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SUMMARY

This paper surveys a number of the implementations of Linda that are available in Java.
It provides some discussion of their strengths and weaknesses, and presents the results
from benchmarking experiments using a network of commodity workstations. Some
extensions to the original Linda programming model are also presented and discussed,
together with examples of their application to parallel processing problems.
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INTRODUCTION

The Linda† coordination language for concurrent programming was first proposed by David
Gelernter at Yale University in the mid-1980’s[1]. Despite considerable initial interest in
this approach, and the establishment of a company to produce and support commercial
implementations of Linda, the Linda model waned in popularity in the 1990’s. However,
in recent years there has been a resurgence in interest, particularly with regard to
Java‡ implementations of Linda. This paper surveys the current state of Linda research
and development, focussing specifically on Java implementations of Linda. Performance
measurements for the more popular, commercial implementations are presented to allow a
comparison of these.

Furthermore, our own work has pointed to some problems with the associative matching
technique used for data retrieval in Linda. These problems have potentially serious performance
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implications, which are discussed. The survey of Linda systems in the first section of the paper
concentrates on a number of systems that have introduced alternative matching mechanisms.
Our proposed solution to the problems inherent in simple associative matching has been
implemented in a system called eLinda. The eLinda system is described briefly, together with
an example illustrating its application to the problem of visual language parsing.

The Linda programming model

Linda is a coordination language for parallel and distributed processing, providing a
communication mechanism based on a logically shared memory space called tuple space. On
a shared memory multi-processor the tuple space may actually be shared, but on distributed
memory systems (such as a network of workstations) it is usually distributed among the
processing nodes. We will focus on distributed memory systems in this paper. Whatever the
implementation strategy that is employed, the tuple space is structured as a bag of tuples. An
example of a tuple with three fields is ("point", 12, 67), where 12 and 67 are the x and y
coordinates of the point represented by this tuple.

As a coordination language, Linda is designed to be integrated with a sequential
programming language (called the host language—Java in the case of the implementations
discussed in this paper). Linda effectively provides an application programmer with a small
set of operations that may be used to place tuples into tuple space (out) and to retrieve tuples
from tuple space (in which removes the tuple, and rd which returns a copy of the tuple,
leaving the tuple in tuple space). The two “input” operations also have predicate forms (inp
and rdp) which do not block if the required tuple is not present, but return immediately with an
indication of failure. The specification of the tuple to be retrieved makes use of an associative
matching technique whereby a subset of the fields in the tuple have their values specified and
these are used to locate a matching tuple in the tuple space. For example, if a point such
as that in the example above was required then the following operation would retrieve it:
in("point", ?x, ?y). The tuple specification here, ("point", ?x, ?y), is referred to as an
anti-tuple. Any tuple with the same number and type of fields and with the string "point" in
the first position would match this request. When a successful match is made the variables x
and y are assigned the values of the corresponding fields of the matching tuple.

The original Linda model also provides for dynamic process creation by means of the eval
operation. This is not an essential part of the paradigm, and it has been shown that eval may
be implemented in terms of the other operations with some support from a preprocessor[2].
The eval operation will not be considered any further in this paper.

On distributed memory systems there are many possible strategies for implementing the
shared tuple space[1, 3, 4]. These issues are transparent to the programmers and users of the
system, who perceive the tuple space as a single, shared resource. A common approach is
to make use of a centralised server, but this may become a bottleneck. Two other common
implementation strategies are hashing systems where the contents of tuples are used to allocate
them to particular processors, and partitioned systems where tuples with a common structure
are allocated to a specific processor. Another approach is to have the tuple space fully
distributed, such that any tuple may reside on any processing node.
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The small set of operations, the associative retrieval mechanism and the shared tuple space
all combine to provide a very useful simplicity and flexibility for constructing concurrent
applications. On the other hand, a criticism of Linda has been that it is, at worst, inefficient,
and, at best, subject to unpredictable performance[5], as the simplicity of the model hides the
underlying complexity of the data sharing and communication required.

Further details of the Linda model of concurrent programming may be found in [6].

JAVA IMPLEMENTATIONS OF LINDA

As mentioned in the introduction, recent years have seen a resurgence in interest in the Linda
approach to concurrent programming, especially in Java. One of the first steps in this direction
was the development of JavaSpaces by Sun Microsystems, with input from the original Yale
Linda team. This was produced by Sun as a component of the Jini project, intended to
simplify the networking of heterogeneous systems[7]. As with many of the aspects of Java
technology developed by Sun, JavaSpaces was intended as a model, or an architecture, that
could be implemented by third parties. Consequently, the JavaSpaces product released by Sun
is intended simply as a reference implementation. This philosophy has recently been supported
by GigaSpaces Technologies Ltd. who have implemented the JavaSpaces specfication in their
GigaSpaces§ product. IBM have also developed a Java-based Linda system, called TSpaces, in
their alphaWorks research division. This contains a number of extensions to the original Linda
programming model.

In addition to these systems developed with the backing of commercial organisations, there
have been a number of academic research projects that have implemented Linda-like systems
in Java. The following sections outline the unique features of these commercial and research
systems.

TSpaces

In IBM’s words TSpaces is intended as “the common platform on which we build links to all
system and application services”[8]. Within this grand vision they identify “Tier 0 devices”
(i.e. systems smaller than traditional desktop or laptop machines, such as PDA’s, embedded
processors, etc.) as a particular area of interest[9].

The implementation of TSpaces is simple and elegant—all that is required is that a single
server process be running on the network. The server makes use of a textual configuration file,
and provides a useful web interface for monitoring and configuration purposes. Applications
wishing to make use of the TSpaces service need only know the network hostname of the
computer running the server.

TSpaces provides a large number of operations over and above the basic Linda operations
(which have slightly different names). There is a delete operation that will simply delete

§GigaSpaces is a registered trademark of GigaSpaces Technologies Ltd.
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a matching tuple from the tuple space without returning it to the application. There are
also operations for the input and output of multiple tuples: scan, countN, consumingScan,
deleteAll, multiWrite and multiUpdate. There are a number of operations that specify
tuples by means of a “tuple ID” rather than the usual associative matching mechanisms:
update, readTupleById and deleteTupleById. There is also the rhonda operator, which
performs an atomic synchronisation and data exchange operation between two processes.

Lastly, TSpaces provides an “event registration” mechanism. This allows a process to request
notification when a certain tuple is written to the tuple space or deleted from it. While the
original Linda model does not provide any form of event notification, it is not difficult to
emulate efficiently for writes, using threads and the standard rd operation. Event notification
on deletions is possible to emulate by polling with rdp, but this is not efficient.

TSpaces transports tuples across the network using the standard Java object serialisation
mechanisms and TCP/IP sockets. Tuples are simply objects that consist of a number of
Field objects (or FieldPS objects which preserialise to a byte array to allow the server to
work with unknown classes). Wildcard or formal values for anti-tuples are specified by Field
objects containing a class type (e.g. String.class), rather than a data value. (TSpaces thus
restricts tuples to containing objects, not primitive values, for matching purposes). Matching
is performed using the standard equals method, and, in some cases, the compareTo method,
specified by the Comparable interface. Matching can be done using so-called “indexed tuples”.
In this case the fields may be named, ranges of values may be included in the matching process,
and AND and OR operations may be specified. These features may all be used in combination.
It is also possible to perform matching on XML¶ data contained in tuples.

Tuples may have an expiration time set, and there is support for transactions. Furthermore,
access control is provided for tuple spaces. This is based on user names, passwords and groups,
and provides a level of control similar to that of the UNIX file access control mechanisms.
TSpaces also provides persistence for the tuple spaces.

TSpaces does not provide a preprocessor, as originally envisaged by the original Yale
researchers. The current implementation of TSpaces makes use of a centralised server model,
which may become a performance bottleneck.

Adding new commands

New commands can be added to the TSpaces system relatively easily. This ability, together
with the rich set of operations supported and complex matching criteria described above,
provides a facility similar to the extended features of eLinda. This section presents a brief
overview of the mechanisms for adding new commands to TSpaces.

The implementation of TSpaces makes use of a number of layers of software. At the lowest
level the tuples themselves are stored in a form of database. This may be an actual database
product (such as IBM’s DB2), or simply some form of data structure in the computer’s main
memory. Above this is the tuple management layer, which handles the retrieval of tuples from

¶Extensible Markup Language, a specification for structured documents produced by the World Wide Web
Consortium[10].
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the tuple space database. Above this layer (and accessed through a well-defined API) is the
operator management level. This is comprised of a number of “factory” objects arranged in
a list. The factories are responsible for creating “tuple handlers” for each command that is
passed to the tuple space. If a factory does not recognise a particular command then it is
passed down to the next factory in the list.

Users with appropriate permission levels can add new factories and handlers to the system
dynamically, providing a great deal of flexibility. However, this is a complex process from a
programmer’s perspective, as has also been noted by Foster et al [11]. Some of the complexity
could perhaps be handled by providing classes with methods to automate the installation and
initialisation of the new tuple handlers, but this would have to be done by the writers of the
new factories and command handlers.

JavaSpaces

JavaSpaces[12] is a complex product and relies heavily on a number of other technologies from
Sun. As stated in the introduction to this section, it forms part of the Jini system, and so
makes extensive use of the Jini API[7]. Network support is provided by the Java RMI (Remote
Method Invocation) protocol[13]. Furthermore, distribution of classes to clients is handled
by the standard Internet hypertext protocol (HTTP). This means that before a JavaSpaces
application can be started the following set of services must be running:

• a web (HTTP) server (a minimal one is provided with the Jini/JavaSpaces release)
• an RMI activation server (part of the standard RMI software bundled with Java)
• a Jini lookup service (alternatively the RMI registry service can be used, but this is

discouraged as support for this option may be discontinued by Sun in the future)
• a Jini transaction manager
• a JavaSpaces server

Most of these services (and any application programs) also require extensive setting of
command line parameters, further adding to the overall complexity of using JavaSpaces.
Applications are also required to run a security manager, whether security checking is required
or not. A typical command line required to run a JavaSpaces application is as follows:

java -Djava.security.policy=D:\JavaProgs\policy.all
-Doutrigger.spacename=JavaSpaces
-Dcom.sun.jini.lookup.groups=public
-Djava.rmi.server.codebase=http://host/space-examples-dl.jar
-cp D:\JavaProgs\space-examples.jar;D:\JavaProgs\classes
sun.applet.AppletViewer worker.html

JavaSpaces supports the basic Yale Linda operations (the names differ from the original
names used by the Yale group, but essentially the same functionality is provided). Tuples can
be created by the programmer from any classes that implement the Jini Entry interface. Only
the public fields of these classes that refer to objects are considered for matching purposes (i.e.
private fields are ignored, as are fields of the primitive data types).
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Tuples are transmitted across the network using a non-standard form of serialisation,
whereby only public fields of classes are serialised and multiple references to the same object
cause multiple copies to be serialised. Matching of tuples with anti-tuples (called templates
in JavaSpaces) is done using byte-level comparisons of the data, not the conventional equals
method. Matching can make use of object-oriented polymorphism for matching sub-types of a
class.

The Linda programming model is extended in JavaSpaces to provide support for commercial
applications in two ways: transaction-handling and “leases” (similar to the tuple expiration
mechanism in TSpaces). There is also an event registration mechanism, similar to the event
notification facility in TSpaces, but only for writes. As noted previously, this is not difficult to
emulate using threads and the rd operation.

A centralised tuple storage approach is used and this may become a performance bottleneck
in large systems. Like TSpaces, JavaSpaces does not provide a preprocessor.

GigaSpaces

GigaSpaces[14] is a relatively recent system developed as a commercial implementation of the
JavaSpaces specification. As such it is compliant with the Sun specifications, while adding
a number of new features. These include operations on multiple tuples, updating, deleting
and counting tuples, and iterating over a set of tuples matching an anti-tuple. There are
also distributed implementations of the Java Collections List, Set and Map interfaces, and a
message queuing mechanism.

Considerable attention has been paid to the efficient implementation of GigaSpaces. This
includes the provision of facilities such as buffered writes, and indexing of tuples (with or
without intervention from the application developer).

There is also support for non-Java clients to access GigaSpaces through the use of the SOAP
protocol over HTTP. Lastly there is support for web servers to make use of GigaSpaces to share
session information (potentially even between separate web servers).

Comparison of TSpaces and JavaSpaces with the Yale Linda model

Table I summarises the differences between the original Yale Linda model, TSpaces and
JavaSpaces (GigaSpaces is very similar to JavaSpaces). In general it can be seen that TSpaces
and JavaSpaces provide considerably more functionality than the original Yale Linda model,
with the exception of the eval operation (it should be noted that the original Linda model is
just that, whereas the other two systems are object-oriented implementations of that model,
with extensions). Notable extensions in JavaSpaces and TSpaces are transaction support and
leases/expiration, which are important considerations for commercial applications.

TSpaces is unique in providing an extensible form of matching through the ability to add
new commands. We will return to this subject in a later section.
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Table I. Comparison of the features of TSpaces, JavaSpaces and Yale Linda

TSpaces JavaSpaces & Yale Linda
Feature GigaSpaces

“Rich typing” (tuples as classes) Yes Yes No
Objects (with methods) Yes Yes No
Matching subtypes Yes Yes No
Fields must be objects Yes Yes No
More than one tuple space Yes Yes No
Leases/expiration Yes Yes No
Transaction support Yes Yes No
Event notification

Writes Yes Yes No
Deletions Yes No No

Extensible matching Yes No No
Has eval No No Yes

Research projects

This section provides a brief overview of a number of academic research projects that have
developed implementations of Linda in Java with novel or extensible matching mechanisms.
There are, of course, many more implementations of the Linda model in Java and in other
programming languages—several of these are discussed in [15].

XMLSpaces

XMLSpaces is designed to support the use of XML data in tuples[16]. It is based on TSpaces,
and considerably extends the XML support already provided by TSpaces. The Field class used
by TSpaces for the fields in tuples is subclassed to create a class called XMLDocField. This new
class overrides the matching method used by TSpaces to provide matching on the basis of the
XML content of the field. The matching is performed by a method of the anti-tuple that can
be provided by the application programmer. This results in a great deal of flexibility for XML
matching operations. A number of matching operations are currently supported, including the
use of XML query languages, such as XQL[17] and XPath[18].

XMLSpaces further extends TSpaces by supporting a distributed tuple space model, rather
than the centralised model used by TSpaces. The distributed tuple space support is provided
in a flexible and tailorable way, allowing different methods for the distribution of tuples to
be used, and selected dynamically when an application starts. A subset of the basic TSpaces
operations is augmented with distributed versions that take into acccount the distribution of
the tuple space (e.g. distributedWrite and distributedWaitToTake).
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CO3PS

CO3PS stands for “Computation, Coordination and Composition with Petri net
Specifications”[19, 20]. This builds on the usual coordination model of a concurrent system,
where the responsibilities for computation are handled by the host language, and for
coordination by the coordination language, as exemplified by Linda. Petri nets are used in
CO3PS for the specification of the computational aspect of a system.

The coordination model used in CO3PS is based closely on that of Objective Linda[21, 22].
As such it shares the approach of Objective Linda in allowing the method for the matching of
tuples to be overridden. The main application of this in CO3PS is to support the introduction
of non-functional requirements. The developers of CO3PS distinguish two phases of application
design:

1. The logical phase, which concentrates on the programming logic—the functional
requirements of the system.

2. The non-functional phase, in which issues such as efficiency, load-balancing, security, etc.
are taken into account.

This approach might be summarised as: “first get it working, then get it working well”. In
order to support this technique, they make use of a reflective architecture, i.e. an architecture
that permits the designer to reflect on the behaviour of the system, and to adapt it, without
affecting the interaction with clients. The developers of CO3PS go to great lengths to explain
that this should be done without impacting on the semantics of the coordination operations.

A further unique feature of CO3PS is the introduction of composition as a third aspect of the
behaviour of a concurrent system, orthogonal to computation and coordination. Composition
refers to the view of an application as a configuration composed of a collection of agents. These
agents may recompose themselves into new configurations as needed during the execution of
the application.

Java-Linda

Java-Linda is a student project at Yale University[23]. It provides a subset of the features of
the original Linda system (for example, there is only partial support for the eval operation, no
preprocessor, etc.). TCP/IP is used for communication in Java-Linda, with a simple, centralised
server.

As there are no extensions to the original Linda model present in Java-Linda, it is of little
interest, except for the novel way in which it implements the standard associative matching
mechanism. Any object can be used as a tuple in Java-Linda. This would seem to pose some
difficulties for the Java-Linda system that needs to perform matching operations on these
objects. The solution to this problem that has been adopted is that the Java-Linda system
interrogates the structure of the objects in order to extract the fields and perform matching.
This has been done using the serialised version of the objects, which includes a considerable
amount of information about the structure of the serialised object. This metadata is parsed
to extract the information about the structure of the object and this is then used to guide the
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LINDA IMPLEMENTATIONS IN JAVA FOR CONCURRENT SYSTEMS 9

matching process. The matching itself is done on the bytes in the serialised form of the object.
This process is described as “tedious and time-consuming”[23], but is convenient and elegant
for application programmers. This should be contrasted with JavaSpaces, which appears to do
very simple byte-level matching on objects.

Mobile Coordination

The work on mobile coordination performed at the University of Cambridge is very similar in
many respects to I-Tuples, a C implementation of Linda[11]. I-Tuples is intended to provide
for efficient updates of tuples (e.g. incrementing a counter stored as a tuple). However,
the motivation behind the unique features of the mobile coordination project are very
different[24]. Like I-Tuples, the idea of mobile coordination is to move the processing of
tuple space operations from the application processing node to the server. However, in the
mobile coordination project this was done with a view to enhancing fault tolerance, rather
than improving performance. In fact, the mobile coordination mechanism is presented as an
alternative to the transaction mechanisms found in the current commercial implementations
of Linda. Despite this, the performance results reported for the Java implementation of mobile
coordination show that in many cases it can lead to improved performance.

ELINDA

The eLinda system is modelled closely on the standard Linda model, supporting the five basic
Linda tuple space operations. The current implementation of eLinda has been developed in
Java to allow experimentation with the concepts that it embodies.

The eLinda system has three extensions to the original Linda programming model:

• A “broadcast” output operation.
• Support for distributed multimedia applications.
• The Programmable Matching Engine, providing a very flexible matching mechanism.

In this paper we will discuss only the last of these extensions. Full details of the other
features can be found in [15].

The implementation of eLinda

Three different implementations of eLinda have been developed in order to explore different
approaches for handling the tuple space and the attendant communication requirements. The
names given to these implementations and their key features are as follows:

eLinda1 Fully distributed tuple space, where any tuple may reside on any
processing node. This poses particular problems for matching in that many
processors may be required to participate in a matching operation. This was
developed as the initial version and much of the focus of the work was on
this approach.
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10 G. C. WELLS, A. G. CHALMERS AND P. G. CLAYTON

eLinda2 Centralised tuple space, where all the tuples are stored on a single
“server” node. This is the approach used by JavaSpaces, TSpaces and
GigaSpaces.

eLinda3 Centralised tuple space, as in eLinda2, but with “broadcast” tuples
cached on each processing node.

Unless otherwise noted, references in this paper to “eLinda” refer either to features common
to all the implementations, or to eLinda1.

The Programmable Matching Engine

The Programmable Matching Engine (or PME ) allows the use of more flexible criteria for
locating tuples using the associative matching mechanism. This is useful in situations where
a global view of the tuples in tuple space is required. For example, consider a scenario where
a tuple is required that has a numeric field, the value of which is the closest to some specified
value (i.e. not necessarily equal to the given value).

Such queries can be expressed using the standard Linda associative matching methods, but
will generally be quite inefficient. In the example above, the application would have to retrieve
all of the eligible tuples using in, work through them to locate the one with the required
“closest value” and then return the tuples to tuple space. If the tuple space is located on
a remote processing node or distributed over many processing nodes, this will result in a
large volume of network traffic. Furthermore, the parallelism of the system is reduced as the
application holds all of the tuples for the period required to determine which one is required,
possibly holding back other processes.

In situations such as these, where the tuple space is distributed (as in eLinda1), searching
for a tuple may involve accessing the sections held on all the processors in parallel. This
problem is handled efficiently in eLinda1 by distributing the matching engine so that network
traffic is minimised, and moving the necessary computation out of the application and into a
special form of matcher. For example, in searching for the “closest” tuple, each section of the
tuple space would be searched locally for the tuple with the closest value and that returned
to the matcher running in the originating process, which would then select the closest of all
the replies received. This process is completely transparent to the application, which simply
inputs a tuple, using a specialised matcher. From the application programmer’s perspective
this could be expressed simply as:

in.closest("point", ?x, ?=y)

The notation that is used is to follow the Linda input operation with the name of the
matcher to be used (closest here). The field (or fields) to be used by the matcher is denoted
by ?=. In this case, the operation specified is to retrieve the tuple with the value closest to
the current value of the variable y. In practice, the matcher is specified as an object that
implements a specific Java interface. This is passed to the eLinda system, together with the
anti-tuple specification.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2003; 00:1–7
Prepared using cpeauth.cls



LINDA IMPLEMENTATIONS IN JAVA FOR CONCURRENT SYSTEMS 11

In addition to the simple usage illustrated by the above example, matchers may also perform
aggregated operations where a tuple is returned that summarises or aggregates information from
a number of tuples. For example, a matcher might calculate the total of numeric fields in some
subset of the tuples in tuple space. It is also possible to write matchers that return multiple
tuples, providing a facility similar to that provided by the TSpaces scan operation.

The facilities provided by the Programmable Matching Engine are compared with a number
of other extended Linda systems in [25]. These include those mentioned previously in this
paper, and others, such as the work of the coordination research group at the University of
York[26, 27, 28], Objective Linda[22, 21], and ELLIS[29].

Limitations of the Programmable Matching Engine

There are some limitations to the kinds of matching operations that are supported by the
PME. Notably, some matching operations may still require a complete global view of the tuple
space (one simple example of this is where a tuple is required that has the median value of
some field). In such situations the facilities offered by the PME may not be ideal, as all the
tuples need to be gathered together in order to find the result. However, it is important to
note that such problems are handled no less efficiently than if the application were to handle
them directly, using a conventional Linda system.

Furthermore, the PME approach minimises the network traffic in such cases. This is due
to the fact that the distributed matchers would return their local tuples in a single network
transfer, rather than one-by-one as would be the case in a conventional Linda system. The
potential to reduce the network traffic involved may be even greater as the distributed matchers
could return an array containing only the values of the field needed to determine the median
value. Once the median was determined then that tuple could be fetched from the processor
that held it. If the total size of the tuples in relation to the size of the field required for the
determination of the median is large, then this will greatly reduce the volume of network
traffic.

Lastly, the use of the PME will generally simplify application development. This is
particularly true where a pre-written matcher is available. It is envisaged that any commercial
implementation of this concept would be provided with a library of common matching
operations, written in such a way as to provide a useful set of generic matching facilities. More
specialised matchers would have to be written as part of the development of the application
for which they were required. Such matchers could then be added to the library of existing
matchers for future use. It is also possible that writing specialised matchers could become a
service provided by an entity separate from the application development team.

Implementing new matchers

Writing matchers, while not a trivial operation, is not overly complex. The programming
interface required of a matcher is simply two methods to be provided by a Java object. To
support the writing of matchers there is a programming interface to the tuple space system
that allows direct access to the tuples in a carefully controlled manner. These facilities allow
new matchers to apply the standard associative matching algorithm in various ways, and to

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2003; 00:1–7
Prepared using cpeauth.cls



12 G. C. WELLS, A. G. CHALMERS AND P. G. CLAYTON

interact directly with the eLinda system (e.g. retrieving tuples from tuple space, replacing
unwanted tuples, deleting local and remote tuples, broadcasting requests to other processors
and subsequently retrieving the results of such requests, etc.). Of course, this interaction allows
the programmer to access the tuples in tuple space at a lower level of abstraction than usual,
and care needs to be taken to preserve the semantics of the Linda tuple retrieval operations.

While lines of code are a notoriously poor indication of complexity, they can give an
approximate indication of the difficulty of writing a customised matcher. For example, a
matcher to find the total of numeric tuple fields, is written in 175 lines of extensively commented
Java code. Some more reliable complexity metrics are presented below (in Table II).

Applications of the Programmable Matching Engine

The examples of new matchers given above have been in the domain of numeric applications.
These are convenient for the purposes of the discussion as they are simple, easily explained
and easily understood. However, it would be incorrect to believe that the PME was only useful
for numeric problems—it is just as applicable to textual or other problems. Some examples
that emphasise the generic nature of the PME are:

• A string matcher could match string fields using some alphabetic measure of “closeness”,
or even approximate homophonic matching.

• A spatial matcher could compare two fields, taken to be x and y coordinates to locate a
tuple corresponding to a point in some two-dimensional space (or, equivalently, in three
or more dimensions).

• A matcher could be written to locate tuples with fields corresponding to a date or time
in some range of temporal values.

• A matcher could make use of “fuzzy logic” to locate a tuple with some associated degree
of certainty of its suitability.

• A matcher could be written to select a tuple at random from some subset of the available
tuples‖.

• A matcher could be written to extract XML data from a tuple and perform complex
matching operations based on this (providing an equivalent to the XML support in
TSpaces and XMLSpaces).

APPLICATIONS OF ELINDA

The eLinda system has been used for a number of applications, including a distributed video-
on-demand demonstration and ray-tracing. As a particular example, which highlights the
flexibility and power of the Programmable Matching Engine, the eLinda system has been
used to parallelise a graphical parsing algorithm. Visual languages are used in many fields to

‖While it is not required of a Linda system, the eLinda system stores tuples using a localised FIFO queuing
technique for fairness.
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depict situations or activities in a pictorial or diagrammatic form, which is often easier for
human beings to comprehend than an equivalent textual form. Examples of such languages
abound, not least in the field of Computer Science, where notations such as flowcharts, state
transition diagrams, entity-relationship diagrams, etc. are widely used.

For such graphical models to be used by computer systems there is a requirement for parsing
them in order to analyse their structure. This process is directly analogous to the parsing
of textual computer programming languages. However visual parsing is distinguished by the
increased complexity of the relationships between the components. In a textual language there
is a simple, positional sequence relating the components of the language (i.e. the keywords
and other tokens). In the case of a visual language there is far more scope for different
relationships to exist between tokens in two dimensions (or, more generally, in three or even
more dimensions). For example, tokens may be related by inclusion, by contact, by position
(e.g. one above another), and so on.

There are many different methods that may be used for specifying and for parsing visual
languages. A classification of visual languages that highlights some of these differences can
be found in [30]. The specific method that was parallelised using eLinda is picture layout
grammars, as developed by Golin[31]. Picture layout grammars provide a particularly flexible
and powerful means of expressing the syntax of visual languages. However their parsing is
a complex, multi-stage process with an algorithmic complexity of O(n9) in the worst case.
Much of the parsing process can be parallelised as the graphical tokens can be reduced largely
independently of each other. Similarly, the final stage of parsing using Golin’s technique consists
of checking the parse tree structures to remove redundant and invalid paths. This can also easily
be done in parallel. The parallelisation makes use of the common replicated-worker pattern[12].
More details of the parallel parsing algorithm are given in [32].

It was found that the enhanced matching mechanisms in eLinda were very useful during the
development of this application. At a number of points there is a need to use complex criteria
to specify the tuples that are to be retrieved from tuple space. Four customised matchers were
written for the visual language parser. Of these matchers, two are general-purpose, and may
be useful in other applications. The number of lines of code, while not an accurate metric,
does give an approximate indication of the complexity of a matcher. Accordingly, the total
number of lines of commented Java code are given below for each of the matchers written for
the visual parsing algorithm, together with a brief description of the purpose of the matcher.
Better complexity measures are presented further below.

RHSMatcher (130 lines of code) This matcher is the most complex of those used in the
visual language parsing application. It is used to search the tuple space containing the
grammar rules, looking for a rule that could be applied to reduce a given symbol. This
requires searching through the rules looking for the given symbol in the right hand side
of all the rules. If the rule is a simple one then the matcher additionally checks the
constraints specified by the rule.

ConstraintMatcher (114 lines of code) This matcher is used when applying more complex
rules to locate suitable symbols (Y ) to reduce with the current symbol (X). In order to do
this it has to check the constraints of the attributes of the available Y symbols (usually
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in conjunction with the attributes of the symbol X). It returns multiple matching tuples,
using a Java Vector.

SetMatcher (111 lines of code) This matcher is used by the worker processes to retrieve a
symbol from the tuple space for reduction. Due to a small modification required for the
parallelisation of the parsing algorithm, this symbol needs to be chosen from a set of
symbols to be considered at the current parsing level.

This matcher could be used by any application that had a similar requirement to match
tuples where a field has one of a set of defined values. The sets are handled using the
java.util.Set interface within the matcher, allowing considerable flexibility.

AllMatcher (67 lines of code) This matcher can be used to retrieve all the tuples matching a
given anti-tuple (in the same way as the scan and consumingScan operations provided
by TSpaces). It is employed during the checking phase of the visual parsing application to
retrieve all entries in the tuple space for a given symbol (i.e. all of the possible subtrees).

Again, this matcher could be used by any application that needed to retrieve the set of
all tuples meeting some criterion. It returns the multiple tuples in a Java Vector.

In order to try to convey a better idea of the complexity of these matchers, the Halstead
metrics[33] for the main methods used in the matchers above are presented in Table II. This
shows LoC, the actual number of lines of code (excluding whitespace and comments), D, the
Halstead program difficulty (a measure of how difficult a method’s code is to understand), and
E, the Halstead program effort (a measure of difficult a method is to write). For comparative
purposes, these metrics are also given for the total matcher, discussed earlier, and for the
common Bubble Sort algorithm.

PERFORMANCE MEASUREMENTS

Performance testing results were obtained for a simple ray-tracing program. These were
used to compare the performance of eLinda with the other commercially developed Linda
systems, and also to examine the general behaviour of eLinda with regard to varying the
communication:computation ratio.

All the results presented in this paper were obtained using an undergraduate teaching
laboratory in the Department of Computer at Rhodes University. The computers in this
facility were at that time equipped with 133MHz Pentium I processors and 32MB of main
memory, and networked using standard 10Mb/s shared Ethernet. The operating system used
was Windows NT 4.0. The version of Java used for the testing was 1.3.0.

At the outset, it should be noted that this hardware specification is barely adequate for the
execution of Java applications. Sun’s minimum recommended memory allowance for Java is
32MB, and the minimum processor recommendation is a 166MHz Pentium processor[34]. For
some of the testing the limitations of the hardware became apparent, particularly in the form
of excessive virtual memory paging and, in some extreme cases, complete system failures due
to insufficient memory. These occurrences will be noted where relevant in the discussion below.
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Table II. Complexity Metrics for Matchers

Method LoC D E

AllMatcher
match 3 2.5 60
matchList 42 20.429 25 862.58

ConstraintMatcher
match 16 16.056 7 411.816
matchList 73 35.164 95 598.977

RHSMatcher
match 20 15.417 9 005.79
matchList 73 38.644 105 855.219

SetMatcher
match 12 7.438 1 934.235
matchList 61 34.036 70 393.508

TotalMatcher
match 3 1 4.755
matchList 97 39.741 127 187.461

Bubble Sort
bubbleSort 13 15.619 7 241.638

Ray-tracing performance

One of the demonstration programs provided with JavaSpaces is a simple ray-tracing
application, written using a replicated-worker pattern[12]. This application was extended to
produce timing results, and then ported to eLinda, TSpaces and GigaSpaces. The ray-tracing
program did not make use of any of the new or extended features of any of these Linda systems.
Only eLinda1 and eLinda2 were used as this application did not make use of the broadcast
communication used in eLinda3. It should also be noted that this application does not utilise
the extended matching facilities of the Programmable Matching Engine.

While the results found for this application give a good indication of the relative efficiency
of the Linda implementations it should be noted that they are not very impressive in terms of
ray-tracing programs in general.

The timing results for this application are shown in Table III. Figure 1 shows these results
in the form of the speedup of the ray-tracing program as the number of worker processes is
increased, relative to the time taken by a single worker. A maximum of only eight worker
processes could be used with JavaSpaces—over this limit the system became unstable. The
performance of GigaSpaces was erratic as the server experienced serious virtual memory
problems in this case.
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Table III. Detailed Results for the Ray-Tracing Application

Number of Linda System
Workers eLinda1 eLinda2 TSpaces JavaSpaces GigaSpaces

1 60.66 57.85 58.48 63.48 62.46
2 34.86 31.89 31.78 33.65 35.82
3 32.60 23.63 24.37 25.32 25.09
4 25.70 20.59 19.36 22.69 21.38
5 22.62 18.20 17.34 23.71 23.95
6 21.09 17.66 16.89 21.80 23.56
7 20.87 16.78 16.96 21.88 17.32
8 23.99 16.60 17.70 24.33 17.74
9 29.01 17.04 17.58 — 19.88

Note: Times are all in seconds.

Figure 1. Speedup for the Ray-Tracing Application
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Table IV. Ray-Tracing Results for Differing Image
Segment Sizes for eLinda1

Segment Size
Workers 50× 50 100× 100 200× 200

1 125.82 70.87 60.66
2 66.34 44.55 34.86
3 53.30 59.72 32.60
4 30.65 23.61 25.70
5 28.32 25.62 22.62
6 23.09 15.65 21.09
7 21.15 18.94 20.87
8 22.31 17.31 23.99
9 19.52 24.45 29.01

Note: Times are all in seconds.

These results clearly demonstrate the similarity between the implementations: all exhibit
very similar behaviour, with the speedup levelling off or, in some cases, decreasing from about
seven worker processes. The maximum speedup obtained was approximately 3 to 3.5 times,
using six to eight processors, as shown in Figure 1. TSpaces showed the best speedup overall.
The results for eLinda are very close to those for JavaSpaces, and fairly close to those for
TSpaces. From Table III we note that eLinda2 with eight worker processes produced the best
result overall.

The ray-tracing application allows the size of the segments of the image that are distributed
to the workers to be changed. The results above were all measured for an image segment size
of 200× 200 pixels (the full image is 640× 480 pixels).

To assess the impact of different image segment sizes, the measurements were repeated for
segments of 50 × 50 pixels, 100 × 100 pixels and 200 × 200 pixels. The best results for all
three systems were generally found for larger segment sizes. The results for eLinda1 showing
the impact of the segment size are summarised in Table IV. This indicates that, in this case,
the optimum performance for the ray-tracing application is to be found using eight worker
processes and an intermediate image size (100× 100).

SUMMARY AND CONCLUSIONS

This paper presented a survey of selected Linda implementations in Java, concentrating on
the commercial offerings and on systems that provide some form of alternative mechanisms for
matching. The eLinda system was described, focussing on the Programmable Matching Engine,
intended to help solve the problems inherent in simple associative matching. In addition the
results of some performance measurements were reported for eLinda and the commercial Linda
implementations.
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The implementation of the visual language parsing application using the Programmable
Matching engine facilities was relatively simple. This points to the desirability of more
flexible matching mechanisms in Linda. Additionally, the performance results shown above
(see Table III) indicate that the eLinda system is generally as efficient as the commercial
Linda implementations (eLinda2 produces the best result overall). This is very satisfying for
a small-scale academic project, embodying a number of ambitious extensions. However, it
must also be noted that the results indicate that none of these Java-based Linda systems is
particularly suitable for fine-grained parallel processing applications.

Future work on the eLinda system will be focussed on the further development of the
multimedia extensions, and on the application of the PME facilities for distributed Internet
applications.
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