focus on positioning mobile devices in scenarios typically considered

as h̀arsh' such as open, outdoor environments where signal strength variation is minimal. From a location

�ngerprinting perspective, the perfect environment is onewhere the source of signal strength information

will vary widely at different locations but be constant at the same physical locations. Hence areas where

there is only a minimal �uctuation in signal strength, such as open outdoor environments, offer relatively

poor positional granularity. We analyse the performance ofGSM-based �ngerprinting systems in urban

environments with a high number of base transceiver stations and cells. We assess the effects of tracking

signal strength levels for only seven cells in such environments, as many phones track only a limited number

of base stations simultaneously.

3.1.1 Method

We have been given access to a Cell-ID data set created and owned by Overlay Media [Ove]. The Overlay

Media data set is split into two parts. The �rst is the raw measurement data and the second is the calculated

cell centre positions and cell area coverage. The raw measurement data has been used to calculate the cell

centre positions and coverage areas. The raw measurement data consists of over 200 million samples. Each

sample contains a full Cell-ID, a signal power measurement and an associated GPS position (where the

measurement was taken). The cell centre data contains the cell centre positions for all Cell-ID's for all UK

operators. In total there are over 285,000 unique cells. Thedata has been collected in 2008 and 2009 using

equipment deployed in motor cars with drivers driving all motorways, A roads, B roads and the majority of

all smaller roads throughout the UK.

Even though the Overlay Media data set is huge, we need other smaller data sets that have been collected
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multiple times in controlled conditions. For this purpose we have collected trace data from two metropolitan

environments. The approach to surveying these environments was carried out in two different ways. The

�rst was a systematic approach where volunteers were asked to walk along explicit paths. The second

approach was the more traditional, static method of gathering data for location �ngerprinting. Volunteers

stood at given locations whilst sample measurements were collected. The volunteers were equipped with

Orange SPV C500 cell phones capable of monitoring the signalstrength levels for up to seven cells. GPS

receivers were used to collect a ground truth for the samples. Samples were collected once per second. Data

was collected over a two month period in 2005. In total over 600,000 signal strength measurements were

taken and 77 unique Cell-ID's were identi�ed across the two environments.

We use these three data sets to characterise GSM data. We use the following terminology to refer to

each data set.

� Metro-closed- A 375 metre section of a busy shopping street with a large number of tall buildings.

This data set was collected 10 times over a three week period by two volunteers. This data set contains

8457 measurements. In total 24 unique cells were monitored during this creation of this data set.

� Metro-open- A densely populated residential area but more open area with no tall buildings and few

people on the street covering approximately 2.25 km2. This data set was collected 20 times over a

one month period by four volunteers. This data set contains 20,891 measurements. In total 54 unique

cells were monitored during this creation of this data set.

� OM-UK - The Overlay Media data set representing complete UK coverage. There is only limited

repetition in this data set (mainly motorways) there is no opportunity for repeated experiments. This

data set contains over 200 million measurements including 300,000 unique cells.

3.1.2 Density

The positional granularity of a beacon based location service such as a Cell-ID location service is limited

by the density of Cell-ID beacons. Equally a location �ngerprinting service will provide poor performance

if there are only a limited number of visible beacons. In thissection we use the OM-UK data set to assess
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Figure 3.1: Cell density map for the network operator O2 in Northern Ireland.

the density of cellular beacons (cells) in different environments such as rural and metropolitan.

As an example we look at Northern Ireland. In 2007 the population of Northern Ireland stood at

1,759,100 [Nor09]. The land mass of Northern Ireland is 13,843 km2 giving a population density of 122

people per km2. The OM-UK data set contained cell positions throughout thewhole of Northern Ireland,

with which we can assess the number of cells per km2 or per person. This density is however slightly

misleading because each cellular network operator requires coverage throughout the environment. Looking

at the O2 cellular network shows that there are 3023 unique cells in the Overlay Media data set giving a cell

density of one cell per 4.58 km2 or one cell per 600 people. Figure 3.1 illustrates this density.

Figure 3.2 presents an overview of the cell density for a 19 by10 km area surrounding Belfast in

Northern Ireland. The markers illustrate the centres of thecells from the perspective of cell coverage,not

cell tower location. The network operator that a cell belongs to is illustrated by the colour of the marker.

The density of cells mirrors population density. For example, in a 1km2 region in the centre of Belfast we

identi�ed 72 unique cells whereas in a 1km2 region in the outskirts we counted only 21 cells. In rural parts
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Figure 3.2: Cell density map for Belfast, Northern Ireland.

of Northern Ireland there were areas where there was no cell coverage.

The deployment of Base Transceiver Stations (BTS) or as theyare more commonly knowncell towers, is

largely based on economics. Providing complete coverage throughout a country is expensive and deploying

a BTS in a sparsely populated area provides minimal �nancialreturn. As such, macro cells are often created

in rural environments with the coverage area of the cell spanning up to 35km. This is in contrast with cells

deployed in city centres such as Belfast where cell coverageis in places, as low as three hundred metres.

This analysis shows that any contextual inferences that areto be made using cellular data will need to

be acutely aware of the type of environment that they are to bedeployed in, rural, urban or metropolitan.

However, if the intended use is in areas that people frequent(populated areas) then coverage is ubiquitous.

3.1.3 Signal strength stability

The perfect environment for deploying a location �ngerprinting system is one where signal strength levels

are constant for a given physical position but vary suf�ciently from those measured at other positions. In

this section we assess the stability of GSM signal strength levels in both static and mobile tests in the two

test environments.

For this purpose we compared signal strength levels recorded over the 375 metre path in themetro-

closeddata-set. Figure 3.3a shows the signal strength levels for asingle cell that was monitored during 10
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Figure 3.3: Signal strength stability of one particular cell

pedestrian journeys in the same direction over the 375 metrepath (shopping street), collected at different

times of day, and different days of the week. The signal strength level is shown against the position along

the path. In perfect conditions we would expect to see the same signal strength level at the same position.

If this were true the graph in Figure 3.3a would contain only one visible line representing all 10 journeys.

This is not the case. In each traversal the changes in signal level along the path are consistent with the other

9 traversals, but at certain positions along the path the variance is considerable. This temporal variance

is shown in Figure 3.3b. In this section we use the termtemporal varianceto refer to the difference in

signal strength levels that were recorded at the same position across the 10 journeys. Towards the end of the

path, the variance becomes more apparent. We suspect that the presence of large groups of people moving

between the shops affected the measurements.

We repeated a similar test for themetro-openenvironment and again found that the levels of signal

strength changed consistently against position. That is, similar signal strength levels were encountered at

the same positions in the environment.

3.1.4 Spatial Signal strength variance

In order to distinguish between positions in a spatial environment the source of positional measurements

such as signal strength levels must vary suf�ciently in order to classify them as having been recorded at

different positions. In this section we look at the spatial variation in GSM signal strength levels.
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Table 3.1: Signal strength variance over 25-metre intervals

Environment Min Max Mean
Metro-open: Moving 1dBm 28dBm 8dBm
Metro-open: Stationary 2dBm 12dBm 4dBm
Metro-closed: Moving 1dBm 20dBm 6dBm
Metro-closed: Stationary 1dBm 10dBm 3dBm

To assess signal strength variation we compared samples recorded at 25-metre intervals for themetro-

openandmetro-closedtest environments. We used samples from data-sets gatheredwhilst moving and

stationary. Table 3.1 shows the minimum, maximum and mean signal strength variations for each envi-

ronment. These values represent the mean values for all visible cells in that area, i.e. the minimum value

represents the mean of all the minimum signal strength levelvariations for all visible cells.

We found that signal strength variation between different physical positions was most apparent in the

metro-openenvironment. In both themetro-openandmetro-closedenvironments we found signal strength

levels recorded at the same physical position to vary depending on whether they had been recorded whilst

stationary or moving at walking speed. We found that whilst moving at walking speed, signal strength

change between 25-metre intervals was greater than the variation between those recorded whilst static.

This is important because from the perspective of deployinga location service that uses signal power mea-

surements to determine position, consideration must be given to the likely activities of the users of the

system. If the users are likely to be walking as opposed to remaining stationary for extended periods of

time, then the �uctuation in signal power levels should be taken into account.

In these environments the amount of change in signal strength levels varied from cell to cell. For

example, at stationary points in themetro-closedenvironment, one cell consistently varied 20 dBm per 100

metres. This type of variation is an excellent source of positional information as it is easy to distinguish

between positions. However in the same environment, another cell varied as little as 6 dBm per 100 metres.

This is primarily due to the location of the base transceiverstations. The cell that varied as little as 6

dBm per 100 metres was hosted on a base transceiver station that was approximately 1.3 km from the

application environment. Whereas the cell that varied 20 dBmper 100 metres was less than 400 metres
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Figure 3.4: Signal power �uctuation when moving and stationary

from the application environment. We expect that these �gures are unique to these particular cells in these

environments. Travelling further away from the base transceiver station is unlikely to result in a maintained

consistent change is signal strength levels.

3.1.5 Motion Effects: Signal Strength

In the previous section we noted that signal power measurements recorded from the same cell at the same

position varied a greater amount when the carrier of the mobile phone was walking as opposed to remaining

stationary. In this section we investigate this behaviour further with the aim of establishing if there are any

distinguishable patterns or behaviours that can be used to reliably recognise movement.

To assess this behaviour we collected trace data when moving(travelling in a motor car) and remaining

stationary. The data consisted of the current serving cell,neighbouring cells and their associated signal

power levels. Data samples were collected at a rate of once per second.

We expected that the faster the rate of travel the greater theamount of �uctuation in the received signal

power levels. We expected this would be due to the fact that more obstacles between the mobile phone

and the Base Transceiver Station would both appear and disappear, e.g. as the carrier of the mobile de-

vices moves past a building. In order to test this, we �rst need to calculate the signal power �uctuation.

Algorithm 1 shows how we do this.
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Set a short time interval (SAMPLEPERIOD) (for example 1 second).

Set a longer time interval de�ning the time window size, i.e.the number of samples to assess together

(WINDOW PERIOD) (for example 15 seconds).

Every SAMPLEPERIOD, perform the following steps:

Record the signal strength levels for all of the cells that are currently being monitored (neighbouring

and serving);

for each cell do

if the new signal strength level is greater than the previous maximumthen

Set the maximum signal strength level to the new signal strength level;
end

if the new signal strength level is less than the previous minimumthen

Set the minimum signal strength level to the new signal strength level.
end

if a cell only appears on the list of candidates only oncethen

the signal strength �uctuation for that cell will be zero.
end

end

Every WINDOW PERIOD, perform the following steps:

for each celldo

calculate the amount of signal strength �uctuation by subtracting the minimum signal strength

level that was observed during the WINDOWPERIOD from the maximum signal strength level

that was observed during the same WINDOWPERIOD.

Sum these individual levels of signal strength �uctuation to produce a single number

representing the overall level of signal strength �uctuation for the given WINDOWPERIOD.
end

Algorithm 1 : The calculation of signal power �uctuation

Figure 3.4 plots the output of Algorithm 1 using data collected whilst moving and stationary. The

moving data was collected whilst driving and walking. The data consists of approximately three hours of

stationary data and three hours of motion data. Both the stationary and motion data were collected in urban
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environments. The number of concurrently visible cells (serving and neighbouring) was typically seven in

both environments.

The level of signal power �uctuation is typically greater when the mobile phone is moving when com-

pared to levels experienced when the mobile phone is stationary. Given this behaviour the level of signal

power �uctuation can be used to provide an indication as to whether the mobile phone is likely to be moving.

3.1.6 Motion Effects: Monitored Cells

In order to provide support for roaming, a mobile communication device, such as a GSM cell phone, mon-

itors the cell currently serving it and a number of neighbouring cells, and maintains a list of the monitored

cells. When the mobile communication device is stationary this list typically varies only minimally, in

that only a limited number of individual cells appear on the list during a given time period. The minimal

variation is not only due to the network operator but also to external factors. For example, events that may

temporarily block weak signals such as lorries driving pastmay cause changes to the list.

However, when the mobile communication device is moving, the list of monitored cells changes, par-

ticularly in metropolitan environments with a large numberof cells, such that a larger number of individual

cells (perhaps ten or more, for example) appear on the list during a given time period. When a large geo-

graphic area is covered, the number of cells monitored increases. The precise number of cells monitored

depends on both the type of environment and the speed of the carrier of the mobile communication device.

For example, in metropolitan environments there are typically a high number of micro cells, whereas rural

environments with lower populations typically require only a few macro-cells. In a given environment, a

speci�c increase in the number of cells is observed as the speed of the carrier of the mobile device increases.

Hence, a change in the list of monitored neighbouring cells typically indicates a change in the position of

the mobile communication device.

In Figure 3.5 cell �uctuation is illustrated using six different sample periods. Each graph shows the

number of unique cells that were monitored over a given time interval (sample period). Each graph uses

the same trace data collected over a ten hour period collected in the outskirts of London. For the �rst six

hours of the trace (from 0 seconds to approximately 23,000 seconds into the trace) the mobile phone was
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stationary. For next hour the mobile phone was travelling ina motor car before returning to a stationary state

for the remainder of the journey. In total 6 different sampleperiods are shown, ranging from 60 seconds to

600 seconds. Figure 3.5 illustrates that the longer the sample period the easier it is to identify motion.

3.1.7 Environment Transitions

In order to provide support for mobile-assisted handoff a GSM mobile phone typically monitors six neigh-

bouring cells in addition to the current serving cell. Each of these cells has an associated signal strength

level. The signal strength level for each cell typically increases the closer the mobile phone is to a base

transceiver station and if the mobile phone has a clear, unobstructed view of the base transceiver station.

When the carrier of a mobile phone walks behind a wall there is an increase in the number of obstacles

between the mobile phone and any base transceiver stations that are on the other side of the mobile phone.

However there is no change to the number of obstacles betweenthe mobile phone and the base transceiver

stations located on the other side of the wall.

When the user enters an indoor environment they are effectively increasing the number of obstacles

between themselves and all base transceiver stations. Thismeans there will be a substantial change in the

total sum of signal strength �uctuation. We use the termtotal sum of signal strength �uctuationto refer to

the sum of the signal strength levels on both the current and neighbouring cells. (Effectively seven signal

strength readings added together). The reverse of this behaviour is seen when the user leaves an indoor

environment and heads outdoors. In Figure 3.6a we plot the sum of GSM signal strength as seen across all

visible cells (current and neighbours) together with the sum of GPS signal strength. This is plotted over

time and shows the transition from an indoor environment where no GPS �x could be obtained to an outdoor

environment where a GPS �x could be obtained. The actual journey shows moving from the 3rd �oor of

a building (approximately the �rst 100 seconds), taking a lift to an underground car park (approximately

100-110), getting in a car (approximately 110-175), and then driving out of the underground car park

(approximately 175 onwards). The transitions between indoor and outdoor environments are indicated by

the two arrow symbols. The graph clearly indicates there is asubstantial change in the sum of signal

strength as we move outside. In Figure 3.6b we show another indoor to outdoor transition, this time from
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Figure 3.5: Cell �uctuation over different sample periods.
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Table 3.2: The number of cells sighted during each journey along a 375 metre path in themetro-closed
data-set.

Journey Number of cells monitored Number of unique cell sets
1 13 8
2 11 6
3 11 7
4 15 11
5 11 7
6 14 8
7 10 8
8 11 8
9 11 8
10 12 12

a different building in a different part of Bristol. In this �gure we show the total sum of signal strength

as seen across all monitored cells. An arrow symbol is used toindicate the moment of transition from an

indoor environment to an outdoor environment.

Both Figure 3.6a and Figure 3.6b show that it is not possible to use the total sum of signal strength

�uctuation as an indication of whether the user is inside or outside. This is because similar levels of signal

strength were seen when inside and outside. Instead a rapid rise or fall in signal strength can be used to

indicate an environment transition.

In these environments GSM signal strength correlates with the behaviour of GPS signal strength level;

when there is a clear view of the sky the GPS signal strength increases. We believe that this behaviour may

be transferrable to other environments. A possible use of this information is to save power when using a

GPS receiver. We can use the rapid change in the sum of GSM signal strength to infer that we have left an

indoor environment and have entered an outdoor environmentand therefore switch on the GPS receiver.

3.1.8 Using Cell History

A typical GSM cell phone can concurrently monitor six neighbouring cells in addition to the current, serving

cell. In dense urban environments such as themetro-openandmetro-closedthere are more than seven cells

providing network coverage. In this section we discuss the effect of only tracking signal strength levels for
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(a)

(b)

Figure 3.6: The effect on GSM and GPS signal power when transitioning between indoor and outdoor
environments.
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seven cells in the test environments.

In themetro-openenvironment we identi�ed 54 unique cells and 665 distinct combinations of visible

cells. We found that certain cells, those with the strongestsignal strength levels, were typically monitored

over 90% of the time. The monitoring of other cells, those with much lower signal strength levels changed

more frequently. This behaviour was consistent with that found in themetro-closedenvironment.

To determine whether the previous path had an effect on the monitored cells we collected data along

different routes to the same physical point. We found that the mobile station `hung on' to already mon-

itored cells. We suspect this approach to be deliberate, to reduce the overhead of changing between RF

channels and also to avoid thrashing (repeatedly switchingbetween two cells of similar signal strength lev-

els). From a location �ngerprinting perspective, the inconsistency in monitored cells may cause problems

matching signal strength levels to those stored in an of�ineradio map. For example, if the construction of

a �ngerprint was not exhaustive and cells visible at a given position were missed, then comparing samples

containing these missing cells with those stored of�ine would result in placing the current location of the

user incorrectly. Therefore when constructing a radio map of an environment, data collection should be

both exhaustive and re�ective of the users' behaviour in that environment.

In Figure 3.7a we show the number of times the same cell was monitored along a 375 metre path in

themetro-closeddata-set. This �gure illustrates that although the same path was taken during each journey

the actual cells that were sighted varied. In Figure 3.7b we provide a visualisation of the average signal

strength for each cell. Cells that were consistently seen during each journey have a stronger signal strength

(illustrated with darker shades of grey) when compared to those that were only occasionally detected. In

Table 3.2 we show both the number of unique cells that were monitored during the ten journeys and the

number ofdistinct sets of cellsthat occurred during each journey. We use the term `distinctset' to refer to

a unique combination of cells that was monitored by the mobile phone at a given time.

In Section 4.1.4 we show how we use this information to develop a qualitative representations of the

spatial environment.
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3.1.9 Related Work

Otsason et al. [OVMdL05] demonstrated that in an indoor environment by using a wide GSM signal strength

�ngerprint it is possible to achieve a median positional accuracy of 5 metres. The wide �ngerprint contained

the signal strength levels for the 6 strongest cells and up to29 additional GSM channels. This information

was obtained using a GSM modem that exported a richer API thanmost typical GSM cell phones. Laitinen

et al. [LLN01] used location �ngerprinting with GSM networks in an outdoor environment, achieving a

positional accuracy of 44 metres. The Placelab project usesthe known position of approximately 2.2 million

radio beacons to position mobile devices such as cell phones, PDAs and laptops [LCC+ 05]. By applying

Bayesian �ltering techniques such as a particle �lter, a median position accuracy of 20-30 metres has been

achieved with almost a 100% environmental coverage where coverage is by assessed by the availability of

location information in peoples daily lives [HB04].

In November 2007 Google introduced an auto-locate feature to its Mobile Maps application [Goo07].

This feature displayed the current location of the carrier of the mobile phone with a blue circle to indicate

the potential error associated with the position. Positionwas determined using the Cell-ID of the current

serving cell. To enable this behaviour Google developed a map of all of the cell centres and coverage areas.

It is unclear as to whether Google initially used data collected by its users or instead contracted drivers to

survey the environment. However since this time, Google hasrefreshed this map by both contracting drivers

and using data generated by application users. The accuracyof service has been considerably better than

early research suggested that Cell-ID could offer [TV04]. Accuracy has however been linked to the type

of environment that the Mobile Maps application is being used in. For example, in city centres accuracy is

generally in the region of 1km in contrast in rural areas accuracy can be as low as several kilometres. This

is to be expected though as large, high-powered macro cells are typically deployed in sparsely populated

areas. Although this type of positioning is not as accurate as GPS, the public reception of the My Location

feature has been largely positive because of convenience, instant position determination and the ability to

work in indoor environments.
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3.1.10 Summary

In this section we have characterised GSM data a source of positional and activity information. We have

shown that in highly populated, urban environments the construction of a radio map must re�ect the be-

haviour of users in that environment. We have shown that the list of monitored cells on a typical GSM

mobile station is dependent upon the previous path in the environment.

3.2 IEEE 802.11

In this section we investigate the use of 802.11 (WiFi) as a source of context information. As with the pre-

vious GSM section we focus upon positioning from the perspective of location �ngerprinting and beacon

based systems. Other favourable traits of WiFi are that it operates in environments where the Global Po-

sitioning System (GPS) would fail (indoors and in dense urban environments) and the number of wireless

beacons available in our cities and towns has increased dramatically over the last few years. For example,

in 2005 during a war driving survey it was shown that downtownSeattle has a WiFi access point density of

1200per km2 [LCC+ 05].

To assess the behaviour of IEEE 802.11 we have data collectedfrom urban and metropolitan environ-

ments. Data was collected using IPAQ Hx4700 PDA's, HTC S620 mobile phones and an Acer laptop with

an Atheros AR 500 5G WiFi card. The approach to data collection is discussed with the presentation of

results. We use these data sets to characterise WiFi data using the following terminology to refer to each

data set.

� Metro-of�ce - An of�ce in a busy metropolitan environment.

� Metro-urban- A 45km car journey from a densely populated metropolitan environment to a more

sparsely populated rural environment.

� Metro-closed- A 375 metre section of a busy shopping street with a large number of tall buildings.

� Metro-open- A densely populated residential area but a more open area with no tall buildings and

few people on the street covering approximately 2.25 sq km.

59



3.2. IEEE 802.11 CHAPTER 3. Characterising Wireless Data

 50

 60

 70

 80

 90

 100

 110

 120

 0  1000  2000  3000  4000  5000  6000  7000  8000

80
2.

11
 R

S
S

I L
ev

ek

Time in 1-second intervals

RSSI

Figure 3.8: RSSI level for a single 802.11 access point recorded over a two hour period in theMetro-of�ce
environment.

3.2.1 Stability

Unlike GSM and other cellular networks, 802.11 (WiFi) operates in a public frequency band (2.4GHz). As

such there is a much greater chance of experiencing interference with other devices that operate in the same

frequency band such as Bluetooth. In this section we assess the stability of 802.11 signal strength. We

compare data collected in controlled environments with that obtained fromharshenvironments where we

would expect the signal strength levels to be inconsistent,i.e. environments with a large number of moving

obstacles.

To assess WiFi signal strength stability we collected 75,000 data point readings at a �xed point in the

Metro-of�ce environment. Data was collected with an Acer laptop with an Atheros AR 500 5G WiFi card.

Data was collected at a rate of once per second. It is worth noting that there were minimal dynamic obstacles

in the environment, i.e. people moving around between the access point and the 802.11 receiver. The data

from this experiment is presented in Figure 3.8. This graph illustrates that the 802.11 data is relatively stable

despite the nature of the public 2.4GHz band. The maximum RSSI level was -96dbm and the minimum

was -106dbm giving a signal variance of -10dbm. This resultsof this experiment are not surprising and are

echoed by the work of Bahl and Padmanabhan [BP00] and others [BB05, BK02, WNY05].
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3.2.2 Using History

In Section 3.1.8 we established that the previous path takenby the carrier of a GSM mobile phone in�uenced

the current and neighbouring cells. This behaviour re�ectsthe frequency reuse architecture of cellular

networks. A mobile phone assesses the suitability of a number of cells greater than seven before deciding

on the short-listed seven that will be actively monitored. It is worth emphasising that programmatically

obtaining the data used in this initial selection process isnot possible on today's mobile phones. GSM

modems do support an AT command that surveys a wider number ofchannels typically up to 16. Otsason

et al. [OVMdL05] used this to implement an indoor location �ngerprinting based system for GSM devices.

As such we focus upon using the seven available cells for the purposes of inferring contextual factors.

However the same limitations do not apply to 802.11 receivers.

Prior to the experiments in this section our hypothesis was that unlike GSM devices, 802.11 devices

would not be affected by the previous path taken in an environment in that all visible WiFi base stations

(access points) can be scanned. That is, the path taken by thecarrier of an 802.11 device would not affect

the visibility of any given access point, i.e. if an access point is visible because a user has walked north to

south along a path then any previously sighted access pointswill also be sighted at approximately the same

locations if the user walked in the opposite direction - south to north. From a positioning perspective this is

important if you are developing a positional service where clients will typically be walking. If the visibility

of speci�c access points were to be dependent on the previouspath taken then the deployer of the positional

service would have to conduct an exhaustive calibration of the environment by taking every possible path

in each direction.

To assess this behaviour we collected 802.11 trace data fromthe metro-openenvironment. We chose

this location because there is good 802.11 coverage and there are multiple interconnecting paths enabling

an assessment of the effect of path history.

In total 10 passes of a 1km path were made. Data was collected whilst walking. In total 94 unique WiFi

access points were seen during the 10 passes. The highest number of access points seen on a single pass

was 78 and the lowest was 64. The signal strength readings revealed that the access points with a lower

signal quality were typically seen less (5 access points were only seen during one pass). In contrast, those
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with a higher signal quality were seen during all 10 passes. This is as expected. Areas with houses close to

the pedestrian path produced consistent sighting of accesspoints. Whereas, access points located in houses

further from the path produced more inconsistency.

3.2.3 Availability

Position can be determined using 802.11 data in a number of different methods. For example, a crude

position can be determined simply using the closest WiFi access point, i.e. if you can see the access point

in your of�ce then you must be near your of�ce. Positional accuracy can be extended further by dividing

the zonal coverage area of access points into smaller zones using 802.11 signal strength levels.

If an 802.11 positional service is required to deliver a speci�c positional accuracy then there is an

underlying requirement on the availability of 802.11 access point coverage. The density of access points

must be great enough to distinguish between different regions of space at the required accuracy. In this

section we discuss the availability of 802.11 data in disparate environments. We assess availability by

drawing upon results from war driving surveys conducted in avariety of different environments.

During the experiment in themetro-of�ceenvironment where data was sampled at a single position, we

sighted 12 unique access points during the two hour survey period. It is worth noting that although 12 access

points were identi�ed, not all were consistently visible for the duration of the survey. The availability is

shown in Table 3.3. Unsurprisingly, and in behaviour similar to the GSM data we collected in the previous

section, we found that access points with lower signal strength levels provided inconsistent availability.

In a similar survey in themetro-closedenvironment we collected 5050 data points and sighted 87 unique

access points. The 375 metre path led along one side of the street and was taken whilst walking. This level

of access point coverage echoes results obtained by LaMarcaet al. [LCC+ 05] which, in 2005 demonstrated

that downtown Seattle had a WiFi access point density of 1200per sq km.

It is interesting to note that surveying the same stretch of road in themetro-closedenvironment in a

car produced 142 unique access points being sighted, 55 higher than when walking. We had not expected

to encounter this behaviour, instead we were expecting to detect more access points whilst walking than

driving. Our hypothesis was based on the fact that more data-points would be collected in the environment
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whilst walking; driving is faster than walking. In addition, we expected that the distance from the 802.11

survey equipment to the potential access points will increase when driving; we are taking a path along the

road as opposed to the pavement. To investigate this surprising result we surveyed the other side of the road

whilst walking. We discovered that when driving we were picking up access points located on either side of

the road; however whilst walking we primarily detected access points located on the same side of the road.

We collected additional trace data along a route that led from the centre of Bristol (metro-closed), to

the outskirts of Bristol where the urban data was collected;the metro-urbantrace, before �nishing in a

rural, sparsely populated area North of Bristol. This routeis illustrated in Figure 3.9. The trace took

one hour to complete and was collected between 14:40 and 15:40. This route was chosen because it led

through densely populated residential areas in addition tolarge traf�c junctions distanced from commercial

and residential property. In total 9826 data-points were collected over the 45km journey. During this

journey 812 wireless access points were sighted. We found that the number of visible access points was

dependent on the surrounding environment. As expected the densely populated areas had high numbers of

access points, however roads linking pockets of houses had relatively little coverage. This is illustrated in

Figure 3.10. This �gure plots the number of access points that were seen during each minute of the journey.

Densely populated areas were driven through near the start of the journey in the centre of Bristol (14:45-

14:50) and in the residential outskirts of Bristol (15:00-15:10). This is re�ected by the increased number

of visible access points. Figure 3.11 presents a visualisation of the location of access points discovered

during the 15:02-15:11 time period. This �gure shows a high number of access points were sighted in this

residential part of Bristol. Comparing Figure 3.11 with Figure 3.9 reveals that there are large parts of the

journey where no access points were detected.

These experiments highlight that although in densely populated metropolitan environments 802.11 cov-

erage is extensive, in other environments and paths joiningmetropolitan areas it does suffer from gaps in

coverage. This imposes certain limitations, i.e. 802.11 location �ngerprinting systems would not have the

necessary coverage to replace GPS based traf�c navigation services.
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Figure 3.9: Visualisation of the entiremetro-urbantrace (14:40-15:40).

3.2.4 Related Work

Although some work has sought to apply Time Difference of Arrival (TDOA) based positioning techniques

using 802.11 equipment - AeroScout's Wi-Fi-based Active RFID Tags [Aer07] - the majority of posi-

tional work has come from applying location �ngerprinting techniques [BP00, LCC+ 05, BK02, WNY05].

Brunato et al. [BK02] demonstrated using just 3 access points an average positional error of just 2 metres

could be achieved in a indoor 625m2 area. Users of the system constructed their own radio map forthe

given environment separating the need to query the infrastructure. Although this forces a calibration proce-

dure per user it does demonstrate one method for completely preserving user privacy. Similar results were

produced by Ferris et al. [FHF06]. This work used Gaussian processes and produced an average error of

2.12 metres. This 2 metres level of accuracy in indoor environments has also been produced by [LFL05].

Madhavapeddy and Tse [MT05] assessed the suitability of using Bluetooth signal strength levels to

determine position. In this process they collected trace data from an of�ce environment. They concluded
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Figure 3.10: The rate of access points discovery on a 45km journey from the centre of Bristol (South) to a
rural environment (North). Themetro-urbantrace.

that Bluetooth was “ill-suited for the purpose of accurate,low-latency location sensing” [MT05]. This

was partly due to practical issues such as the limitation that consumer mobile phones cannot maintain

multiple Bluetooth connections and partly due to the behaviour of the Bluetooth data. Madhavapeddy and

Tse [MT05] noted that walking adversely affected signal power measurements.

The iPhone from Apple provides a location API that features Google's My Location service to de-

termine position using Cell-ID and the Wireless Positioning Service (WPS) from Skyhook Wireless to

determine position using WiFi [IPh09]. The reference database that powers the Skyhook Wireless WPS

service consists of over 100 million WiFi access points [Sky09]. This comprehensive WiFi map enables

accurate position determination in situations where GPS would normally fail, such as in indoor environ-

ments, and in city centres where the view of the sky is obscured. The process for determining position is

as follows. First the mobile device conducts a WiFi scan. TheMAC addresses from the WiFi access points

that were detected in the scan are sent to the WPS server. The WPSserver matches the MAC addresses

using the reference database and returns the position. Assuming position determination was successful, any

previously unknown WiFi access points are then integrated into the reference database using the position

associated with the known access points. This keeps the reference database refreshed.
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Figure 3.11: Visualisation of a subsection of themetro-urbantrace (15:02-15:11).

3.2.5 Summary

Although devices implementing the IEEE 802.11 standard have been widely adopted by many, their cov-

erage is not as ubiquitous as that of the mobile phone. Arguably in non-metropolitan environments there

are still substantial areas where 802.11 coverage is poor. As such, and from the perspective of position

determination, this means that there are issues with inconsistent performance. Unlike GSM mobile phones

the limitation of the number of access points visible at any one time lies with the implementation of the

scan/survey function.

3.3 Summary

In this chapter we have characterised the behaviour of IEEE 802.11 (WiFi) and GSM. We use these �ndings

throughout the remainder of this thesis.

� In Chapter 4 we use WiFi and GSM to provide position information in a qualitative manner.

� In Chapter 5 we the patterns of GSM cell and signal strength �uctuations established in Section 3.1.5
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Table 3.3: Results from a two hour 802.11 survey in an of�ce environment. Data was collected at a �xed
position.

MAC Address Available Min Max Range
00:1a:6d:80:c4:50 29% -58 -53 5
00:90:96:f2:fa:21 65% -58 -53 5
00:14:69:f2:79:10 100% -103 -87 16
00:02:2d:37:3a:36 100% -64 -56 8
00:13:49:9a:2a:83 100% -74 -68 6
00:0a:e9:00:71:e5 100% -106 -96 10
00:11:24:28:8f:0a 81% -62 -54 8
00:14:51:6f:10:0f 24% -56 -53 3
00:1a:6d:80:c4:56 47% -58 -53 5
00:14:69:f2:7b:00 100% -93 -81 12
00:1a:6d:80:c4:54 52% -58 -54 4
00:18:39:10:26:80 100% -97 -90 7

and Section 3.1.6 to identify everyday activities such as walking and driving.

� In Chapter 6 we fuse position and activity information in order to recognise places of interest to a

person.
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Chapter 4

Qualitative Positioning

It is well established that modelling the spatial environment is an essential part of developing a context-

aware application [JS02, BBR02]. As such, multiple models have been developed over the past few

years [Nar01, VFK+ 99, Bei99]. These spatial models can typically be classi�edas either topological

(qualitative) or more commonly, as coordinate based (quantitative). Quantitative models generally take

a geometric view of space with positional information supplied by location services using Euclidean or

spherical coordinate systems. Coordinate tuples are processed by the application and behaviour is updated

to re�ect the new location information. In contrast, topological or symbolic models manage space in a

qualitative manner with positional information mapped to human abstractions of physical places usually in

the form of spatial zones. The relationships between zones forms a topology often expressed as a graph.

Application behaviour varies depending upon the symbolic representation of space (zone) that the user is

currently located in.

In Chapter 3 we established that the behaviour of wireless data such as GSM was dependent upon envi-

ronmental factors and the current activity of the carrier ofthe mobile device. As previously demonstrated

position accuracy and reliability varied based upon these factors. In this chapter we demonstrate that by

building this behaviour into the process of position determination and using a qualitative approach to man-

aging space, the end user will receive a better user experience. Inconsistencies such as reduced positional
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granularity in certain parts of the spatial environment canbe elegantly handled by creating spatial zones

that cover a larger area.

The rest of this chapter is structured as follows. Section 4.1 presents a qualitative approach to managing

the spatial environment. In this section core concepts are illustrated using a single source of positional

information. Section 4.2 presents a method for fusing multiple sources of positional information.

4.1 Qualitative Management of Space

When constructing a symbolic model of the spatial environment developers must de�ne spatial zones within

the constraints of the underlying sources of positional information. For example, it is not possible to create

zones with a physical coverage area that is �ner than the granularity of the data produced by the positioning

services.

With some positioning systems, performance varies depending upon the physical environment where

the system is deployed [TV04, SR00]. For example, RF based systems suffer from multi-path fades, dead-

spots, signal diffraction and re�ection, creating inconsistent performance in different areas of the appli-

cation environment. This poses problems for developers andforces a laborious of�ine calibration phase

where positioning system performance is assessed and zonesare created to re�ect the limitations of the

measurement service and environment.

In this section we present a strategy and set of algorithms for developing a positioning system that offers

an appropriate service for the given spatial environment. In particular, our qualitative positioning service

de�nes zones that are determined by the quality of the measurements. We use the term measurements to

describe information that the positioning system can use tocalculate location. We are agnostic about the

type of measurements (cellular, 802.11, ultrasound), as long as the measurements are position dependent.

This qualitative approach differs from more common quantitative location systems, where the positioning

API may, given the available measurements, make unrealistic demands and unrealistic promises to the

application programs.

The rest of this section is structured as follows: Section 4.1.1 discusses the underlying spatial model

and introduces the concept of a logical path, Section 4.1.2 demonstrates how a zone based representation
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Figure 4.1: A typical of�ce �oor plan - the spatial environment for a context-aware application. The spatial
environment partitioned into zones that re�ect the performance of the underlying positioning services.

of the spatial environment can be generated in an unsupervised manner via a simple calibration procedure,

Section 4.1.3 demonstrates how zone topology can be inferred by applying Markov chain frequency analysis

techniques and Section 4.1.4 presents results from an implementation using cellular networks.

4.1.1 Logical Management of Space

In this section we introduce the concept of a spatial zone andillustrate how transitions between zones can

be expressed as directed graphs.

We use the termspatial zoneto describe a portion of space that can be distinguished fromother areas of

space when using measurements such as the signal strength ofa wireless beacon. The area of physical space

that a zone symbolizes, re�ects both the quality of the positional measurements and the spatial environment.

Thus zones represent the �nest, reliable position that the measurement service can offer. This implies that

if it is possible to reliably determine position within different areas of a zone then the zone should be split

into smaller, child zones. Consequently, zones do not necessarily cover the same amount of physical space

and hence are assumed to be of unequal size. At �rst sight thismay seem like a very limited system.

However applications that require knowledge such as “is my context the toaster or the fridge?” need no

more information than the above, if the toaster and fridge are in separate zones. In contrast, quantitative
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Figure 4.2: The physical path illustrated in Figure 4.1 can be represented as a directed graph. The nodes in
this graph correspond to qualitative locations and the arcsindicate order.

positioning services typically require the deployer to make the qualitative mapping; map places of interest

to position measurements produced by the positioning service.

The zone that the user is currently located in is their qualitative location. The way that zone mem-

bership is determined depends on the type of positional measurements available. For example, Figure 4.1

shows the layout of a typical of�ce environment. In this example, positional measurements are obtained

from ultrasonic transmitters distributed throughout the environment. Zone membership (a users qualitative

location) is determined by looking at the strongest transmitter signal. As such, the �oor has been partitioned

into zones that re�ect the areas that can be reliably distinguished from one another using the measurements

obtained from the transmitters.

Figure 4.1 also shows the physical path an application user took when walking through the spatial

environment. In terms of qualitative location, this path simply represents a series of zone transitions in the

form of a directed graph as shown in Figure 4.2. We use the termlogical pathto describe the series of zone

transitions equivalent to the physical path.

By constructing logical paths based on users interactions with the application environment it is possible

to infer the relationships between zones. This has the advantage that once suf�cient data has been collected

it is possible to identify popular paths and invalid zone transitions in an unsupervised manner, improving

positioning service performance.
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4.1.2 Automatic Zone Creation

In this section we demonstrate how it is possible to construct a zone based representation of the application

environment in an unsupervised manner that re�ects the accuracy and reliability of the available positional

measurements.

Constructing the zone representation is a simple of�ine calibration process. Firstly, the deployer collects

samples of positional measurements throughout the application environment. Unlike traditional location

�ngerprinting calibration, the associated physical positions do not need to be stored with these measure-

ments. Once this training data has been collected it is partitioned into sets of similar measurements. These

sets contain the data that will be used to determine zone membership. Hence a set, or cluster of training

data de�nes the boundaries of a spatial zone.

At runtime, the qualitative location of a user is determinedby �nding the cluster most similar to a

position dependent measurement taken at the user's current, physical location.

With many partitioning algorithms the developer must specify in advance the number of clusters (zones)

to create. Therefore a range of values should be tested and the performance of each assessed in order to

select the optimum solution. Performance can be evaluated by generating several logical paths recorded

over the same physical path. As they all represent the same physical path, in theory, all the logical paths

should be identical. This however is not realistic as typically the source of positional measurements is

inherently noisy. Therefore the optimum solution is a trade-off between two factors: number of clusters

and similarity of logical paths. The higher the number of clusters the greater the positional granularity

since more zones represent the spatial environment. But thelower the number of clusters the greater the

similarity between logical paths that represent the same physical path. It is important to note that the quality

of the generated zones largely depends on the amount of training data collected and whether the data was

gathered throughout the spatial environment.

Clustering algorithms such as those discussed in Section 2.2.4 can be used to cluster the measurement

data (create the zones). In this thesis we use K-means for this process. K-means partitionsN data points

(training vectors) intoK clustersSj . The objective function representing the distance betweenthe sample

and the cluster centre is used to partition the training data.
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J =
KX

j =1

nX

n 2 Sj

jxn � � j j2 (4.1)

wherexn is a vector representing a positional measurement and� j is the centroid of the data points in

Sj andjxn � � j j2. If, for example, the positional measurements were signal strength levels on a cellular

network thenxn would represent a snapshot of these levels for all visible cells. K-means can be initialized

with vectors selected at random from the training data. The Euclidean distance for each subsequent sample

xn to the centre of each centroid� j is then calculated. This samplexn is then added to the centroid that

it is closest too. The centroids are then recalculated and the membership of each of the pointsSj for each

centroid� j is then re-evaluated until there are no further changes in membership.

4.1.3 Zone Topology

In this section we demonstrate how logical paths, expressedas directed graphs, can be used to infer zone

topology and hence improve positioning service performance.

As the physical coverage area of a zone is decreased (number of zones covering the entire spatial

environment is increased) support for richer location services can be provided. But decreasing the physical

coverage area of a zone (reducing the training data) reducesthe reliability of accurately matching the same

physical position to the same spatial zone. This problem canbe minimized by identifying the zone topology

and hence distinguishing between valid and invalid zone transitions. An invalid transition is one where the

user is reported to have moved from a zone to another that is not a neighbour of the �rst zone. In order to

implement this we need to work out the zone topology. This is not directly observable with both valid and

invalid transitions appearing to have equal legitimacy. Wecan however determine a zone's neighbours by

applying frequency analysis techniques such as Markov chains.

In terms of logical paths, a Markov chain is a sequence of zonetransitions where the current zone that

the user is located in is conditionally dependent of the previous zone. That is:

P(X n +1 = xjX 0; X 1; X 2; :::; X n ) = P(X n +1 = xjX n ) (4.2)
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whereX is a spatial zone andX n is the current zone a user is located in. The one-step transitional

probability:

P(X n +1 jX n ) (4.3)

is implemented as a transition matrix containing the probabilities of moving from one spatial zone to any

other spatial zone in the environment. This matrix is populated by processing the zone transitions contained

in logical paths. Once trained one can distinguish between valid and invalid transitions by looking at the

transition probabilities. Invalid zone transitions should be associated with lower probabilities than the more

frequently occurring valid transitions. This has the advantage that once suf�cient data has been collected

it is possible to identify popular paths and invalid zone transitions in an unsupervised manner, making it

easier to roll out the system and, over time, improving positioning service performance.

4.1.4 Results

In this section we discuss the results for implementations of this work on a busy shopping street with

a large number of tall buildings in themetro-closedenvironment and a 500-metre section of themetro-

openenvironment. Themetro-closedenvironment was collected 10 times over a three week period by two

volunteers. Themetro-openis a densely populated residential area with no tall buildings and few people on

the street. This data set was collected 20 times over a one month period by four volunteers. We used GSM

networks as the measurement service.

The aim of our experiments was to identify if people had takenthe same physical path by comparing

the equivalent logical paths. In total we collected 8457 measurements during 25 passes and encountered

24 different Cell-IDs. We use the termpassto refer to a user walking from one end of the road to the

other whilst carrying measurement collection equipment. We used 15 passes as training data (data used

to create the clusters) and 10 passes as test data (data used to assess performance). Data was partitioned

into groups of similar measurements using K-means. K-means, like many partitioning algorithms requires

the developer to specify in advance the number of clusters (zones) to create. Therefore a range of values

needed be tested and the performance of each assessed in order to select the optimum solution; we tried
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Figure 4.3: Clustering performance is assessed by comparing multiple logical paths generated over the
same physical path.

K valuesk = 2 to k = 28. Once the clusters had been generated, the test data was processed, producing

logical paths of the users transitions through the zones representing the spatial environment.

Logical paths were compared using the following equation:

s =

P r
z=1 ( x z

n )
r

(4.4)

wheren is the number of logical paths being compared,X z is the number of matching zones at logical

path positionz with a path size ofr , ands is a real number between 1 and 0 representing path similarity

with 1 indicating paths are identical and 0 meaning paths share no similarity. The performance of this

function is shown in Figure 4.3.

In our experiments all logical paths represent the same physical path so, in theory, all logical paths

should be identical. This is not realistic though as cellular signal strength levels are inherently noisy and

the mobile station can only track up to 7 levels at any one time. Instead, our results showed that for this

environment performance was optimal with three zones, producing a path similarity of 87%. Withk values

less than 11, a path similarity of 60% or above was achieved.

At most, only 10 zones were used, even whenk was 28. This served as a good indication that with

higherk values the number of zones is not re�ective of the environment and available training data. This

illustrates it is not possible to force a granularity beyondthe limits of the positional measurements.
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In the experiments in themetro-closedenvironment we noticed that measurements recorded at the same

position showed that the list of monitored cells varied. This is because the phone can only monitor up to

seven cells at any one time. In some positions more than sevencells are visible. To address this limitation

we have introducedvariancesin the process of calculating Euclidean distance. Previously, when calculating

the Euclidean distance between two measurement vectors where unknown values existed, i.e. a centroid

was not initialised with a signal strength level for a particular cell contained in a measurement sample, a

static value was substituted. Now we substitute values thatare re�ective of the similarities with other shared

cells. This rewards samples that already share many common cells by substituting the unknown value with

a value close to that contained in the measurement sample. Measurement samples that do not share many

common cells with those in the centroid are assigned values that, in terms of Euclidean distance are much

further away. We refer to the substituted values asvariances. We use this term because the substituted

values vary depending on the similarity between the two measurement vectors.

The second set of experiments were conducted in themetro-openenvironment. In these experiments

the approach to surveying the environment was deliberatelyunstructured to provide data that represented

real usage. Volunteers were shown maps of the desired coverage area of the radio map and asked to walk

where they wished within this coverage area. Volunteers were not constrained by direction or asked to walk

on any particular paths. There were however practical constraints such as busy roads would only be crossed

at pedestrian crossings. The idea of calibrating radio mapsthat are re�ective of usage has previously been

demonstrated by LaMarca et al. [LHSC05]. The collection of the test data was systematic with volunteers

taking the same path. In total we used 12567 measurements as training data (data used to create the clusters)

and 8324 as test data (data used to assess performance).

We show the performance of the new approach to calculating Euclidean distances in Figure 4.4. Fig-

ure 4.4 is a Receiver Operator Characteristic curve (ROC curve) that plots the path similarity against the

number of zones used (effective zones). We use a ROC curve to illustrate that no matter how great thek

value used when generating the zones, the number of effective zones peaks. The number of effective zones

shown along the x-axis is the average number of effective zones across all test data. In this environment,

no more than seven zones could be found. The graph shows that by substituting values that are re�ective of
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Figure 4.4: Radio map performance in the metro-open environment.

the similarities with other shared cells (using variances)we can increase path similarity performance and

increase the number of effective zones.

In Figure 4.5 we present visualisations of the clustering process in themetro-openenvironment for a

variety ofk values. This �gure shows the different zones (clusters) that a user is located in during a single

journey around themetro-openenvironment. Each marker represents a measurement. The colour of the

marker indicates the closest matching cluster. This process is repeated fork values[3 � 8].

From looking at this �gure it is clear that in most cases the zones represent continuous, connected

space. This is a useful effect as in most cases of real world deployment the deployer will seek to map zones

(clusters) to single areas of physical space. The physical size of the zones is dictated by thek value. In

Figure 4.5ak = 3 and the size of the three zones are approximately 1000m (orange), 700m (yellow) and

300m (red). Ask is increased the size of the zones decreases. For example, inFigure 4.5e,k = 7 , the

largest zone covered an area of approximately 430m.

Providing the information contained in this �gure to the deployer of the location service will highlight

areas of position inconsistency. For example, in Figure 4.5f the deployer can see that the red cluster that

covers the space at the top right hand side of the �gure is not continuous. There is a small overlap between

the red cluster and the purple cluster. This enables the deployer of location based service to decide the most

appropriate way of addressing this inconsistency.

In the metro-open environment, we found zones in the more open parts of the environment were typi-
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(a) k = 3 (b) k = 4

(c) k = 5 (d) k = 6

(e) k = 7 (f) k = 8

Figure 4.5: Clustering visualisation using multiplek values.
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cally larger than those close to obstacles such as walls. Thegenerated zone representation re�ected these

limitations. With a path similarity performance level of 70% there are six effective zones as opposed to ten

in themetro-closed; this is characterised by the density of cells and the density of obstacles.

4.1.5 AutomaticK Determination

In the previous section a range ofk values were used in order to decide on the optimum number of zones that

should be used to represent a spatial environment. It is desirable to shield the deployer of a location service

from the complexities of this process. In this section we present a method for automatically selecting an

appropriatek value.

The method builds on the technique used to compare logical paths that was presented in Section 4.1.4.

This method used test data to assess the similarity of logical paths. Eachk value was then awarded a score

based upon the similarity of the logical paths and the numberof zones that were actually recognised in the

path (effective zones). A higher score meant that taking thesame physical path through an environment

produced the same or similar logical path. The score was reduced if thek value did not re�ect the number

of effective zones. With the termeffective zonereferring to a zone that is actually used, the logical path

shows the user was at one point located in the zone. Ifk was higher than the number of effective zones then

the score for thek value was reduced.

The process of scoring eachk value lends itself to automatick selection. The implementation of the

scoring process used in Section 4.1.4 is already automated.The tool is provided with a minimum and

maximumk value; start and end points. The output is the score for eachk value between the minimum and

maximumk values.

Automatick determination can be implemented by either the deployer providing selection criteria or

by simply �nding the highest effectivek. If the deployer was asked to de�ne a selection criteria thenthis

would be the threshold fork value scores e.g. 75%. Poork values would then be removed and only zone

based representations of the spatial environment would be presented to the deployer.

It is not effective to shorten thek search space by analysing the raw measurement data. This is because

many of the steps involved in identifying distinguishable positions using the raw data are repeated in the
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process of creating a zone based representation of the spatial environment. As such this approach does not

offer any signi�cant advantages over the automating scoring of k values that was previously discussed.

Unfortunately we cannot tighten this upper estimate. Finding the maximum k-value is another aspect,

as this is obviously limited by the number of visible cells. In Section 4.1.4 the tests along a 500m section

of a shopping street resulted in 24 unique cells being monitored. In Chapter 3 the tests in themetro-open

(2.25 sq km) area resulted in 54 unique cells being monitored. Both Figure 4.3 and Figure 4.4 show that

the number of effective zones that can be achieved with ak score greater than 80% isk = 3 . Greater than

60% is also approximately the same. This is despite more cells being visible and a larger coverage area in

themetro-openenvironment. This is due to the nature of the environments. The shopping street contains

many obstacles such as tall buildings that help create distinguishable signal strength levels. In contrast the

metro-openenvironment has a minimal number of obstacles hence the number of distinguishable sections

is low.

4.1.6 Deployment

In a qualitative environment most of the time the deployer will want to map back to “Sainsbury's” or

“BP Garage” [Hig03]. But occasionally the deployer of the location service will want to map back to

latitude/longitude. If the deployer wants to map to the qualitative location, then the process is as follows.

Consider that the deployer collects �ngerprint measurements throughout the application environment

at equally spaced intervals. Although the position associated with each �ngerprint is different from the

next, in terms of signal strength differentiation some �ngerprints will be indistinguishable from others. The

qualitative approach to managing space handles this inconsistency. Multiple �ngerprints will be merged into

a single �ngerprint in order to identify a single position (zone). Once the clustering process has completed

(the zones have been created) the real world positions for the centre of the zones can be determined by

�nding the closest matching �ngerprint in the training data. The associated position is the real world

position for the centre of the cell. Zone coverage area can also be determined in a similar way. A �ngerprint

from each unique physical position can be matched to the closest zone. This de�nes the real-world coverage

area of each zone. If the deployer was intending to use the system in particular places of interest (e.g. shops)
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then they could use measurements collected in front of thoseshops as starting points for K-means; speeding

up the process and increasing the likelihood of getting a solution that separates shops.

4.1.7 Summary

In this section we have presented a strategy for developing positioning services that provide users with a

qualitative location. The supplied location re�ects the quality and reliability of positional measurements

obtainable in a particular spatial environment. We have demonstrated that, via a simple calibration phase,

the spatial environment can be automatically partitioned into a series of distinguishable zones.

Instead of offering a position and accuracy which may not be met, we offer a zone and a con�dence,

where the zone depends on the environment. If it is not possible to distinguish between two places then a

single, qualitative location will represent both areas.

In terms of GSM signal strength data this type of qualitativeapproach to managing space is particularly

suitable because it addresses the inconsistency issues raised in Section 3.1. In Section 3.1.4 we established

that signal strength levels vary inconsistently between different physical points in outdoor environments.

This poses problems for quantitative systems in that some areas of the spatial environment may be dis-

tinguishable whilst others are not. This leaves the developer with an awkward decision. Reducing the

positional granularity of the system in order to hide the error will create consistent performance. However,

leaving the error will enable a �ner positional resolution in the rest of the environment but at the cost of

inconsistent performance. In contrast, a qualitative approach such as the one described above handles this

situation well. Zones are created to re�ect the limits of themeasurement service in the given environment.

If it is possible to reliably determine position within different areas of a zone then the zone is split into

smaller zones; if not, a zone with a larger coverage area is created.

We have applied this work using cellular signal strength levels in metropolitan and urban environments.

We achieved promising results, accurately matching logical paths with low numbers of spatial zones. But,

as expected, we found that as we increased the number of zonesin the environment the performance of the

location service decreased. Although performance can be improved by knowledge of the zone topology,

ultimately a trade off must be made between positional granularity and measurement reliability. In our
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experiments, we found cellular signal strength information to be very noisy. The calibration phase gave us

an accurate picture of performance in this environment enabling us to build location aware applications that

operated within these constraints.

In both the metropolitan and urban environments our processof building a zone-based representation

of the environment and providing the user with a position in the form of a spatial zone was successful. It

should however be noted that the physical coverage area (size) of the spatial zone was not the same in both

environments. In themetro-openenvironment a logical path comparison produced a performance level of

70% whenk = 6 . In contrast, themetro-closedenvironment produced an equivalent level of performance

when k = 10. In the metro-openenvironment whenk = 6 the average zone size was 375m with the

largest zone covering approximately 550m. In themetro-closedenvironment the average zone size was

approximately 50m. This suggests that although the processof creating the zone-based representation is

transferrable to other environments, expectations of position granularity are not directly transferable. This

is expected as different environments will be provisioned by different RF infrastructures, e.g. the density of

beacons, and the environments will have different characteristics, e.g. they will contain different obstacles.

The experiments in this chapter have used GSM data but could have used any source of data, including

ultrasound, WiFi etc. In the next section we show how to fuse multiple sources.

4.2 Fusing Qualitative Positional Data

We have discussed two sources of information abundant in ourdaily lives that can be used to infer location;

GSM and WiFi. Each source has strengths and weaknesses. Wireless signal strength levels are susceptible

to multi-path fades, diffraction and re�ection and hence are typically very noisy. WiFi operates on a public

band (2.4Ghz) and is subject to interference. Cell phones generally only track up to seven cells at any single

time. However in dense urban environments there will potentially be far more than seven cells visible from

a single location. Hence the same wireless beacons may not always be observable at the same physical

location. However by fusing these sources an increase can bemade both in terms of positioning reliability

and granularity. In the following section we present a Bayesian network for location inference using this

data.
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The rest of this section is structured as follows. Section 4.2.1 presents an extensible Bayesian network

for fusing cellular and 802.11 signal strength data with wireless beacon information. We use the term

`wireless beacon information' to refer to beacon data such as the sighting of a WiFi access point or a GSM

Base Transceiver Station. We can make inferences relating to position without using additional data such as

signal strength levels. For example, if your mobile phone iscurrently monitoring a GSM cell visible from

your home then you can infer you arenearyour home. In Section 4.2.2 and Section 4.2.3 we demonstrate

how to calculate node probability distributions and apply evidence. Section 4.2.4 discusses how to assess

the performance of the radio map. Section 4.2.5 reports on animplementation using both simulated data

and real data gathered from a metropolitan environment.

4.2.1 Bayesian Network

We aim to fuse wireless beacon information and measurement data obtained from GSM and WiFi sources

to provide the best possible performance in the process of position determination. To do this we use a

Bayesian network; enabling us to take a probabilistic approach to data fusion. We review the information

we have available to us by �rst looking at each source individually before presenting a model for fusion.

We use three sources of information.

1. GSM. The GSM measurement data can be partitioned into distinguishable zones using the method

presented in Section 4.1. In this case position is represented as a zone.

2. WiFi . WiFi data can also be used in the same manner; clustering to create the zones. Again this

results in position being represented as a zone.

3. Wireless Beacons. Wireless beacon information to provide an indication of our position. A wireless

beacon is a GSM Cell-ID or a WiFi MAC address; all IDs togetherform a set of visible beacons.

A single beacon appearing in a WiFi scan or list of monitored cells on a mobile phone enables a coarse

estimation of our position; we are within the coverage area of that beacon. If multiple beacons are visible

then we can improve accuracy beyond what could be achieved with a single beacon. Cellular networks are

suited to this purpose because they are designed to have cellboundary overlap but no duplication in the
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Figure 4.6: A Bayesian network for fusing cellular, WiFi andbeacon positional information.

exact coverage area. The area where multiple wireless beacons are visible can be thought of as a zone with

membership criteria dependent on concurrently monitoringmultiple beacons. To illustrate this consider

that a phone is monitoring a list of cells (A; B; C; D ) and then this list changes to (A; D; E; F ). This would

result in two beacon zones being created. If at a point in timea user canseecells (A; D; E; F ) then they

will be deemed to be located in the second beacon zone. To fusethe GSM, WiFi and beacon data �rst

requires the following.

1. Clustering of the Cellular data to create theCell zones.

2. Clustering of the WiFi data to create theWiFi zones.

3. Determination of unique visible sets of beacons, theComposite-Beacon-zones.

Completing this process creates three sets of zones. Membership of the Cell zones and the WiFi zones is

determined by �nding the centroid that is closest to a measurement sample collected by the user at runtime.

The beacon zones represent the unique sets of visible beacons. Beacon zone membership is determined by

matching the list of currently visible beacons against the sets stored of�ine.

In Figure 4.6 we present a Bayesian network that infers the location of a user using the GSM, WiFi

and beacon data. In this network there are two parent nodes and two child nodes. TheC̀ell-Zone' node

represents the Cell-Zone that a user is currently located in. This node contains attributes representing all of

85



4.2. FUSING QUALITATIVE POSITIONAL DATA CHAPTER 4. Qualitative Positioning

the different Cell-Zones used in the environment. The number of Cell-Zone attributes is de�ned by thekc

value used when clustering the cellular signal strength data. The ẀiFi-Zone' node is the equivalent of the

Cell-Zone node but using WiFi as opposed to cellular signal strength data. As with the Cell-Zone node, the

number of WiFi zones is determined by thekw value used when clustering the WiFi data. We create separate

cellular and WiFi nodes because the clustering approach presented in Section 4.1 performs best when using

a single source of positional information. This is primarily due to the assessment of performance. WiFi

zones are typically smaller than cell zones. Clustering WiFi and cellular data at the same time typically

results in the creation of many zones whose membership is largely in�uenced by WiFi data. This means it

is hard to evaluate the optimum number of cell zones that should be created for the environment. To address

this we create the cellular and WiFi zones independently.

We use the term `Composite-Beacon-Zone' to refer to the beacon zones that represent the unique com-

bination of wireless beacons visible at a single point in time. We are agnostic about the type of beacon and

do not treat cellular or WiFi any differently. Membership ofthis type of zone is determined by matching the

visible beacons in a measurement sample with those in a givenComposite-Beacon-Zone. For the purpose

of this work we do not consider situations where we are outside of cell coverage. Therefore whenever WiFi

data is available so to is cell data. In addition, the coverage area of Cell-Zone's is larger than that of WiFi

Zone's. This is re�ected in the structure of the network, there is no link between the WiFi Zone node and

the WiFi in Cell Zone node.

At any point in time a user will be located in three different zones, a Cell-Zone, a WiFi-Zone and

a Composite-Beacon-Zone. This combination of zones forms aqualitative coordinate (Cell-Zone, WiFi-

Zone, Composite-Beacon-Zone). Looking at the frequency that a user is placed in a combination of these

zones enables inference of the relationships between them.For example, whilst placed in Cell-Zone A their

current WiFi zone at this time is typically zone B. Thereforewhen placed in WiFi-Zone B they can infer

they are likely to also be placed in Cell-Zone A. In the Bayesian network this relationship is modelled via

the ẀiFi-In-Cell-Zone' node. The C̀omposite-Beacon-Zone' node represents the equivalent relationship

for Cell-Zone and WiFi-Zone.

In the following section we discuss how the conditional probability distributions can be learnt from

86



CHAPTER 4. Qualitative Positioning 4.2. FUSING QUALITATIVE POSITIONAL DATA

historical data and in Section 4.2.3 we illustrate how to apply evidence to the network to obtain stronger

location estimates.

4.2.2 Node Probability Distributions

As with any Bayesian network, probability distributions are populated either by a domain expert or by learn-

ing from historical data. We learn these probabilities using the same training data used to create the initial

zone based representation of the environment. To populate the Cell-Zone and WiFi-Zone probability distri-

butions we use the Euclidean distance between a measurementsample and the centre of a cluster (zone). In

this case the Euclidean distance is determined by comparingthe radio beacons in the measurement sample

against those in the Cell/WiFi zone. This is de�ned in Section 2.2.4 and applied in Section 4.1.2. The

closer the measurement sample to the cluster the greater theprobability of the user being located in that

zone (cluster). We normalise the data by dividing the distance from a given cluster to a measurement sample

by the sum of distances from that sample to every other cluster in the environment.

Certain Composite-Beacon-Zones will be visible more oftenin certain Cell-Zones and certain WiFi-

Zones. Hence knowing the current Composite-Beacon-Zone enables a Cell-Zone or WiFi-Zone positional

estimate to be made with an increased con�dence. This relationship is represented in the Bayesian network

by the links from the Cell-Zone and WiFi-Zone nodes to the Composite-Beacon-Zone node. As such the

conditional probability table distribution for the Composite-Beacon-Zone is dependent upon the state of the

Cell-Zone and WiFi-Zone nodes. The values in the conditional probability distribution are populated by

calculating the frequency a given Composite-Beacon-Zone was visible whilst in a Cell-Zone and WiFi-Zone

combination.

The WiFi-In-Cell-Zone node, like the Composite-Beacon-Zone represents the relationship of being

concurrently located in different types of zone. In this case, the probability of being located in a given WiFi-

Zone whilst also being located in a given Cell-Zone. Again this enables increased assertions to be made

regarding both the current Cell-Zone and the current WiFi-Zone. The conditional probability distribution is

determined by calculating the frequency with which a given WiFi-Zone was visible whilst a given Cell-Zone

was also visible.
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In this network the probability distributions for the Composite-Beacon-Zone and WiFi-In-Cell-Zone

nodes are static for a given set of training data. The root nodes, Cell-Zone and WiFi-Zone nodes are however

dynamic and the unconditional probability distributions are updated with each new position dependent

measurement.

4.2.3 Applying Evidence

In this section we demonstrate how it is possible to make astrongerestimate of a user's qualitative location

by applying evidence to the Bayesian network described in the previous section. We demonstrate how to

add evidence to the Bayesian network to determine the following probability:

P(CZ jWZ; WICZ; CBZ )

whereCZ is the Cell-Zone,WZ is the WiFi-Zone,WICZ is the WiFi-In-Cell-Zone andCBZ is the

Composite-Beacon-Zone We start by looking at the probability of being in a particular Cell-Zone given

evidence about the current WiFi-Zone, WiFi-In-Cell-Zone and Composite-Beacon-Zone. By using Bayes

rule we can write this as:

P(CZ jWZ; WICZ; CBZ ) =
P(WZ; WICZ; CBZ; CZ )

P(WZ; WICZ; CBZ )

The states of Cell-Zone are mutually exclusive, hence we areable to transform the denominator to give:

P(CZ jWZ; WICZ; CBZ ) =
P(WZ; WICZ; CBZ; CZ )

P
CZ 0 P(WZ; WICZ; CBZ; CZ 0)

By using the product rule we can now expand both numerator anddenominator to give.
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P(CZ jWZ; WICZ; CBZ ) =

P (W Z jW ICZ;CBZ;CZ ) � P (W ICZ jCBZ;CZ ) � P (CBZ jCZ ) � P (CZ )
P

CZ 0 P (W Z jW ICZ;CBZ;CZ 0) � P (W ICZ jCBZ;CZ 0) � P (CBZ jCZ 0) � P (CZ 0)

At this point we do not yet have an equation that is representative of the conditional independencies

in our Bayesian network. We therefore need to update statements such asP(WICZ jCBZ; CZ ) with the

relationships shown in Figure 4.6. This gives:

P(CZ jWZ; WICZ; CBZ ) =

P (W Z ) � P (W ICZ jCZ ) � P (CBZ jCZ;W Z ) � P (CZ )
P

CZ 0 P (W Z ) � P (W ICZ jCZ 0) � P (CBZ jCZ 0;W Z ) � P (CZ 0)

We are then able to simplify by removing the common factorP(WZ ) from both the numerator and

denominator. This is possible because the prior probability for the WiFi-Zone has no direct effect on the

Cell-Zone probability. The prior probability is the probability before evidence is added. In this case the

WiFi-Zone is not a parent nor a child of the Cell-Zone node hence the prior probability for the WiFi-Zone

has no effect on the Cell-Zone. This simpli�cation gives:

P(CZ jWZ; WICZ; CBZ ) =

P(WICZ jCZ) � P(CBZ jCZ; WZ ) � P(CZ)
P

CZ 0 P(WICZ jCZ 0) � P(CBZ jCZ 0; WZ ) � P(CZ 0)

We illustrate this by determining the value ofP(CZ = AjWZ = A; WICZ = A; CBZ = A) by

substituting known evidence. In this case we wish to know theprobability of being in Cell-Zone A given

that we are currently in WiFi Zone A, WiFi-In-Cell-Zone A andComposite-Beacon-Zone A.
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P(CZ jWZ; WICZ; CBZ ) =

P (W ICZ = A jCZ = A ) � P (CBZ = A jCZ = A;W Z = A ) � P (CZ = A )
P

CZ = A 02 ( yes;no )
P (W ICZ = A jCZ = A 0) � P (CBZ = A jCZ = A 0;W Z = A ) � P (CZ = A 0)

We can now solve this by substituting the values from the conditional probability tables. This allows us

to make stronger estimate of a user's position thus increasing positioning system performance. This process

is repeated to determine the probabilities for the Composite-Beacon-Zone and WiFi-Zone zones.

4.2.4 Assessing Performance

In Section 4.1.2 we demonstrated how it was possible to construct a zone-based representation of a spatial

environment in an unsupervised manner. As part of the process the deployer had to select the number of

zones to cover the application environment. As such, a rangeof values are used with the performance of

eachsolutionbeing evaluated and the most appropriate selected. We use the termsolutionto refer to both

the Cell-Zone and WiFi Zone radio maps together with the Composite-Beacon-Zone map. In this section

we discuss the different aspects of performance that need tobe considered when selecting a solution.

When considering the performance of a solution we must assessthree factors: reliability, granularity

and substantiality. In terms of performance,reliability refers to consistently positioning a user in the same

qualitative zone when they are at the same physical position. The positionalgranularity of a solution is

dependent upon the number of distinguishable or effective zones. We use the termeffective zoneto refer to

a zone that a user has been identi�ed as being located in. Ideally the number of effective zones will be equal

to the total number of created zones. This is not however realistic with all types of positional dependent

measurements, particularly noisy sources such as GSM and 802.11 signal strength levels. As such, we

remove unused zones and instead only use the effective zones.
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Figure 4.7: Relationship between Cell-Zone's and WiFi-Zone's.

4.2.5 Results

In this section we assess the performance of the Bayesian Belief Network (BBN) when determining the

current Cell-Zone given evidence about the WiFi-Zone, WiFi-In-Cell-Zone and the Composite-Beacon-

Zone. It is important to note that we are assessing performance from the perspective of GSM cells (Cell-

Zone's). We compare whether using this extra information (knowledge of WiFi-Zone's, WiFi-In-Cell-

Zone's and the Composite-Beacon-Zone's) can increase the reliability of identifying the current Cell-Zone.

We do this by comparing results obtained from a BBN against those from K-Nearest-Neighbour (KNN)

method that only uses Cell-Zone information.

Figure 4.7 illustrates the assumptions we make regarding the relationship between Cell-Zone's and

WiFi-Zones. This �gure represents a 2D spatial environment. In this �gure there are three Cell-Zone's

(CZ1, CZ2, CZ3) and three WiFi-Zone's (WZ1, WZ2, WZ3). The Cell-Zone's cover a larger geographic

area than the WiFi-Zones. A single Cell-Zone may completelycontain a WiFi-Zone (e.g. WZ2) or the

coverage area of a WiFi-Zone may overlap the border of two Cell-Zone's (e.g. WZ1 and WZ3). Given this

behaviour, knowledge of a WiFi-Zone may indicate membership to a single Cell-Zone (e.g. WZ2 to CZ2)

or it may indicate a probability of membership to two or more Cell-Zone's (e.g. given WZ3 membership

the Cell-Zone is more likely to be CZ3 than CZ2 due to a greaterpart of WZ3 being located in CZ3).

In order to assess the performance of the Bayesian network using real world data we collected mea-
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surement samples from a metropolitan environment. Volunteers were equipped with Orange SPV C500 cell

phones capable of monitoring the signal strength levels forup to seven cells. To obtain 802.11 data users

also carried an IPAQ 4700 that ran software to passively scanfor WiFi networks. The test area has reason-

able GPS coverage, and a GPS receiver was used to collect a ground truth for the samples. Samples were

collected once per second. The approach to data collection was deliberately systematic where volunteers

were asked to walk along explicit paths. This approach enabled an assessment of the reliability of a user's

qualitative location to be made. Data was collected at different times of day over a two month period in

2005. In total over 85,000 signal strength measurements were taken.

In Figure 4.8 we show the performance of Bayesian Belief Network (BBN) and K-Nearest-Neighbour

(KNN) using real data collected from two different areas of the same metropolitan environment. In the �rst

area WiFi beacons were only visible in approximately 11% of the data-points. In the second area WiFi

beacons were visible in approximately 44% of the data-points. We found WiFi data was not as widely

available as we had expected. We suspect this is due to the distance from pedestrian paths to nearby

buildings. At many points along the path the volunteer was 10-15 metres from the nearest building hence

signal strength levels were weak and not always detectable.

In the �rst area, in terms of reliability, the BBN only performed slightly better than KNN, this is due

to the limited WiFi data. In this experiment 89% of the time the BBN was determining location using

only Cell Zone data and cellular Composite Beacon Zone data.In terms of granularity, KNN performed

better than the BBN. This is as expected. The BBN reduces noise therefore typically places a user in fewer

zones than the equivalent KNN approach. In the second area ofthe environment, the performance gain in

terms of reliability of the BBN over KNN was more substantialthan in the �rst area. This is due to the

increased availability of WiFi information in the second area. In terms of granularity, both BBN and KNN

decline at a faster rate than in �rst area. We suspect this is re�ective of that area of the environment - fewer

distinguishable zones.

Given these experiments using data collected from the real world, the Bayesian network offers a slight

increase in reliability when only cellular and wireless beacon positional information are available. This is

due to the noise associated with cellular beacon information, particularly apparent in dense urban environ-
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Figure 4.8: Experiment 1 - limited 802.11 coverage. Experiment 2 - good 802.11 coverage.

ments. Environments where cellular, WiFi and wireless beacon information are readily available bene�t

most from applying this Bayesian network.

4.3 Related Work

The NearMe Wireless Proximity Server [KH04a] provides the ability for applications to be made aware of

other objects that are close to their current location. Positions in the spatial environment are distinguished

using 802.11 radio signals. From the perspective of the workpresented in this chapter the NearMe prox-

imity server is interesting because there is no requirementto map the radio signals to positions within the

spatial environment, e.g. a coordinate. Instead a client onthe NearMe system registers their current �n-

gerprint (visible 802.11 beacons and associated signal strength levels). The NearMe server then compares

this �ngerprint with other registered objects (clients andobjects). Those that share a similar �ngerprint are

deemed to be near the client. The threshold used to determinewhether �ngerprints are close was calculated

using a calibration phase. During calibration �ngerprintswere collected at known locations in the spatial

environment. Using these measurements the Euclidean separation distance was calculated in metres. Us-

ing the same process at runtime enables the NearMe system to determine which objects are withx metres

of a �ngerprint. This process assumes that signal strength variation and access point visibility is constant

throughout the environment. Whilst successful for the two data sets used, the authors note that this cali-

bration process is not likely to be directly transferable toother buildings and environments. Inconsistent
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performance is likely to be encountered if this system were transferred to different environments using a

constant value to represent the mapping between 802.11 dataand metres in the spatial environment. The

catchment area (the area used to identify objects in close proximity of each other) would vary in size (from

the perspective of coverage area in sqm). This is because certain parts of the environment may contain more

obstacles than others resulting in unequal disruption to radio signals. Arguably in this situation a qualitative

approach to managing space may be more appropriate.

In September 2008 Google changed the way its Mobile Maps application presented the My Location

position and associated error to the user [Goo08]. My Location uses serving Cell-ID data to determine

position. Prior to this September update the Mobile Maps application illustrated the location of the user

using a blue dot. The My Location determined position will not re�ect the exact location of the user. To

make this clear to the application users Google rendered a partially transparent blue circle around the blue

dot representing the users position. The idea behind havingboth the dot and the circle was to illustrate to

the user that the applicationthinksyou are here (blue dot) but it is impossible to know for certain so the

circle illustrates the inaccuracy. When the My Location feature was �rst launched the size of the error (blue

circle) was �xed to represent different accuracy bands including 5000m, 1700m and 500m. Typically the

size of the blue circle stayed the same. Google con�rmed thisbehaviour in 2007.

“When we originally launched the `blue circle' on Google Mapsfor mobile, the circle usually

stayed the same size no matter if you were in downtown Manhattan or rural Iowa.” Zhengrong

Ji, Software Engineer, Google [Goo08].

However in September 2008 this approach to representing error was updated. The size of the blue circle

was adapted to re�ect the coverage area of the cell (accuracyof the position). Therefore in dense city

environments the size of the blue circle was made small whereas cells that provided a larger coverage area

had their `blue circles' increased.

From the perspective of this thesis this is most interestingas it shows a shift away from the assumption

that positioning service performance is consistent. Instead it exposes the user to a zone based position with

a variable size that re�ects the limits of the positional service. This could be extended further to show the

true coverage area such as disjointed zones that are not shaped like perfect circles.
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In a series of papers Matthew Chalmers argues that ubiquitous computing systems should be designed

with `seams' in mind [CM03, CDHrR04, CMB03]. In the context of positioning seams can be thought

of as imprecise positions, gaps in coverage and inconsistencies in position accuracy. Chalmers advocates

considering these limitations during the design phase and tailoring the user experience to take advantage

of the seams as opposed to trying to hide or ignore them. In this chapter we have presented a method

that acknowledges seams in the performance of positioning systems. We move away from quantitative

coordinates and variable levels of accuracy and instead create zones with coverage areas and boundaries

modelled on the seams of the measurement data; the distinguishable space.

4.4 Summary

From the perspective of the application developer the approach to managing space presented in this chapter

has both advantages and disadvantages. An advantage is thatthe developer is provided with a location

service that highlights the limits of the positioning service (the position dependent measurements). The

developer can use a visualisation of the coverage area of thespatial zones to optimise the behaviour of

the location-aware application. If this approach were not taken the developer would need to manually

establish the performance level of the positioning servicethroughout the environment. In the worst case

the application developer may not be aware that the positioning service may not perform consistently in

the spatial environment and design the application in a way that is dependent on unachievable positioning

performance levels.

This approach can be used to integrate alternative positioning solutions. For example, If the granularity

of a zone is not suitable for a location aware application then membership to that zone could be used to

trigger switching on a GPS receiver. This provides the bene�ts of conserving power whilst ensuring the

required position accuracy is available throughout the environment.

The approach we present in this chapter is not without its limitations. The main issue relates to the

calibration process. Whilst the generation of the zones is automated (clustering) the data collection process

may still be arduous requiring the application developer tocollect measurements throughout the spatial

environment.
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Applications that are particularly suited to this approachto managing space are those whose behaviour

is intended to vary when the user is located within discrete areas of space. For example, playing an audio

commentary to visitors of a museum when they are near an exhibit. The application would use the zone

membership criteria to determine whether a user was near an exhibit. Zones that made up the environment

would be mapped to the relevant exhibits. The application would play the commentary when the user

entered the zone. The same commentary would be played throughout the zone. Alternatively this approach

could be used in energy saving applications. For example, the lights in a users home could be automatically

switched on/off depending on the room that the user was located in.

In contrast, applications that require a continuous range of position information such as those that

require coordinates, are less suited to this approach. Considering the museum example again, if the appli-

cation developer wished to vary the volume of the audio commentary depending on the distance between

the user and the exhibit piece they would need to create many spatial zones around the exhibit and map the

appropriate volume level to each zone. Establishing the mapping between zones and volumes is likely to

be time consuming, there might need to be hundreds of zones. If quantitative approach using a continuous

coordinate system was used the distance between the user andthe exhibit could then simply be mapped to

a volume as a function resulting in a far easier deployment.
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Chapter 5

Recognising Modes of Travel

The traditional approach to sensing activities such as walking or driving on a mobile device such as a phone

has been via the use of accelerometers [DD01, LM02]. Using signals from a 2D accelerometer it has been

shown that it is possible to distinguish between various states of movement such as walking, climbing stairs

and running [RM00]. This has been proven as a reliable method, capable of distinguishing between various

states of activity such as walking, running, remaining still and cycling. The main limitation of this approach

is that it requires additional sensor hardware not present on today's mobile phones, and that this additional

hardware consumes power.

In Chapter 3 we investigated the behaviour of wireless signals such as GSM and WiFi from the perspec-

tive of providing contextual information. We established that the behaviour of these signals was in�uenced

by motion. We showed that repeatedly sampling the signal strength of a wireless beacon at the same loca-

tion will provide approximately the same signal strength levels. However, collecting samples from the same

beacon at the same location whilst moving will produce a greater variation in signal strength levels. That is,

the user moving past the location where samples are collected experiences a greater range of �uctuation in

signal strength levels than compared to those collected by the user who remained stationary at that location.

In this chapter we demonstrate how we can extend this behaviour to identify everyday activities such as

walking, driving and remaining stationary. We refer to thisapproach to activity recognition asCell and
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Signal Strength Fluctuation(CSSF).

The primary contribution of this chapter is that we present amethod that does not require any additional

hardware, and in particular no accelerometers, whilst still being able to distinguish between states of activity

such as walking, driving and remaining still. Two classi�cation methods are presented:

� Supervised

� Unsupervised

The rest of this chapter is structured as follows:

� Section 5.1 describes the GSM behaviour that enables activity recognition.

� Section 5.2 presents a supervised approach to inferring thecurrent activity of the cell phone carrier.

� Section 5.3 presents an implementation using a Hidden Markov Model.

� Section 5.4 discusses performance in disparate environments.

� Section 5.5 provides an overview of related work.

� Section 5.6 discusses the use of this work in mobile applications designed to raise health awareness.

� Section 5.7 provides a summary of the chapter.

5.1 Available Information

We aim to support context-aware behaviour such as routing calls directly to an answering service when the

cell phone detects the carrier is driving, or extending the period of vibration when the carrier is walking in

order to ensure noti�cations are not missed between strides. To support this type of behaviour we need to

sense the activity of the user in a manner as close to real timeas possible. In Section 3.1.5 we demonstrated

that over a given period of time, e.g. 15 seconds, the total amount of signal strength �uctuation across

all visible cells was greater when the carrier of the mobile phone was moving as opposed to remaining

stationary. Section 3.1.6 showed that if the carrier of the mobile phone is moving, then a greater number of
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Figure 5.1: Signal Strength Fluctuation

unique cells are typically monitored. This effect becomes more apparent when greater geographic distances

are travelled. In this section we explore this behaviour further with the aim of distinguishing between

different types of motion such as driving and walking.

In Figure 5.1a we plot the signal strength �uctuation experienced whilst the carrier of the mobile phone

was stationary, walking and driving. Signal strength �uctuation is calculated using 15-second time intervals.

We use the termsignal sample periodto refer to this time interval. It is visually easy to distinguish between

remaining stationary and walking, and between remaining stationary and driving. It is however harder to

distinguish between walking and driving. To address this wecan either increase the signal sample period

or we can use a history of signal strength �uctuation measurements.

In Figure 5.1b we illustrate how it is possible to `pull apart' the lines representing each level of �uc-

tuation by extending the signal sample period. In this �guresignal strength �uctuation is calculated using

30-second time intervals. This has the effect of separatingthe stationary and motion states but at the expense

of increasing the latency of detecting state changes. It will take longer for the signal strength �uctuation

level to re�ect the current activity following a change in activity. In Section 5.2.3 we discuss in more detail

the effects of increasing the sample period.

The second approach to distinguishing between walking and driving is the use of history. We can �lter

out drops in signal strength levels that occur whilst driving when they are placed between large spikes of

signal strength �uctuation. This is possible because we areunlikely to be driving for 15 seconds, walking
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Figure 5.2: Cell density in rural and populated areas.

for 15 seconds and then driving for 15 seconds. Instead we cansmooth this to be driving for 45 seconds.

We compared the �uctuation levels in Figure 5.1 with the GPS traces and found that the drops between

high spikes of �uctuation typically occurred whilst waiting at areas of traf�c �ow control or road junctions.

Hence the graph re�ects the stop-start nature of driving in metropolitan environments.

As demonstrated in Section 3.1.6 the number of distinct monitored cells over a sample period also

provides an indication of motion. A short sample period suchas the signal sample period is not appropriate

as it does not provide suf�cient opportunity for the carrierto move and detect new cells. Instead the number

of cells monitored should be determined using a longer time period. We refer to this time period as the

cell sample period. The use of a longer sample period enables better differentiation of walking and driving.

This is because if a large geographic area is covered then thenumber of cells monitored has the potential to

increase.

The precise number of cells that will be monitored is dependent upon the type of environment. In

metropolitan environments there will be a high number of micro cells with a small coverage area, whereas

in rural environments with lower populations, coverage will generally be provisioned by macro-cells with

large coverage areas. Figure 5.2 uses the OM-UK data set to provide a visual illustration of cell density in

different types of environment. On the left hand side the mapshows the highly populated city of Manchester
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in the UK. To the right of Manchester are sparsely populated rural areas. The locations of the cell centres

are shown with coloured markers with each colour representing a different network operator. As expected,

the density and coverage areas of cells is not consistent in both rural and metropolitan environments. There

are a considerably lower number of cells in the rural area than in Manchester and the surrounding cities and

towns. This means that the total number of cells monitored cannot be treated as a constant value suitable

for use in any environment.

In summary, we can use the following information to recognise activities such as walking and driving.

� Signal strength �uctuation- The level of signal strength �uctuation across all monitored cells as

calculated using thesignal sample period.

� Cell �uctuation - The number of unique cells monitored over thecell sample period.

In the remainder of this chapter we fuse the above data to provide a means to recognise activities such

as walking and driving. Our goal is do this in as close to real-time as possible. This is because the shorter

the time it takes to infer the current activity of the mobile phone carrier, the more useful the knowledge

of the activity becomes (e.g. the ability to divert incomingcalls if the user is driving). This requires us to

make a trade-off between longer sample periods that enable stronger predictions about the carrier's current

activity and shorter sample periods that allow a quicker, albeit sometimes incorrect prediction.

5.2 Supervised Calibration

In terms of machine learning, supervised learning refers toproviding an algorithm with a set of target values

that correspond to a given set of inputs. This essentially means the algorithm is provided with training data

that is associated with the optimal or desired output. This enables the machine learning algorithm to re�ne

itself in an iterative manner by measuring system output against the target outputs. We investigated both

Neural Networks and Hidden Markov Models.
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5.2.1 Neural Network Implementation

One method to distinguish between different states of movement is to use an arti�cial neural network. The

network inputs are:(i) the sum of signal strength �uctuation across current serving and neighbouring cells

and(ii) the number of distinct cells monitored over a given time interval. Signal strength �uctuation is

calculated using the algorithm presented earlier in this thesis in Section 3.1.5. The network outputs the

current mode of travel for the given input values. The network uses a single layer of hidden units. For our

data sets we found that using a single layer of eight hidden units produced good results. We suspect for other

data sets the number of hidden units may need to be adjusted. Weights are learnt using back propagation.

The network was trained by repeatedly presenting data collected during each method of movement.

5.2.2 Neural Network Results

We have found that once trained the neural network performs well, able to distinguish between different

modes of movement. Table 5.1 shows the confusion matrix for sensing the three tasks. A total of three hours

trace data from each activity was used to evaluate performance. We used ten minutes of this data for training

the neural network and the remainder for testing. It is quiteclear that distinguishing between remaining

stationary and other modes of travel produces good performance, only occasionally positioning the user as

walking. Indeed a classi�cation into moving or not moving can be implemented very cheaply consisting of

only a tiny fraction of the resources on a mobile phone. Again, when walking, good performance levels were

achieved. However travelling in a motor car resulted in placing the current mode of travel as predominantly

walking. This was expected: the pattern of signal strength �uctuation whilst driving was erratic, periods of

high �uctuation were found between periods of low �uctuation. These drops were similar to those found

whilst walking and on occasion remaining stationary.

Initial experiments using the same trained neural network in other metropolitan environments have

shown positive results. When testing in environments with different cellular network structures such as

rural locations, we found the network to need retraining. For example, signal strength �uctuation is not

as apparent in rural areas hence using the same neural network for both metropolitan and rural areas may

result in walking being detected as remaining stationary. This can be addressed by adjusting the sensitivity
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Table 5.1: Confusion Matrix. Each row is an activity performed; each column indicates what the interpre-
tation was.

Stationary Walking Driving
Stationary 90 % 10 % 0 %
Walking 15 % 79 % 6 %
Driving 11 % 54 % 36 %

Metropolitan Environment

of the network in accordance with the current environment. Amethod for determining how to adjust the

sensitivity of the network is presented in Section 5.3.2.

The confusion between driving and other modes is due to the neural network effectively outputting

a speed of travel that has been mapped to a method of movement via the training data. Typically the

greater the �uctuation in signal strength levels and changes to the neighbouring cells the greater the speed.

However, whilst travelling in a motor car the speed of travel�uctuates between stationary (waiting at

traf�c lights), walking speed (traf�c congestion), and normal (clear roads). This results in the network

occasionally indicating other modes of travel. We are able to address this issue by re�ning the network to

include additional information about the task being sensed.

Possible improvements of a task-based approach are shown inTable 5.2. This shows that by comple-

menting the output of the neural network with a �lter based onthe task to be sensed it is possible to accu-

rately determine current mode of travel. This addresses theissues of placing the user in different modes

of travel whilst travelling in a motor car. A performance increase is also gained when sensing walking and

remaining stationary. In Section 5.3 we present a systematic approach to �ltering.

5.2.3 Window Size

In Section 5.1 we discussed how the amount of time used to calculate the levels of cell and signal strength

�uctuation can be increased to improve the reliability of recognising different activities. We refer to this

time period as the window size. By increasingly the window size the levels of cell and signal strength
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Table 5.2: Confusion Matrix. Each row is an activity performed; each column indicates what the interpre-
tation was.

Stationary Walking Driving
Stationary 96 % 4 % 0 %
Walking 3 % 91 % 6 %
Driving 5 % 15 % 80 %

With Task Knowledge

�uctuation became more distinguishable when performing the different activities. This increases reliability.

In Table 5.3a - Table 5.3j we present the effects of recognising walking, driving and remaining sta-

tionary using a range of window sizes. The window sizes increase from 15 seconds to 150 seconds in 15

second intervals. Three hours of trace data collected whilst undertaking each activity was used to assess

performance. As with Section 5.2.2 ten minutes of this data was used for training the neural network and

the remainder for testing.

The results presented in the tables show that the reliability of sensing driving and walking is generally

lower with smaller window sizes. As the window size is increased the reliability of sensing the motion states

is improved. This behaviour is due to the start-stop nature of driving and the noise present in signal strength

�uctuation measurements. Extending the window size beyond90 seconds provided minimal improvement

when sensing driving. Approximately the same performance level when detecting walking occurred with

window sizes of 75 seconds and 150 seconds. The walking performance level peaks with a 90 second

window.

The negative effects of using larger window sizes are that the time it takes to detect a change of activity

state is increased. This is because it will take longer for the total level of cell or signal strength �uctuation

to decrease or increase to a level indicative of the new activity. As such, we aim to minimise window size

and thus reduce the lag involved with detecting state changes whilst maintaining reliability.
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Table 5.3: Confusion Matrix. Each row is an activity performed; each column indicates what the interpre-
tation was.

Stationary Walking Driving
Stationary 93% 7% 0%
Walking 30% 46% 24%
Driving 17% 36% 47%

Stationary Walking Driving
Stationary 93% 7% 0%
Walking 6% 62% 32%
Driving 5% 30% 65%

(a) 15 second window size (b) 30 second window size

Stationary Walking Driving
Stationary 96% 4% 0%
Walking 4% 66% 30%
Driving 4% 26% 70%

Stationary Walking Driving
Stationary 97% 3% 0%
Walking 4% 67% 29%
Driving 3% 23% 74%

(c) 45 second window size (d) 60 second window size

Stationary Walking Driving
Stationary 98% 2% 0%
Walking 3% 71% 26%
Driving 2% 23% 75%

Stationary Walking Driving
Stationary 99% 1% 0%
Walking 2% 79% 19%
Driving 1% 27% 72%

(e) 75 second window size (f) 90 second window size

Stationary Walking Driving
Stationary 99% 1% 0%
Walking 2% 74% 24%
Driving 1% 20% 79%

Stationary Walking Driving
Stationary 98% 2% 0%
Walking 2% 70% 28%
Driving 0% 15% 85%

(g) 105 second window size (h) 120 second window size

Stationary Walking Driving
Stationary 98% 2% 0%
Walking 2% 69% 29 %
Driving 0% 13% 87%

Stationary Walking Driving
Stationary 99% 1% 0%
Walking 1% 73% 26%
Driving 0% 14% 86%

(i) 135 second window size (j) 150 second window size
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5.3 Hidden Markov Model

The problem that we are trying to solve is that we wish to inferactivity of the cell phone carrier from

observations of the GSM data. The GSM data provides an indication of the activity, but this needs to be

smoothed out by knowledge of “normal” behaviour. For example, it is usual for a person to drive for a

prolonged period of time, and then to walk; it is unusual for aperson to frequently switch between driving

and walking. We can model this activity using a Hidden MarkovModel (HMM). As explained in Chapter 2

a HMM � is de�ned as follows:

� = ( A; B; � ) (5.1)

A is the transition matrix representing the probabilities ofmoving from one activity to another. In the

context of hidden Markov models the activity of a cell phone carrier is referred to by the termstate, that

is, the hidden non-observable state. Therefore for the restof Section 5.3 we use the term state to refer

to carrier's activity. B is the observation matrix representing the probability of being in a state given an

observation and� is the initial probability distribution.S represents the set of states that the carrier can be

in (thestate alphabet), in our case:

S = ( sstill ; swalking; sdriving) (5.2)

V is the set of discrete observations. It comprisesn elements(v1; v2; :::; vn ). In our case, we map measure-

ments of the signal strength �uctuation and the cell �uctuation onto a set of discrete observations.

5.3.1 Inferring Activity

In order to infer the current activity of a cell phone carriergiven a sequence of observations we �rst need to

determine the probability of that sequence occurring in thegiven HMM. To do this we can use the Forward-

Backward algorithm (Section 2.2.3) with the forward� and backward� variables de�ned as follows:
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� t +1 (j ) = bj (ot +1 )

"
NX

i =1

� t (i )aij

#

1 � j � N (5.3)

� t (i ) =
NX

j =1

aij bj (ot + 1) � t + 1( j ) 1 � j � N (5.4)

These equations calculate the likelihood of a given series of observationsO occurring in the HMM� .

We can use this information to help determine the most-likely activity (hidden state) sequence for the given

observation sequence. There are two ways to do this, the �rstis to iterate through each possible hidden

state sequence and calculate the probability of it occurring given the observation sequence. The second

and more ef�cient approach is to use the Viterbi algorithm [Vit67]. The Viterbi algorithm �nds the hidden

state sequence most-likely to occur given an observation sequence. Following Rabiner's tutorial [Rab90],

we use
 t (i ) to represent the probability of being in stateSi given the observation sequenceO, the forward

variable� and the HMM� , that is:


 t (i ) = P(qt = Si jO; � ) (5.5)

This can be expressed using the forward� t (i ) and backward� t (i ) variables. Using these variables we

can determine the optimal activity sequence given an observation sequence, that is:


 t (i ) =
� t (i )� t (i )
P(Oj� )

=
� t (i )� t (i )

P N
i =1 � t (i )� t (i )

(5.6)

This allows us to infer the current activity of the cell phonecarrier using observations of cell and signal

strength �uctuation.

5.3.2 Unsupervised Calibration

In this section we present a method for unsupervised calibration using the HMM described in the previous

section. We use the Baum-Welch method to learnA, B , and � [BPSW70]. By presenting the Baum-

Welch algorithm with a sequence of observations it will populate A, B and� . However it will not help
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Figure 5.3: (a) The activity means and (b) creating the discrete observation alphabet.

us consistently map signal strength and cell �uctuations tothe observation alphabet. If this mapping is

not consistent across environments then the inferred hidden state may imply a different meaning such as

walking when the user is actually driving. To avoid an arduous data collection and calibration procedure we

use anautomated, unsupervised processto learn the mapping between cell and signal strength �uctuation

and the observation alphabet mapping. In this section we describe that process.

Measurements Used

In each environment we aim to distinguish between three different activities: walking, driving and remain-

ing stationary. Each of these activities produces a different pattern of signal and cell �uctuation. The

amount and pattern of �uctuation depends upon the environment. By identifying the mean �uctuation val-

ues for activities in speci�c environments we can determinethe GSM �uctuation to observation alphabet

mapping. In the context of a HMM we use the distance from the means to discretise the continuous range of

signal strength and cell �uctuation. Fluctuation measurements that are close to the activity means indicate

a stronger probability of undertaking a particular activity as opposed to those that, in terms of Euclidean

distance, are positioned further away. Hence we map these levels of �uctuation to observations contained

within the observation alphabet that re�ect this likelihood.

In order to learn the levels of �uctuation we collect a seriesof data-points. A data-point comprises a

cell and signal strength �uctuation measurement. The data points are collected at random, that is, the cell
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phone carrier does not need to declare current activities. The data points are then partitioned into three sets.

To partition the data we use K-means with[k = 3] , with the assumption that the carrier will perform all

three activities. If this is not the case thenk should be adjusted to re�ect this. The data collection process

is ended when the cell phone carrier declares that they have participated in all the activities to be sensed in

the current environment. This requires the simple press of asingle button. The reason that we require this

interaction with the carrier is discussed in detail in Section 5.4.

In Figure 5.3a we plot the mean cell and signal strength �uctuations for an urban area on the outskirts of

Bristol in the UK. In this �gure the amount of �uctuation increases with the speed of the activities, that is,

driving produced a greater level than walking and walking a greater level than remaining stationary. Whilst

this relationship is not linear the positions of these meansdo lie along an approximately straight line. We

have carried out extensive experiments in disparate types of environments and have found this behaviour to

be consistent. That is, the activity means have typically lain along a straight line. On occasion we found the

driving mean to rise slightly above the line due to a proportionally greater level of cell �uctuation. Perhaps

the most useful aspect of the relationship between the meansis that in terms of Euclidean distance, the

driving activity mean will always be closest to and greater than the walking activity mean and that the still

mean will always be closer to and smaller than the walking mean. Hence given the means produced by

K-means we are able to easily match means to their corresponding activities. This approach would fail if

driving produced less �uctuation than walking or if remaining stationary produced a greater �uctuation than

walking. We are however happy to take this shortcut because,having conducting extensive experiments in

multiple heterogeneous environments we have never found this situation to occur nor do we expect it to.

Using the mean �uctuation levels learnt for activities in a given environment we are able to de�ne

the mappings between GSM cell and signal measurements and the observation alphabet. We have found

the best way to do this is by slicing the 2D measurement space up using the means and variances of the

three activities along the two dimensions. An example of this is illustrated in Figure 5.3b. Each zone

created by slicing the measurement space represents a discrete subsection of the continuous measurement

space. Hence each zone represents the membership criteria for an observation. Membership is determined

by �nding the zone that a current measurement lies in. We de�ne 15 observations (v0; v1; :::; v14) and
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automatically divide the measurement space into 15 distinct zones. Zone spacing is equal (between the

means) and centred on the means.

This approach to learning the optimum settings for a given environment avoids the need torelearnB .

Instead we update the mapping between cell and signal strength �uctuation and the observation alphabet.

This enables us to provide consistent mappings between GSM measurements and the observation alpha-

bet. This mapping re�ects the probability of observations occurring in speci�c hidden states, matrixB .

The alternative approach, relearningB , would require the use of �xed cell and signal strength �uctuation

boundaries for mappings to observations. The probability of these observations occurring in speci�c states

for a given environment would then need to be learnt. In orderto learn these probabilities would still require

the use of K-means to learn the activity variances and means.The primary disadvantage of this approach

is that the discretised 2D space that represents the observation alphabet mappings needs to be exhaustive in

order to operate in all types of environments. That is, the measurement space needs to be discretised in a

manner �ne enough to allow operation in environments with low levels of �uctuation as well as those with

high levels such as metropolitan environments. This requires a much larger observation alphabet. This has

a negative impact on the computational overhead of running the Viterbi algorithm to determine the most

likely hidden state.

5.3.3 Results

To assess performance we compared the HMM that was trained using the unsupervised calibration proce-

dure described in this section with the hand calibrated Arti�cial Neural Network (ANN) implementation

that used task knowledge, as described in Section 5.2.1. TheANN required training with data contain-

ing associated outputs, i.e. labelled data collected whilst walking, driving and remaining still. Data was

collected in themetro-openandmetro-closedenvironments.

Both the HMM and the ANN were exposed to approximately 15-minutes of training data for each

activity. In the case of the ANN, training was conducted by repeatedly presenting data collected during

each method of movement. This needs to be carried out on a desktop PC, not directly on the cell phone.

The HMM was trained using Baum-Welch to populateA, B and� and GSM mappings to the observation
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Table 5.4: Confusion Matrix. Each row is an activity performed; each column indicates what the interpre-
tation was.

Stationary Walking Driving
Stationary 83 % 16 % 1 %
Walking 5 % 87 % 8 %
Driving 3 % 24 % 73 %

Stationary Walking Driving
Stationary 92 % 8 % 0 %
Walking 12 % 80 % 8 %
Driving 4 % 22 % 74 %

(a) ANN Supervised Calibration: Metro Environment (b) HMM Unsupervised Calibration: Metro Environment

Stationary Walking Driving
Stationary 96% 4% 0%
Walking 3% 91% 6%
Driving 5% 15% 80%

Stationary Walking Driving
Stationary 98 % 2 % 0 %
Walking 5 % 87 % 8 %
Driving 4 % 21 % 75 %

(c) ANN Supervised Calibration: Urban Environment (d) HMM Unsupervised Calibration: Urban Environment

alphabet were learnt using the method presented in Section 5.3.2. The observation alphabet consisted of 15

distinct observations. Both the trained ANN and HMM are ableto run on the SPV C500 cell phone in real

time.

In order to compare the performance of the ANN and the HMM we presented both algorithms with the

same GSM data. That is, we used the data collected from themetro-openandmetro-closedenvironments

and ran comparisons on a desktop PC. We collected approximately three hours worth of test data whilst

undertaking each activity in themetro-openenvironment. Data was collected at different times of the day

on different days of the week over a three week period. In themetro-closedenvironment we collected

approximately three hours of data whilst walking and whilststationary and approximately one and a half

hours whilst driving. The results of the ANN and HMM are shownin Tables 5.4a, 5.4b, 5.4c and 5.4d.

Tables 5.4a and 5.4b show results for themetro-closedenvironment and Tables 5.4c and 5.4d show results

for themetro-openenvironment.

In themetro-closedenvironment we found the ANN not to perform as well as the HMM when sensing

if the carrier was stationary. We suspect this is partly due to the nature of the environment, we found signal

strength �uctuation to, on occasion, behave in a sporadic manner despite the cell phone carrier remaining
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stationary. In addition, the task knowledge was applied using a simple averaging �lter in the ANN whilst

a superior 5-step Markov model was used in the HMM. In themetro-openenvironment cell and signal

strength �uctuation was considerably lower than in themetro-closedenvironment hence the results in the

confusion matrix re�ect this stability.

Whilst walking in themetro-closedenvironment we found the ANN to perform slightly better than

the HMM. It is likely that if the HMM were given more training data, a level similar to that of the ANN

would be achieved. This behaviour was also true in themetro-openenvironment however the difference in

performance between the ANN and HMM was reduced. Also, we have to keep in mind that the HMM is

unsupervised whereas the ANN has to be trained manually.

Inferring that the cell phone carrier is driving is the hardest of the three activities to sense. This is

represented in the confusion matrices for the ANN and HMM in both themetro-closedandmetro-open

environments. The reason that this activity is so hard to sense is due to the nature of driving in residential

and metropolitan environments. Like the other activities,superior performance was achieved in themetro-

openenvironment for both ANN (including task knowledge) and theHMM. We suspect this is because

the roads were not as congested hence driving data was collected, on average, at a slightly faster speed

than in themetro-closedenvironment. In addition there were fewer traf�c �ow control signals and busy

road junctions. The self-calibrating HMM performed slightly better than the ANN in themetro-closed

environment. But in themetro-openenvironment the ANN outperformed the HMM. This slight dip in

performance is probably due to the minimal amount of data used to train the HMM.

5.4 Heterogeneous Environments

In order for the HMM to operate effectively in disparate environments the unsupervised learning procedure

described in the previous section must be reinitiated or a previously learnt con�guration loaded whenever

there is a change to the type of environment. In this section we discuss how a change to environment may

be detected and places recognised using information readily available on a typical GSM cell phone.

The globally unique identity of a cell (Cell-ID) consists ofthe following information:
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� Mobile Country Code (MCC)

� Mobile Network Code (MNC)

� Location Area Code (LAC)

� Cell-ID (CI)

As cells are geographically �xed we can use thesightingof a cell to infer information about our current

location. This type of information has previously been usedto provide crude positional information via the

current serving cell, and later extended to provide a �ner accuracy using neighbouring cell information and

applying location �ngerprinting [OVMdL05, LLN01, TV04]. In the context of this work location �nger-

printing will provide an unnecessary level of positional granularity. Instead, initial experiments suggest that

the use of the Location Area Code (LAC) that forms part of a Cell-ID may be a more appropriate method

of dividing space.

A Location Area Code can be thought of as being similar to the �rst part of a UK postcode. The LAC

de�nes a general area and the cell coverage area represents asubsection of that area. By using the LAC

code as an indication of current environment we are able to detect movement from one environment to

another via a change in LAC code. In addition, we can easily recognise previously calibrated environments

and load previously learnt con�gurations.

Upon the detection of a new environment the data-collectionprocess needs to be reinitiated. Once a

suf�cient representation of the environment has been collected by participating in each of the activities,

the mapping of cell and signal strength �uctuation to the observation alphabet can be learnt. Due to the

nature and behaviour of the GSM signals in disparate environments it is not possible to assess whether

the three activities (walking, driving and remaining still) have been undertaken. This poses a problem

when determining whether the data-collection phase of calibration should end and the training process

should begin. K-means will always producek clusters irrespective of the distance between data-points. In

addition, means will vary for the same tasks in different environments. Hence we cannot use a minimum

static Euclidean distance between means to determine when suf�cient data has been collected. However

we believe that the self-declared process of depressing a single button to indicate the completion of the
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activities to be sensed is preferable over an estimate that suf�cient data has been collected, that ultimately

may be incorrect. If this estimate were to be incorrect then performance will quickly degrade, i.e. indicating

driving when the carrier is actually walking.

We alert the carrier when they have moved into a different environment via a vibration alert on their

cell phone. We then collect data-points at random intervalsin order to lower the computational overhead

associated with running K-means. This process continues until either the carrier declares completion of

participation in each activity or the current environment changes. Should the environment change before

calibration is completed, the data collected will be storeduntil the carrier revisits that environment. At this

point the partial set of training data will be loaded and new data will be added as data collection continues.

5.5 Related Work

Similar to this work, Sohn et al. [SVL+ 06] used patterns of GSM signal strength �uctuation to recognise

walking, driving and remaining stationary. Seven featureswere used to recognise activities. They reported

a performance level of 85%. The approach taken in this work differed from the approach presented in this

chapter. We use different con�gurations for different types of environment. In contrast they use a single

con�guration in all environments. This con�guration was learnt from annotated user logs.

Other approaches to sensing motion have used Wi-Fi data. TheLOCADIO project [KH04b] used

variances in Wi-Fi signal strength levels and a two-state Hidden Markov Model to infer whether a mobile

device was currently stationary or moving. This project also supplied location information by applying

location �ngerprinting.

Koile et al. [KTD+ 03] discussed the signi�cance of identifying the spatial regions in which users par-

ticipate in speci�c activities. This knowledge was used to trigger application cues and other behaviour

dependent actions upon being located in that zone and participating in a given activity. In this work, activ-

ity zones were learnt by analysing trace data collected froma tracking system and attaching knowledge of

how the application should behave in these zones.

Patterson et al. [PLFK03] used a GPS receiver to distinguishbetween different modes of transport such

as walking, driving or taking a bus. Data was collected over athree month period and daily patterns of
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behaviour were learnt using a graph-based Bayesian �lter. The mode of transportation was then estimated

using a particle �lter. This work supports a higher level prediction to be made regarding the purpose of a

user's journey.

Our approach differs from this prior work in that we do not require the additional hardware such as

accelerometers or GPS receivers to distinguish between states of activity such as walking, driving and

remaining still.

5.6 Applications: Raising Health Awareness

CSSF also provides the ability to continually run activity recognition services on mobile phones. This has

enabled applications that raise health awareness to be deployed on mobile phones. Given the obesity and

related health issues present in the Western world this is perhaps one of the most useful applications of this

work.

In collaboration with Glasgow University a mobile application was developed to monitor the number

of minutes a person spent walking each day [MSB+ 06, AMS+ 07]. For every minute they spent walking or

running the application added a minute to their daily activeminute count. The user could not only view their

own active minute count but they could also view the amount ofactive minutes that their peers had recorded.

This aim of this feature was to make the use of the applicationcompetitive with users increasing the amount

of activity that they would normally complete in a week in order to beat their friends. Screenshots from the

prototype application are presented in Figure 5.4.

To assess performance and the usefulness of an application of this nature a ten day trial was organised

with nine people. The �rst week was used to calibrate CSSF foruse in each environment and the second

week was used to assess performance. At the end of the second week the participants were interviewed and

the log �les analysed. The version of CSSF used in the trial was based around the use of an Arti�cial Neural

Network and did not have the enhancements that were later developed including the Hidden Markov Model

implementation. Despite this CSSF still produced good performance with participants commenting that is

was a very useful tool for measuring their activities. Figure 5.5 shows a two-day extract from a participants

diary. This �gure shows that CSSF generally correctly identi�ed user activity although at times running
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Figure 5.4: The phone interface. Presenting levels of activity, peer comparison and current activity.

was incorrectly classi�ed as driving.

From a motivational perspective feedback was extremely positive. For some participants the ability to

see their peers levels of activity sparked competition. Forexample, one participant saw that their friend had

a greater number of active minutes and in an attempt to catch up, she asked her neighbour if she could take

her dogs for a walk, gaining additional activity minutes. For this participant the application increased the

level of activity above what she would have normally done.

In this application, CSSF has successfully been used to raise health-awareness. It could be extended

to raise the awareness of an individual's carbon footprint.It could never be 100% accurate because of the

nature of carbon pollution. Using activity recognition techniques such as CSSF or even an accelerometer

based approach would not be able to distinguish between being a single traveller in a car (driving the car)

and car sharing with multiple people. That said, general feedback could be provided to users, such as

advising them with the amount of carbon they have saved afterthey walked fromA to B .

5.7 Summary

We have shown that using information readily available on all GSM cell phones it is possible to identify

activities such as walking, travelling in a motor car and remaining still. On a cell phone this type of knowl-

edge supports context-aware behaviour such as routing calls via a hands-free intercom when the carrier is
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Figure 5.5: Participant diary extract. Timelines of activity for two participants days with colour showing
the activity level and the text showing the participant's annotations.

driving, or notifying users of SMS messages when it detects that they are currently still. Aside from im-

provements to the existing behaviour of a mobile phone, thistype of work also opens new opportunities for

raising heath awareness. A cell phone can now act as a pedometer, able to give feedback based upon daily

activities [MSB+ 06, AMS+ 07].

We have found that a HMM using an unsupervised calibration process to learn the settings for a given

environment is able to offer a similar level of performance to that of an ANN that has been manually trained.

We believe that this approach will enable consistent performance in disparate environments. Preliminary

experiments suggest that using the LAC code as a means of determining the boundaries of an environment

should enable a computationally low overhead to sensing newenvironments and recognising those previ-

ously visited. In addition, initial experiments suggest that each environment will not require its own unique

con�guration, instead environments of similar network infrastructures may reuse existing con�gurations.

Whilst not as fast and accurate as an accelerometer, we believe that this low cost approach to sensing

activity will support a multitude of pervasive applications. The primary advantage this approach offers over

an accelerometer based method to sense activity is that it does not require any additional sensor hardware.
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As a proof of concept we have implemented the HMM presented inthis chapter on a standard mobile

phone. We have found that both the running of the HMM and the unsupervised learning process are able to

run in real time. The mobile application updated the displayon the screen to indicate the current state of

motion. An application of this nature could be extended to provide an API for other mobile applications.

For example, it could inform other applications when the carrier of the mobile phone was moving. This

would enable applications to update the interface display to offer simpli�ed views when the user was in a

state of motion.

We have shown that our strategy works using GSM (2G) networks, and we see no reason why it would

not work on UMTS (3G). Hand-off, and hence monitoring cell strength is essential to any mobile network.

In the future, we wish to assess the behaviour of GSM signals whilst running and cycling. We believe

that sensing this type of activity will be more challenging than sensing walking, driving and remaining

still because the patterns of running and cycling will be similar to that of driving. We hope that by using

additionalslower inputs such as rate of LAC code and distinct serving cell changes we can distinguish

between these activities.
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Chapter 6

Fusing Activity and Position

Information

In recent years the termPoint of Interest, or POI as it is often abbreviated to, has become commonplace. A

POI represents a location that has some relevance or interest to people. In terms of car navigation equipment

a POI may represent a restaurant, a petrol station or cash machine, e.g. a driver may wish to �ll their petrol

tank with fuel or stop for lunch. The navigation equipment typically has a POI search feature.

From a location perspective a person visiting a POI would generally describe their location as being at

the POI, e.g. “I'm at the bank.” The activity being performedat the POI may vary over time. If a driver

was �lling their car with fuel at a service station then it is likely that their current activity would transition

through the following stages. Initially they would be standing still whilst the car is �lled with fuel. Then

they would walk to the service station assistant, remain stationary whilst paying before walking back to

their car. Therefore at the location of the POI the user will perform the following activities walk, remain

stationary and drive (entering and leaving the forecourt).Although visiting a restaurant involves travel

(walking/driving) once seated at the table the motion statewould typically be stationary for the duration

of the meal. Shopping typically involves a slow walk around the shops but the motion state does become

stationary whilst looking at items and also when making purchases. The key point is that the user is typically
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moving much slower, and usually stationary at some point during a visit to a POI.

Conversely, if a person is stationary then this position mayqualify as a point of interest. For certain lo-

cations the POI quali�cation is obvious, e.g. a restaurant.Whereas for other locations the POI quali�cation

may not be as clear, e.g. the driver of a car has stopped because there is a red traf�c control signal. It could

be argued that the longer a person is stationary at a speci�c POI the greater the signi�cance of the POI to

the person, e.g. sleeping at home (POI). Therefore if the person is detected as being stationary then we can

infer that they are at a POI. The longer they are stationary the greater the signi�cance of the POI to the user.

The amount of time that the user is at a speci�c POI can also be used to determine the semantic inter-

pretation of a POI, e.g. a person is unlikely to be located at their local shop for several hours. Time of day

information can also be used to improve POI identi�cation. If a person who regularly works from 9am to

5pm Monday to Friday is reported as having a position that isnear the of�ce but the time is 8pm in the

evening then we can infer that the person is probably not at work.

A person must travel if they are to move between different POIs. The method of travel provides an

indication of the likelihood of being located in a particular POI. For example, the process of going to

work involves a transition from the Home (POI) to the Workplace (POI). This journey might regularly be

completed by car whereas a visit from Home (POI) to a local shop (POI) may usually be completed by

walking. Knowing that the person has just left home and is travelling in their car means that they are

unlikely to be visiting the local shop.

Equally, being located in a speci�c POI may in�uence the nextPOI; the POI that the user will travel

to next. For example, a person may only ever walk to the Pub; therefore if they are at the of�ce they may

drive home (POI) �rst before walking on to the local Pub. Knowledge of the place a user is about to visit

is useful if location-based reminders are to be issued as it has been shown that these reminders should be

issued just prior to arrival at the place [LFR+ 06].

In summary, the following points in�uence the process of activity recognition and position determina-

tion.

� Knowledge of the current or previous POI.

� Knowledge of the method of travel between POIs.
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� The time of day and time spent at a POI.

In this chapter we fuse location and activity information inorder to automatically identify areas of

interest to the user (home, workplace etc). We do this using the position determination methods presented

in Chapter 4 and the activity recognition techniques presented in Chapter 5. The rest of this chapter is

structured as follows. Section 6.1 presents a model for fusing activity and location data. Section 6.2 presents

a GSM implementation of this model. Section 6.3 discusses the performance of the GSM implementation.

Section 6.5 summarises this work and highlights areas for future research.

6.1 Model

Our aim is to fuse position and activity data to improve the reliability of both determining position and

recognising activities. In this section we present a model that builds on the qualitative approach to managing

space that was presented in Chapter 4.

Knowledge of transitions between POIs, or using terminology from Chapter 4, knowledge of transitions

between `zones', enables more reliable position identi�cation. For example, if we consider a scenario where

three zones exist, denoted by the letters A, B and C. Zone A represents the home, Zone B is a shop located

250 metres from the home, and Zone C is a place of work, an of�celocated 5 miles from the home. Using

only positional information we can infer the likelihood of transitioning from the home (Zone A) to either

the shop (Zone B) or the of�ce (Zone C) using frequency analysis techniques such as a Markov chain. The

usefulness of this information can be limited if the frequency of transitions fromhome-to-shopandhome-to-

of�ce occurs in roughly equal numbers. This limitation can be addressed by complementing the positional

information with knowledge of the current activity being performed. In the context of the example scenario,

the most likely method of getting to the shop is walking, however the user is far more likely to drive to the

of�ce. Therefore when leaving the house we can use the knowledge of the current activity together with the

knowledge of zone topology to make a stronger prediction of the next zone.

The relationship between activity and position is represented as:
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P(X n +1 = xj(X 0; A0); (X 1; A1); (X 2; A2); :::; (X n ; An )) = P(X n +1 = xj(X n ; An )) (6.1)

whereX is a spatial zone,X n is the current zone a user is located in andAn is the current activity. The

one-step transitional probability is:

P(X n +1 jX n ; An ) (6.2)

In the next section we present a GSM-based implementation ofthis model.

6.2 GSM Implementation

In order to implement the model for fusing activity and positional data presented in the previous section we

�rst need to solve the following problems:

1. How to create POIs?

2. How to recognise POIs?

3. How to identify the modes of travel between POIs?

We can solve these problems by building on the qualitative approach to managing space that was pre-

sented in Chapter 4 to create and recognise POI identi�ers, and the activity recognition techniques presented

in Chapter 5 to determine when the user is stationary. We do this by constructing user-speci�cPOI models

andPOI Transition models. The POI model will manage the identi�cation criteria and the POI Transition

model will manage the relationship between POIs including the method used to transition, e.g. walking.

These models need to be user-speci�c because even people whoshare a home will lead separate lives and

visit separate POIs.

Another advantage of having user-speci�c POI and POI Transition models relates to storage and com-

putational overhead. Although most modern mobile phones would not have a problem storing �ngerprint
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identi�ers for all petrol stations across the United Kingdom, it would be computationally expensive to match

a current �ngerprint with those stored of�ine. Further to this, a person is unlikely to visit all petrol stations

across the UK, meaning the majority of this information is irrelevant.

6.2.1 POI Creation

If we know the user is currently stationary we can infer they may be at a POI. We can use all stopping points

but not all POIs will share the same signi�cance. We can use the activity recognition technique presented

in Chapter 5 to identify when the carrier of a mobile phone is stationary. Once we have identi�ed that the

user is stationary (using CSSF) we need to create an identi�er for the POI (assuming this is the �rst time

the user has visited the POI). We can create identi�ers for POIs using location �ngerprinting.

We use the term “static zone” to describe a zone that has been created because the carrier of the wireless

device remained stationary at a place. The amount of time that a person spends at a place can be used to

infer the signi�cance of the place to that person [AS02, AS03]. A static zone represents the coverage area

of a POI. The �ngerprint is created by storing samples that have been collected whilst stationary and whilst

located at the zone (POI). As demonstrated in Section 3.1.8,a typical GSM cell phone can concurrently

monitor six neighbouring cells in addition to the current, serving cell. In densely populated environments

there are far more than seven cells providing network coverage. Therefore the �ngerprint needs to be

created to contain a signal power level for all cells that arevisible from within the zone boundary. If the

construction of a �ngerprint is not exhaustive and cells visible within the zone are missed, then comparing

samples containing these missing cells with those stored of�ine may result in a failure to recognise that the

user is located in the correct zone. This issue can only be addressed by the collection of additional data.

6.2.2 POI Recognition

Once the �ngerprint has been created the carrier of the mobile phone can determine the POI zone they are

currently located in by matching the received signal power levels from all visible cells. The POI associated

with the closest matching �ngerprint (e.g. shortest Euclidean distance) is returned to the user as their current

location. If no �ngerprints closely match the currently observed signal power levels across the visible cells
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then the user will be deemed to be located at an unknown POI. This will result in the POI creation process

being initiated.

There are two major differences between this approach to qualitative location and the approach pre-

sented in Chapter 4. Firstly, in Chapter 4 the zone-based representation of the spatial environment was

completed in an of�ine process. In this chapter the qualitative representation of space is created dynami-

cally, at runtime. The second difference relates to coverage area. In Chapter 4 the entire spatial environment

was divided into zones. At runtime, a user was always positioned in a zone. In this chapter we take a dif-

ferent approach. We treat POIs (zones) as `islands' that areseparated by a method of travel and we assume

that there are unknown POIs that have yet to be mapped. This requires us to consider the zone membership

criteria in a different manner. In Chapter 4 zone membershipwas determined by comparing a measurement

sample obtained at runtime against the centroids representing each zone. The closest matching zone was

returned as the user position. This was possible because theuser wasalwaysconsidered to be within the

spatial environment. In this chapter we cannot make this assumption because we want to be able to dynam-

ically create representations of new, previously unmapped, POIs (zones). To do this we need to establish

that the user is not located at any previously mapped POIs.

POI membership is determined using position information such as GSM �ngerprints, and activity in-

formation such as, `the user is currently walking'. Upon inferring that the user is stationary, the next task

is to establish whether the user is in a previously mapped POIor a new, unmapped POI. This is in�uenced

by activity, e.g. if a user never walks to their of�ce and their previous mode of travel was walking then

the possibility of being in the POI that represents the of�ceis scored lower. The next criteria to consider

is the distance between the position dependent measurements that represent the POI. In this implementa-

tion this is the distance between GSM �ngerprints. As established in Chapter 3, a typical GSM phone can

only concurrently monitor up to seven cells. This means thatthe process of determining distance between

a centroid representing a POI and a measurement taken at runtime is more complicated; the centroid and

the measurement sample might not share the same cells. In Chapter 4 we addressed this by substituting

unknown cells with a signal strength measurement that re�ected the number of common cells (cells in both

the centroid and measurement sample). In this chapter we usethis approach. We assume that if there are no
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common cells then the user is highly likely to be in a new POI and we initiate the process to create the POI

representation. If there are common cells then a probability of being located in a given POI is calculated

using the previous mode of travel and the �ngerprint distance (zone centroid to runtime measurement). A

threshold can then be used to determine if the user is locatedat the POI. This threshold can be learnt using

historical data.

6.2.3 POI Transitions

Knowledge of the method of travel used to transition betweentwo POIs can be used to improve POI recog-

nition. For example, if two POIs are close together, sharingsimilar �ngerprints, but the user typically walks

to one but drives to the other then we can use the mode of travelto increase reliability when distinguishing

between the two POIs. We can use frequency analysis techniques to take advantage of transition knowledge.

A simple Markov chain consisting of a one step transition matrix enables this type of behaviour.

6.3 Results

We seek to assess the effects of fusing positional data with knowledge of the activity a user is currently

performing. Our aims are twofold; �rstly we aim to show that by using both position and activity data we

can increase the accuracy and reliability involved in determining position. Secondly we aim to show that by

using both position and activity data we can increase the accuracy and reliability involved in determining

the activity of the user.

In order to assess this behaviour a volunteer carried a mobile phone and maintained a diary of their

activities (for ground truth information). Data was collected over a seven day period. During this time the

volunteer was primarily located at the following POIs:

� Home - Evenings and night-time

� Of�ce - Weekdays during the day

� Hotel in London - Two days (daytime and night-time)
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Other POIs that the volunteer was located in during the week include: shops, petrol stations, and a

restaurant. Activities that were performed during the weekincluded: walking, driving, and remaining

stationary (sitting, standing still).

The data was processed in the following manner. CSSF was usedto identify what activities had been

performed at what times. This highlighted when the volunteer was stationary. POIs were created using the

stationary state information from CSSF. The resulting POIsand activities were compared against the GPS

data (ground truth) and the volunteers diary. Performance is discussed below.

6.3.1 Activity Performance (Independent)

In Figure 6.1 we present an overview of CSSF performance. We use 9 hours of trace data. Figure 6.1a

shows the levels of signal strength �uctuation using a 15 second sample window. Figure 6.1b shows the

levels of cell �uctuation using a 600 second sample window. Figure 6.1c shows the activity ground truth.

Figure 6.1d shows the CSSF interpretation using the 600 second cell �uctuation sample period and the 15

second signal strength �uctuation sample period.

Initially the volunteer was driving in the centre of London.The annotated diary reports heavy traf�c

congestion and that the volunteer was frequently stationary. The volunteer parked their car and walked to

their hotel. Once at the hotel the volunteer worked at a desk until approximately 1pm. At this time they

walked back to their car and drove from London to Bristol. Upon arriving in Bristol the volunteer completed

a few errands before returning to their of�ce at approximately 15:45. Aside from brie�y stepping out of

their of�ce at 16:30 the volunteer remained at their desk until 17:30.

When comparing the activity ground truth and the CSSF interpretation it is clear that CSSF correctly

identi�es the current activity the majority of the time. Looking only at times when the volunteer was

stationary shows a very high CSSF performance level. CSSF occasionally placed the volunteer as driving

when they were walking and vice-versa. CSSF performed poorly when detecting the volunteer was driving

at the start of the day. In contrast, CSSF provided excellentperformance when detecting when the user

drove from London to Bristol at approximately 13:10. The morning classi�cation was poor because the

volunteer was stuck in heavy traf�c close to the centre of London. This meant the volunteer was frequently
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(a) Signal strength �uctuation using a 15 second sample period
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(d) Activity as sensed using CSSF

Figure 6.1: CSSF Activity Recognition using 9 hours of test data
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Table 6.1: (a) Ground truth - total time spent in each activity. (b) CSSF Confusion Matrix. Each row is an
activity performed; each column indicates what the interpretation was. The overall classi�cation accuracy
was 84.33%.

Total time in each activity
Stationary 56.83 %
Walking 6.04 %
Driving 37.13 %

Stationary Walking Driving
Stationary 98.83 % 0.61 % 0.56 %
Walking 82.65 % 12.01 % 5.34 %
Driving 23.35 % 2.75 % 73.90 %

(a) Ground truth (b) CSSF Confusion Matrix

driving at walking speed, and remaining stationary. The afternoon drive from London to Bristol was very

clear. The CSSF classi�cation re�ects both of these situations.

In order to assess the bene�ts of fusing location and activity information we �rst need to assess the

performance of CSSF without the use of location information(independent performance). Table 6.1a shows

the total time spent performing each activity over the nine hour period. Table 6.1b shows the confusion

matrix for sensing the three activities over the same nine hour period. This shows the CSSF performance

was excellent when detecting the stationary state. Performance suffered when detecting that the user was

walking. However the ground truth suggests that in total theuser was walking for just 6% of the time during

the entire trace. The poor performance was due to the type of walking journeys that occurred during the

creation of the data set. For example, when the user walked out of the hotel to the car park a large spike in

signal strength �uctuation occurred. Typically a spike of this nature would indicate driving. We suspect the

overall performance level would be increased had more data had been collected whilst the user was walking

for longer continuous periods of time. Driving detection suffered due to the slow moving traf�c that was

encountered in the centre of London. The overall classi�cation accuracy was 84.33%. Whilst encouraging

it should be noted that these results have been obtained using a minimal amount of data.

In the next section we look at the performance of the model from the perspective of position and activity.
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6.3.2 Position and Activity Performance

When the user is stationary they are at a POI. The POI is either one that the user has previously visited or a

new unknown POI that has yet to be mapped. We use the activity information obtained from CSSF in the

previous section to determine when the user is stationary. We use the same nine hour data extract that was

used in the previous section to assess performance.

In Figure 6.2 we present an overview of CSSF performance. Figure 6.2a shows the POI ground truth.

Figure 6.2b shows the location service interpretation. This illustrates that the major POIs (hotel room and

of�ce) were successfully identi�ed. Due to the noise associated with CSSF an additional 18 POIs were

created. Eight of these were created at the start of the tracewhen the volunteer encountered slow moving

traf�c. Further POIs were created when initially leaving the hotel (driving through London). We now

discuss the causes of this behaviour in more detail.

Initially we used the CSSF activity data to create a unique POI for each time the volunteer was detected

as stationary. This resulted in the creation of 100 candidate POIs. The ground truth indicated there were

7 POIs. Between them, these were visited a total of nine times. Some of these visits lasted just a single

minute. Of the 100 POIs that were created, 72 of them were created when the CSSF detected the user

as being stationary for than 30 seconds. Increasing this threshold to two minutes reduces the number of

created POIs to 14 and a �ve minute �lter resulted in just 8 POIs. The 8 POIs did not correlate directly with

the ground truth.

Making assumptions about the time needed to be located at a position for it to be considered as a POI is

potentially problematic. For example, requiring a person to be located at a POI for �ve minutes may miss

POIs such as car parks and shops. That said, CSSF takes a number of seconds to detect state changes and

it is subject to occasionally sensing a user as stationary when they are driving (traf�c lights). Therefore

the use of a 30 second �lter is an appropriate approach to removing unnecessary POIs. Applying this �lter

reduced the set of candidate POIs to 28. Table 6.2 provides anoverview of these 28 POIs. We now discuss

how to merge candidate POIs that represent POI.
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(b) Location service interpretation

Figure 6.2: POI ground truth against the 9 hours of test data
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Merging Candidate POIs: Method

We need to establish if any candidate POIs represent the samePOI. We have the following available infor-

mation:

� Common cells- Cells that are seen in both candidate POIs.

� Cell signi�cance - An extension of a common cell. If a POI consisted of 10,000 samples and a

particular cell was seen in all samples then that cell is verysigni�cant to that POI. Conversely, if a

cell was only seen 1% of the time than, from the perspective ofidentifying similar candidate POIs,

that cell is of little signi�cance.

� Signal strength- Closely matching signal strength levels indicate the candidate POIs are likely to be

close to each other.

Given this information we need to establish a threshold for determining that two candidate POIs repre-

sent the same POI. To do this we �rst calculate the signi�cance of each cell by assigning a score based on

the number of times it has been seen:

sj =
f j

t
(6.3)

wherej is a cell andsj is the signi�cance score,f j is the number of times the cell has been seen (in

the candidate POI cluster), andt is the total number of samples in the candidate POI cluster. Cells that

appear infrequently are assigned lower values than those that are consistently seen. We then compare the

`signi�cance' of the cells in each candidate POI using:

csj =
q

(cp1js � cp2js )2 (6.4)

wherecp1j is a cell from candidate POICP1 andcp1js is the signi�cance score, andcp2j is a cell

from candidate POICP2, andcp1js is the signi�cance score, andcsj is the common signi�cance score for

the cell. Common cells that are equally signi�cant to both POI's will be assigned lower scores (closer to

zero) than those that vary in signi�cance. If a cell exists inone candidate POI but not in the other candidate

131



6.3. RESULTS CHAPTER 6. Fusing Activity and Position Information

POI then the signi�cance score for the missing cell is assigned a value of0. For example, ifcp1j = 0 :9 and

cp2j is missing,cp2j is assigned a value of0 resulting incsj = 0 :9. Using the common signi�cance score

csj for a given cell we compare the mean signal strength levels:

ssj =

p
(cp1jk � cp2jk )2

r
(6.5)

wherecp1jk is the signal strength level for cellj in candidate POICP1 andcp2jk is the signal strength

level for cell j in candidate POICP2 andr is the maximum possible difference in signal strength levels

andssj is the normalised distance between the mean signal strengthlevels. The further apart the signal

strength levels the higher the value ofssj .

We can then calculate the total distance between two cells using:

dj = csj � ssj (6.6)

wherecsj is the common signi�cance for the cell andssj is the normalised distance between the mean

signal strength levels anddj is the total distance between two cells. Repeating this process for each cell

and summing produces the total distance between each POI. The higher this number the further away we

consider the candidate POIs to be.

The next stage is establish the threshold that should be usedto indicate that two candidate POIs are

close and should therefore be considered as the same POI. We can learn this value using historical data

(the annotated diary - ground truth). In our case we generatea set of POIs using the above scoring method

and compare the generated POIs against the ground truth. This requires a range of values to be tested and

performance assessed.

Given a set of generated POI's we can assess performance using the GSM measurement data. Given

a measurement we establish the POI that we were currently located in at a given time. By repeating this

process for the entire set of measurement data we can establish when a person arrived at and left each can-

didate POI. Our algorithm does not automatically infer the semantic meaning or name of a POI so instead

we compare arrival and leaving times against the ground truth. A generated POI that was visited/exited
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at approximately the same time as a reported ground truth POIvisit/exit enables us topair the POIs. At

present we complete this pairing process by hand. Once this is completed we can calculate how often the

user was correctly positioned in a POI (according to the ground truth). We then repeat this process using

a range of threshold values. Each value will produce a different set of candidate POI's. The larger the

threshold the smaller the number of candidate POIs. Once we have repeated this process we can compare

performance to establish the optimum threshold value for a given set of training data.

Merging Candidate POIs: Results

We use the technique described in the previous section to generate a set of candidate POIs. The results of

this are shown in Figure 6.2b. This successfully merges candidate POIs that represent the same position,

e.g. the of�ce. It is important to note that our approach doesnot map the centroid that represents a POI to

a semantic meaning. For the ease of explanation we manually assign the semantic meaning to candidate

POIs by comparing against ground truth information.

Comparing the inferred POI against the ground truth POI information resulted in the following perfor-

mance levels:

� Hotel Car park - 100.00%

� Hotel Room - 100.00%

� Outside Of�ce - 97.78%

� Of�ce - 97.69%

The user was successfully located at theHotel Roomfor the entire time that the ground truth (diary)

reported they were there. This �gure doesn't show that they were sensed at being at this POI six minutes

before the ground truth suggests and one minute after the ground truth suggests they left. The same is true

for the POIHotel Car park. The user was successfully located in the POI for the entire time that the ground

truth suggests the user was there. However they were sensed at being at this location for an additional four

minutes (two before and two after). The additional time spent at POIs is likely due to the time it takes for

CSSF to detect changes in activity and small errors in groundtruth information (the annotated diary). The
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overall performance level as determined by comparing the ground truth against the generated POI's resulted

in a performance level of approximately 91%.

It is important to note that the results presented here have been generated by calculating the optimum

threshold for merging candidate POI's for this speci�c dataset. The threshold was calculated and the

candidate POI's merged using the method presented in the previous section. Whilst this approach produced

promising results for this dataset, use of this threshold isnot likely to be transferrable to other datasets

collected in disparate environments. If a single, �xed threshold were used we would expect performance

levels to vary. Good levels of performance should be achieved in environments where the behaviour of radio

signals matches that of those in the environment where the threshold was initially calculated. In contrast,

environments with different radio characteristics such asdifferent cell densities are likely to experience

poorer performance levels when using a single threshold value. Aspects of performance that are likely to

be affected are the coverage are of POI's and the reliabilityof matching POI's. From a user perspective

some of the places they visit might be indistinguishable from others. For example, the POI representing the

home of a user may also encompass the house of a friend living afew doors away. There are two possible

causes. The �rst may be a lack distinguishable radio signalspresent at the two POI's. The second would

be an overly large threshold value. That is, a threshold value that results in measurement data collected at

different locations being merged into a single POI. The second problem can be addressed by adjusting the

threshold value depending on the environment.

6.3.3 Position Performance (Independent)

In this section we demonstrate the bene�ts of using both location and activity data. We show that knowledge

that the user is stationary and therefore has not left a POI can be used to improve performance characteristics

such as the reliability of matching POI's. We also show that knowledge a user is moving can be used to

improve the responsiveness of detecting that a user has lefta POI. In order to illustrate these bene�ts we

must �rst show the effects of not using motion (activity) information. We do this by determining when we

are located at a POI using only position information. To do this we use the POIs that were created in the

previous section. Each POI is represented by a GSM �ngerprint. We process the raw data to �nd the closest,

134



CHAPTER 6. Fusing Activity and Position Information 6.3. RESULTS

in terms of Euclidean distance, POI. Figure 6.3a shows the output of this process, the POI interpretation

using only positional information. For convenience and to aid comparison we repeat Figure 6.2b and

Figure 6.2c, to show ground truth information, fused position and activity interpretation.

From looking at these graphs it is clear that using just position information results in a far more noisy

interpretation of the current POI. For example, during the time the ground truth information reports that the

user was located at the Hotel Room POI the position POI �uctuated between nine different POI's. The user

was positioned in a single POI 82% of the time and �uctuated between the remaining eight POI's for the

remaining time. It is possible to address this behaviour by merging multiple POI's into a single POI.

The main issue with only using position information relatesto the POI entry and exit times. If POI's are

merged then the difference between the ground truth POI entry/exit times and those reported by the position

only method is increased. This is to be expected when using position information alone. Membership to

a POI is determined by calculating the Euclidean distance between a measurement taken at runtime and

the �ngerprints that represent the POI's. A threshold is applied to the Euclidean distance to determine POI

membership. That is, the closest matching POI with an Euclidean distance within the allowed threshold is

considered as the users current location.

Given this approach to POI membership the user is likely to bepositioned at a POI before they physically

arrive and may still be positioned at the POI after they have left. This is because the Euclidean distance

threshold is likely to cover areas outside of the POI. That is, the threshold is unlikely to perfectly align with

the physical boundary of a POI e.g. the walls of a persons home. Therefore the user is likely to be within

the Euclidean distance threshold before they arrive and after they have left.

This problem occurred when using only position informationto determine if the user was located at

the Hotel Car park POI. The ground truth suggests that the user arrived at the POI at 9:45am. The method

that only used position information alone reported that theuser arrived 4 minutes earlier. An exception to

this behaviour occurs when the user enters their of�ce. On this occasion the position only method correctly

recognised the transition to a new POI within 30 seconds of the reported ground truth. This is because

the user was previously located in a POI with no cellular coverage, an underground car park. Without cell

information it is not possible to determine position. Therefore cell coverage is not availablenearthe Of�ce
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POI, it is only available at the Of�ce POI.

The use of activity information helps to address the problemof positioning the user at a POI before

they arrive and after they have left. This is because we deem auser to have left a POI as soon as motion is

detected. Of course, when stationary, this approach is still susceptible to the same problems as only using

position information, for example, a person could wait (be stationary) outside of their of�ce (POI).

In summary, the primary bene�t of combing activity and position information is the increased accuracy

when detecting arriving at and leaving POI's. Analysis of this dataset showed using position information

alone can result in indicating that the user has arrived at a POI up to four minutes before they actually

did. Whilst we do not believe this four minute error to be constant in other datasets we would expect the

principle behaviour (positioning a user in a POI before theyarrive and after they have left) to be true.

6.3.4 Limitations

Before driving CSSF normally detects the user as walking andthen remaining stationary. This re�ects the

real process; you walk to your car, sit in it, fasten your seatbelt and start the engine before driving away.

Excluding changes of speed when travelling on foot (runningto walking), as humans we always transition

through a stationary state when changing modes of travel (activity). For example, a car needs to come to a

complete stop before a person can get out.

As such, maintaining aone-stepPOI transition matrix that models the methods of travel usedto move

between POIs seems sensible. However due to limitations relating to CSSF ability to sense periods when

a user is brie�y in a stationary, state transitions between POIs can appear to involve multiple modes of

travel; more than one activity. For example, when a person gets into a car CSSF does not always detect the

stationary state. This occurs if a person gets into their carand drives away relatively quickly. CSSF will

sense the person as having previously being walking and thendriving.

There are two approaches to handling this. The �rst is to incorporate this behaviour into the transition

matrix representing the likelihood of transitioning from one POI to another. The second is create a POI upon

detecting a change of motion state, e.g. walking to driving or vice-versa. The �rst approach requires the

transition matrix to model multiple activity transitions to move between two POIs. For example, a transition
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Figure 6.3: POI ground truth against the 9 hours of test data

137



6.4. RELATED WORK CHAPTER 6. Fusing Activity and Position Information

from POI A to POI B may involve walking, driving, and walking.This probability can be contained in

the transition matrix. The second approach is undesirable due the noisy nature of CSSF when classifying

driving during times when the driver is stuck in congested traf�c. CSSF classi�cation may �uctuate between

walking and driving, resulting in the creation of many POIs that may never be visited again (the person may

be unlikely to get caught in traf�c in the exact same spot). This behaviour also has an impact of the �rst

approach. If the identi�cation of transitions between two POIs does not allow for frequent �uctuations

between walking and driving then lower probabilities can become associated with valid POI transitions.

For example, a transition from POI A to POI B may involve walking, driving, and walking. Performing

this sequence of activities may indicate that the user is highly likely to be going to POI B. However CSSF

may also sense this as walking, driving, walking, driving, and walking. This different sequence of activities

might result in a lower probability being associated with the likelihood of transitioning from POI A to POI

B.

6.4 Related Work

There has been much work using GPS to identify places of interest and recognise transportation rou-

tines [PLFK03, LPFK07, LLK05, ZFL+ 04]. Liao et al. [LFK05] demonstrated that by using GPS location

data it was possible to identify places of interest. This work recognised the home, work place, and when the

user was shopping or dining. This was implemented by fusing temporal information with the GPS location

data. A Relational Markov Network was used to assign semantic meaning to locations. Similarly, Ashbrook

and Starner [AS02, AS03] used GPS data to learn signi�cant locations and predict movement between those

locations. This work clustered GPS data that had been collected over an extended period of time. The larger

the cluster the greater the signi�cance of the location to the user. Marmasse and Schmandt [MS00] devel-

oped a GPS based system for identifying buildings that were of interest to a user. The system, known as

ComMotion, continuously sampled the GPS receiver. When the GPS failed to return a position ComMotion

used this information to signify that the user had entered anindoor environment. Subsequently, obtaining a

position indicated leaving that building. Whilst successful this approach does suffer from limitations asso-

ciated with GPS including poor performance in cities with tall buildings. This results in the system thinking
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the user has entered a building when they are still outside. Kang et al. [KWSB05] presented an algorithm

for recognising places that was from a positioning perspective independent. That is, it could recognise

places using positional information obtained from disparate sources e.g. GPS, WiFi, cellular. This required

positions obtained from the location service to be mapped toa coordinate scheme understood by the system

(place recognition algorithm) and that the positions (coordinates) were time stamped. Temporal point clus-

tering was then applied to recognise places. Patterson et al. [PLFK03] used particle �lters to recognise the

current mode of travel and the most likely route. Although performance was assessed using labelled GPS

log �les, mappings (GPS to mode of travel) were learnt in an unsupervised manner.

GSM data has also been used to recognise places of interest [MM06]. The most similar related work to

ours comes from Kim et al. [KHGE09] and Hightower et al. [HCL+ 05]. Kim et al. [KHGE09] presented

an algorithm that discovers places by looking for stable RF signals. The RF signals are considered stable

when there are minimal changes to the list of visible beacons(WiFi access points and Cell-ID's). This

behaviour is used to signify the entrance to a place and when the RF signals start to �uctuate this is used to

infer leaving a place. In our work we applied the CSSF activity recognition technique to identify entering

and leaving places. Hightower et al. [HCL+ 05] presented an algorithm called BeaconPrint that used RF

�ngerprints (WiFi and GSM) to recognise places. Again stable RF signals were used to indicate the arrival

at a place. This work did not seek to assign semantic meaning to places instead it sought to recognise

previously visited places and create representations for new places. This work showed that if a place was

visited on two separate occasions or for more than 10 minutesthen recognising a later visit would produce

an accuracy of 80%.

Liao et al. [LFK07] presented a labelling algorithm to recognise types of signi�cant places. The al-

gorithm used temporal information (time of day etc) together with stereotypes of human behaviour e.g.

amount of time typically spent working and sleeping. This resulted in a system accurate over 80% of the

time when recognising when the user was working, sleeping and in places that represented leisure activities.
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6.5 Summary

In this chapter we have demonstrated that by fusing activityand location data it is possible to make a

stronger inference of either aspect of context. We have presented an approach to recognising whether the

user is located at an existing POI or at a new, previously unmapped POI. We have highlighted that the limi-

tations of positional dependent measurements (in our case GSM) can create problems when distinguishing

between POIs located close to each other.

We have also shown how it is possible to recognise POIs that are of interest to a speci�c user. This work

can be extended to infer the semantic meaning of a POI by usingtime-of-day information. For example,

if a user is regularly located in a POI between the hours of 10pm to 7am then we can infer that the POI

represents their home. Equally, if a user was consistently at the same POI between the hours of 9am to 5pm

then we can assume that this is their workplace.

In the GSM implementation presented in Section 6.2 we created new POIs when the user was stationary

and not located in a previously mapped POI. This dynamic approach provides the bene�t of not requiring an

of�ine calibration process. However, the longer the application is used and the more places that are visited

the greater the risk of performance degradation. This is because whenever the user is detected as being

stationary a process of identifying the user's current POI is initiated. This involves comparing their position

(and previous activity) against all POIs. Obviously, the more POIs the greater the computation. There are

two methods to addressing this. The �rst is to intelligently�lter the candidate POIs. For example, remove

the POIs that share no common cells. The second approach is toremove POIs that are not of interest to the

user. In order to implement this we could use time-of-day as discussed earlier in this section. This would

enable the identi�cation of key POIs such as the home and of�ce. POIs that the user infrequently visits for

a short period of time could also be removed.

In summary, this chapter presents an approach to identifying POIs such as the of�ce and home in an

automated manner, and without the use of additional hardware.
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Table 6.2: POI Creation using 30 second �lter.

POI Start time End time Unique cells Sample size Ground truth
1 09:00:12 09:02:10 12 117 Moving
2 09:02:40 09:06:25 17 225 Moving
3 09:08:04 09:08:38 7 35 Moving
4 09:11:32 09:12:07 5 36 Moving
5 09:13:17 09:14:46 10 90 Moving
6 09:23:19 09:25:20 10 121 Moving
7 09:26:50 09:29:10 10 140 Moving
8 09:31:21 09:39:01 10 459 Moving
9 09:41:03 09:42:33 9 91 Moving
10 09:43:49 09:51:14 9 444 Hotel Car Park
11 09:51:19 12:53:26 11 10878 Hotel Room
12 12:53:36 12:54:40 7 65 Moving
13 12:57:45 13:00:44 9 180 Moving
14 13:00:54 13:01:44 8 51 Moving
15 13:03:39 13:06:58 8 200 Moving
16 13:08:34 13:09:04 7 31 Moving
17 13:19:27 13:20:16 5 50 Moving
18 14:13:02 14:13:51 5 50 Moving
19 14:14:01 14:15:01 9 61 Moving
20 15:08:05 15:09:20 8 75 Moving
21 15:13:08 15:19:17 9 369 Outside Of�ce
22 15:19:22 15:28:48 8 565 Moving & University Car Park
23 15:31:42 15:39:20 5 456 University Building & Moving
24 15:41:58 15:44:42 8 165 Underground Car Park
25 15:44:57 16:28:13 15 2586 Of�ce
26 16:28:28 16:29:23 7 56 Moving
27 16:29:38 17:33:24 18 3809 Of�ce
28 17:34:56 17:36:55 9 120 Moving
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Chapter 7

Conclusions

The aim of this thesis has been to demonstrate that a suitablelevel of context-awareness can be provided

on mobile phones without the use of additional sensor hardware such as GPS receivers and accelerometers.

We have presented a novel, low-power method for inferring the current activity of the carrier of a mobile

phone. We have shown how space can be managed in a qualitativemanner with inconsistencies in position

determination handled within the spatial model. We have presented a method for fusing qualitative (zone-

based) positional data with knowledge of the current activity of the carrier of a mobile device. We have

shown that considering these two aspects of context simultaneously enables a stronger prediction of both

location and activity. This data fusion technique builds upon the method for inferring the current activity

of the carrier of a mobile phone using raw cellular data and the approach to identifying locations again

using GSM data. In this chapter we review the relevance of this work from the perspective of commercial

applications before providing an overview of the limitations and highlight possible areas of future work.

7.1 Applications

The functionality and capability of mobile phones has movedbeyond the ability to make and receive phone

calls. They are increasingly being used to display richer, brighter interfaces, play audio and video, provide

location-aware behaviour via GPS and use high speed data connections (WiFi, UMTS). The increase in
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power consumption has meant that power saving is still of huge signi�cance despite advancements in battery

technology. In addition, the increase in functionality requires a user interface that provides the means for

the user to take advantage of all of these features without being overly complicated or cumbersome to use.

Arguably the use of context-aware behaviour can be used to provide bene�ts that address both of these

themes.

In order to adapt the behaviour of a mobile phone based upon contextual information the device must

�rst sense context. Using accelerometer based techniques to recognise activities such as walking, running

and driving is computationally expensive. The accelerometer needs to be sampled many times a second.

Velocity based approaches to activity recognition that usedata obtained from GPS receivers consume sub-

stantial amounts of power (powering the GPS receiver). In contrast, CSSF uses a minimal amount of power

to recognise activities. CSSF is not however as fast at detecting state changes as an accelerometer. This

could be addressed by intelligently swapping between different activity recognition technologies. For ex-

ample, an accelerometer could be used to quickly detect state changes before switching to the CSSF method

to conserve power.

Given knowledge that the mobile phone is stationary offers anumber of opportunities to conserve power.

For example, GPS receivers provide users with information about their current position. GPS receivers are

now integrated into some mobile phones and other mobile devices. Continuously powering a GPS receiver

is, in terms of power consumption, expensive. When a user is stationary they are provided with no new,

useful information about their location; they have not moved. Therefore switching the GPS receiver off

when the user is stationary will save power. The problem withthis approach is determining when to switch

the GPS receiver back on, i.e. detecting when the user has started to move. Both the activity recognition

work presented in Chapter 5 and the positional work in Chapter 4 offer potential solutions to this problem.

In order to provide support for handover a mobile phone monitors the neighbouring cells. If a phone is

aware that it is stationary is can reduce the scan rate used tomonitor neighbouring cells. This will conserve

power. CSSF could be used to implement this behaviour.

Similar to the stationary state, knowledge that a mobile phone is moving can also be used to conserve

power and provide a better user experience. On a mobile phone, Bluetooth is predominately used to enable
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the use of hands-free-kits. In the UK these kits are legally required if the user wishes to talk whilst driving.

They are also used by people who like to talk whilst they are walking. Continuously powering a Bluetooth

device is, in terms of power consumption, expensive. Usually mobile phone carriers do not turn off the

Bluetooth device when they are not using it. This is typically a convenience factor; switching it on and

off is a laborious task. The activity recognition work presented in Chapter 5 and the positional work in

Chapter 4 address this by enabling the smart management of devices such as Bluetooth transceivers. There

is a similar extension of this for 802.11 (WiFi). People predominately use WiFi whilst they are still so they

can check their email etc. If the mobile device knows the carrier of the mobile phone is driving then the

802.11 device may be switched off in order to conserve power.

Additional user bene�ts can come from adapting the user interface based upon the motion state. For

example, if the mobile phone is aware that the carrier is currently using the interface whilst walking then

the font size of the display could be increased, or the level of detail that is rendered reduced. This provides

better support for a user whose concentration will be split between the mobile phone and the process of

walking.

In summary, power can be conserved and the user experience improved by activating and deactivating

services based upon the state of motion, the activity of the user. Similarly, this approach can also be applied

using location information. For example, if a user only usedtheir mobile phone is make and receive SMS

messages when they were at their home then a 2G data connection could be used instead of a 3G data

connection. This would conserve power. This behaviour would require recognising when the user was at

home. Both the location work presented in Chapter 4 and the point of interest work presented in Chapter 6

could be used to implement this behaviour. For mobile devices equipped with WiFi power could be saved

by only scanning for known WiFi connections in areas where the carrier of the mobile phone uses WiFi e.g.

their of�ce and their home. At other times WiFi could be disabled and require explicit user interaction to

enable.

From the perspective of the user experience knowledge of thecurrent location could be used to acti-

vate/deactivate certain services. For example, pro�les could be switched depending on whether the user

was in their of�ce or at their home or calls could be redirected.
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7.2 Limitations

Both the position determination methods presented in Chapter 4 and the activity recognition techniques

presented in Chapter 5 perform more favourably in particular situations and environments. From an activ-

ity recognition perspective travelling via a bicycle presents problems when trying to distinguish between

cycling and walking. Equally, distinguishing between running and walking presents classi�cation prob-

lems. It would be possible to extend the activity recognition approaches to either fuse CSSF data with other

sensor data or extend CSSF to recognise these additional activities. If extending CSSF was opted for then

the activity determination delay may need to be increased inorder to distinguish between activities such as

running and cycling. This requires the use of cell parameters such as the number of unique Cell-ID's that

have been monitored over the last 120-180 seconds. The interpretation of this data is obviously extremely

dependent upon the spatial environment. Cellular coveragein dense urban environments will involve a far

greater number of unique cells when compared to rural, sparsely populated areas.

The inconsistency in cell density in cellular networks density also impacts position granularity. As one

would expect, in highly populated areas such as cities, position granularity is �ne-grained because there

are many cells with a low-coverage area. Conversely in ruralenvironments position granularity is low.

This behaviour requires a radio survey to be conducted priorto the deployment of the location technique

presented in Chapter 4. Conducting the radio survey may be time consuming depending on the desired

coverage area.

From the perspective of the activity recognition arguably the biggest limitation relates to the amount of

time taken to recognise a change from one activity to another. CSSF is not as fast at detecting state change

as an accelerometer. There is no way of improving this given the nature of signal strength �uctuation. The

�uctuation measurement is calculated over time (typically15 seconds) and cannot be measured instantly.

However this does lend itself to the classi�cation of driving. This is because short pauses in the process of

driving such as stopping at traf�c lights will be �ltered out. It is impossible to reliably classify 5 seconds of

little �uctuation after 20 minutes of heavy �uctuation: it could be a traf�c light, or the user could have got

out of the car. A prior knowledge will cause driving to persist, but it will also increase the time to sense a

change in activity.
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7.3 Further Research

The aim of this thesis has been to present practical approaches to inferring contextual information such as

current position and activity. This has successfully been achieved. During this work natural extensions

have been identi�ed. These include the use of machine learning techniques to automatically identify types

of POIs (zones). Understanding the semantic meaning of a place e.g. home, of�ce, shop, will enable a

richer set of behaviours. This is possible by comparing timeand prior locations. If the user is located at a

POI and the time is 4am and they have been there for the last 5 hours then it is likely that they are asleep at

their home.

The clustering approach used in Chapter 4 to create the zone-based representation of the spatial environ-

ment required the deployer to specify the number of zones to be created. Additional work could be carried

out to automatically calculate the optimum number of zones given a set of measurement training data. For

example, in a location �ngerprinting system the number of distinguishable zones could be calculated by

looking at the range in signal strength levels and the numberof distinct beacons groupings (combinations

of visible beacons). These would enable a simpli�ed location service deployment.

The activity recognition work could be extended in two ways.Firstly, the sensing of additional states

such as cycling could be developed. This may involve increased delays when initially identifying activities

but it should be possible. The second area of extension wouldbe to fuse the cell signal strength �uctuation

method of recognising activities with other activity recognition technologies such as accelerometer based

approaches. This should improve classi�cation accuracy ina power ef�cient way.

The Point of Interest work presented in Chapter 6 presented amethod for automatically identifying

places that are of interest to a user, e.g. their home, their of�ce etc. This method involved two phases. The

�rst phase identi�ed the Points of Interest. This phase was carried out of�ine. This approach mirrored that

of deploying a location �ngerprinting service in that it required the collection of training data that, in the

case of POIs, could be processed to extract �ngerprints to represent the POIs. Measurements collected at

runtime would then be compared against the �ngerprints thatrepresented the POIs. The POI associated with

the closest matching �ngerprint would be considered as the users current location. Activity information was

used to initiate the POI matching process. That is, the system only considered the user to be located at a POI

147



7.4. CLOSING REMARKS CHAPTER 7. Conclusions

when they were stationary. At all other times the system considered the user to be transitioning between

POIs.

A future extension for this work would be to remove the of�ineprocess, making the creation and

maintenance of POI representations (�ngerprints) dynamic. Arguably the ability to deploy this type of

system without an extensive calibration process would be essential if this type of system were to be used in

practice. A dynamic system requires the �ngerprint identi�ers that represent the POIs to be maintained at

runtime. This is important because cell towers may be decommissioned, new ones added, or other obstacles

introduced to the environment that change radio behaviour.The process for implementing this behaviour is

as follows:

� Is the user at a previously visited POI?

� If not, create a new identi�er for the current location

� Else, update the identi�er for the POI

Implementing this behaviour is complicated because no ground truth information is available. If the

identi�er for a POI is updated by adding new radio data and theradio data is collected when the user is

at a slightly different position then the POI will grow and ultimately cover a much larger geographic area.

Alternatively if new radio information is added to a POI identi�er and old radio information is removed

the real world position of the POI may move. Both of this approaches contain problems that will limit the

usefulness of the system. As such, an area for future research is the investigation of different methods for

dynamically updating �ngerprint identi�ers.

7.4 Closing Remarks

This thesis has demonstrated how a typical mobile phone can behave in a context-aware manner without the

use of additional sensor hardware. Mobile phones will increasingly be �tted with accelerometers and GPS

receivers. However there are still power consumption problems meaning these cannot be used to provide

continuous context data. In contrast, the activity recognition work, the approach to position determination
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and the method for fusing position and activity data can be run continuously, over a 24 hour period without

the need to stop and recharge the battery.

149



7.4. CLOSING REMARKS CHAPTER 7. Conclusions

150



Bibliography

[3GP] 3GPP TS 25.305 UMTS; UE positioning in Universal Terrestrial Radio Access Network

(UTRAN); Stage 2, ver. 7.1.0, Rel. 7, [html]. Available:. http://www.3gpp.org.

[ADB+ 99] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and Pete

Steggles. Towards a better understanding of context and context-awareness. In H-W Geller-

son, editor,Handheld and ubiquitous computing, number 1707 in Lecture Notes in Computer

Science, pages 304–7. Springer, September 1999.

[Aer07] Aeroscout. http://www.aeroscout.com, July 2007.

[AGS+ 93] Norman Adams, Rich Gold, Bill N. Schilit, Michael Tso, and Roy Want. An Infrared network

for mobile computers. InProceedings of the USENIX Mobile and Location-Independent

Computing Symposium, pages 41–51, August 1993.

[AM05] Ian Anderson and Henk Muller. Towards qualitative positioning for pervasive environ-

ments. Inthe Third International Conference on `Computer as a tool' (Eurocon 2005). IEEE,

November 2005.

[AM06a] Ian Anderson and Henk Muller. Context awareness viaGSM signal strength �uctuation. In

the 4th International Conference on Pervasive Computing, Late breaking results, pages 27–

31. Oesterreichische Computer Gesellschaft, May 2006.

[AM06b] Ian Anderson and Henk Muller. Exploring GSM signal strength levels in pervasive environ-

ments. Inthe 1st IEEE International Workshop on Pervasive Computingand Ad Hoc Commu-

151



BIBLIOGRAPHY BIBLIOGRAPHY

nications (IEEE PCAC06) held in conjunction with AINI, the 20th International Conference

on Advanced Information Networking and Applications, volume 2, pages 87–91, April 2006.

[AM06c] Ian Anderson and Henk Muller. Practical context awareness for GSM cell phones. Inthe

Tenth International Symposium on Wearable Computers (ISWC2006). IEEE, October 2006.

[AM06d] Ian Anderson and Henk Muller. Qualitative positioning for pervasive environments. Inthe

Third International Conference on Mobile Computing and Ubiquitous Networking (ICMU

2006), October 2006.

[AM07] Ian Anderson and Henk Muller. Inferring a state of activity of a carrier of a mobile device.

United States Patent Application 20080274728, May 2007.

[AM08] Ian Anderson and Henk Muller. Exploring GSM data in pervasive environments. InInter-

national Journal of Pervasive Computing and Communications, pages 8–25. Emerald, May

2008.

[AMS+ 07] Ian Anderson, Julie Maitland, Scott Sherwood, Louise Barkhuus, Matthew Chalmers, Mal-

colm Hall, Barry Brown, and Henk Muller. Shakra: Tracking and sharing daily activity levels

with unaugmented mobile phones. InMobile Networks and Applications, pages 185–199.

Springer-Verlag, June 2007.

[And07] Ian Anderson. Location or motion dependent automatic control in a cellular phone. Great

Britain Patent Application GB0708845.3, May 2007.

[ARS05] Michael Angermann, Patrick Robertson, and Thomas Strang. Issues and requirements for

Bayesian approaches in context aware systems. InInternational Symposium on Location and

Context Awareness (LoCA), pages 235–243, 2005.

[AS02] Daniel Ashbrook and Thad Starner. Learning signi�cant locations and predicting user move-

ment with GPS. InInternational Symposium on Wearable Computers (ISWC), pages 101–

108, 2002.

152



BIBLIOGRAPHY BIBLIOGRAPHY

[AS03] Daniel Ashbrook and Thad Starner. Using GPS to learn signi�cant locations and predict

movement across multiple users.Personal Ubiquitous Computing, 7(5):275–286, October

2003.

[BB05] Mauro Brunato and Roberto Battiti. Statistical learning theory for location �ngerprinting in

wireless LANs.Computer Networks, 47(6):825–845, 2005.

[BBR02] Martin Bauer, Christian Becker, and Kurt Rothermel. Location models from the perspective

of context-aware applications and mobile ad hoc networks.Personal Ubiquitous Computing,

6(5-6):322–328, 2002.

[Bei99] Michael Beigl. Using spatial co-location for coordination in ubiquitous computing envi-

ronments. InHUC '99: Proceedings of the 1st International Symposium on Handheld and

Ubiquitous Computing, volume 1707, pages 259–273, 1999.

[Ben96] Yoshua Bengio. Markovian models for sequential data. Neural Computing Surveys, 2:129–

162, 1996.

[BI04] Ling Bao and Stephen S. Intille. Activity recognition from user-annotated acceleration data.

Pervasive Computing, pages 1–17, March 2004.

[BK02] Mauro Brunato and Csaba K. Kall. Transparent location �ngerprinting for wireless services.

In Proceedings of Med-Hoc-Net, Mediterranean Workshop on Ad-hoc Networks, Baia Chia,

Cagliari, September 2002.

[BP00] Paramvir Bahl and Venkata N. Padmanabhan. RADAR: An in-building RF-based user loca-

tion and tracking system. InProceedings of the Nineteenth Annual Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM 2000). IEEE, pages 775–784,

2000.

[BPSW70] Leonard E. Baum, Ted Peterie, George Souled, and Norman Weiss. A maximization tech-

nique occurring in the statistical analysis of probabilistic functions of Markov chains.The

Annals of Mathematical Statistics, 41(1):164–171, 1970.

153



BIBLIOGRAPHY BIBLIOGRAPHY

[CDHrR04] Matthew Chalmers, Andreas Dieberger, Kristina Höök, and	Asa Rudstr̈om. Social navigation
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