A Higher-order Approach to Meta-learning

H. Bensusan, C. Giraud-Carrier, and C. J. Kennedy

Department of Computer Science
University of Bristol
Merchant Venturers Building
Woodland Road
Bristol BS8 1UB, UK
{hilanb,cgc,kennedy}@cs.bris.ac.uk

Abstract. Meta-learning, as applied to model selection, consists of inducing mappings from tasks to learners. Traditionally, tasks are characterised by the values of pre-computed meta-attributes, such as statistical and information-theoretic measures, induced decision trees’ characteristics and/or landmarks’ performances. In this position paper, we propose to (meta-)learn directly from induced decision trees, rather than rely on a hand-crafted set of pre-computed characteristics. Such meta-learning is possible within the framework of the typed higher-order inductive learning framework we have developed.

1 Introduction

Most current approaches to meta-learning for model selection rely on some form of task characterisation, which allows the meta-learner to induce a mapping between particular characteristics and suitable learning models. To date and to our knowledge, three distinct kinds of task characterisations have been used, as follows.

- **Statistical and information-theoretic characterisation** [13,6]. Here, a number of measures, such as number of attributes, class entropy, mutual information and signal-to-noise ratio, are computed from the data. The assumption is that learning algorithms can be separated from one another along the dimensions offered by such information.

- **Landmarking** [14]. Here, the performances of a number of simple and efficient learners on a task are calculated. The assumption is that the learners’ space can be carved out into areas of expertise and that the performances of some learners give an indication of the performances of others.

- **Decision-tree-based characterisation** [1,2]. Here, a decision tree is induced from the data and a number of measures, such as depth, shape and balance, are computed from it. The assumption is that decision trees induced from datasets possess characteristics that are strongly dependent upon the data/task.
The last approach is partly justified by extensive experience with decision tree learning, which has highlighted a number of important connections between tasks and induced trees. For example, the depth and number of leaf nodes are dependent upon the amount of noise, the number of irrelevant attributes, and the class distribution.

Rather than computing/extracting information manually either from a dataset or from an induced tree, we propose to use the induced tree directly as the task characterisation. In order to work directly with trees, we will make use of the typed higher-order inductive learning framework we have developed recently [3–5, 7, 8, 11, 12]. In principle, this framework allows the representation of arbitrarily rich structures. Hence, it would be conceivable to characterise a task by several induced models (e.g., a decision tree, a neural network, etc), thus effectively combining the last two approaches to task characterisation outlined above. As a proof of concept, we restrict our attention to characterisation by a single induced decision tree here.

The paper is organised as follows. Section 2 gives a brief overview of our typed higher-order inductive learning framework. Section 3 reviews previous work on tree characteristics and shows how induced trees could be represented. It also gives an idea of the form of the hypotheses that a meta-learner would induce from such representations. Finally, section 4 concludes the paper.

2 Typed Higher-order Inductive Learning

In order to capture complex physical structures, such as trees, as directly as possible, we need correspondingly complex abstract data structures or types. Our representation formalism, whose details are in [4, 11], is expressive enough to allow the representation of arbitrary structures as closed terms of the corresponding type. Thus, all information is typed.

We note here that, in this sense, our formalism is a natural extension of the attribute-value framework. Indeed, in the attribute-value language, each attribute has a type (e.g., nominal, real) and examples are tuples (another simple type) of constants drawn from the domains of the corresponding types. We wish to make types an intrinsic part of first and higher-order representations. This enables the examination of possible relations among distinct elements that have the same type whilst limiting the associated explosion of the search space. We use the programming language Escher [10] as the vehicle for typed higher-order logic knowledge representation. Escher is an integrated functional and logic programming language, based on Church's theory of types. The syntax of Escher coincides with that of Haskell for the functional subset and includes extensions for quantifiers and set constructs. A formal account of Escher is beyond the scope of this paper. For our purposes here, it is sufficient to state that Escher implements the necessary computational machinery to handle standard abstract data types such as tuples, lists, sets, multisets, trees and graphs. In fact, one can in principle construct any arbitrary abstract data type with its associated structure and operations.
As mentioned above, examples are represented as closed terms of the abstract data type that "best" captures the physical structure of the domain. We give a few examples to illustrate the approach. So as not to encumber the paper with unnecessary Escher-specific syntax, we stick to standard mathematical (or familiar) notation as much as possible.

Example 1. Consider a problem domain involving trains made up of load-carrying cars. Each car has a size and contains 0 or more loads, each of which consists of a type and number of instances. A useful abstraction for such trains is lists of cars, i.e.,

\[
\text{type Train} = \text{[Car]}
\]

Each car can in turn be represented by a tuple consisting of a size and a set of loads, i.e.,

\[
\text{type Car} = (\text{Size}, \{\text{Load}\}),
\]

and each load as a tuple consisting of a type and number of instances, i.e.,

\[
\text{type Load} = (\text{Ltype}, \text{NumInstances}).
\]

Appropriate base types such as enumerated types, integers and reals are also declared for Size, Ltype and NumInstances. The following is a train with 2 cars, one empty, and one carrying 3 black boxes and 1 red one.

\[
[(20.0, {}), (16.3, \{\text{BlackBox, 3}, \text{RedBox, 1}\})]
\]

Example 2. Consider a problem domain involving molecules made up of atoms connected by bonds. Each atom has a label and a type. Each bond has a type and connects two atoms. An useful abstraction for such molecules is graphs, where the vertices represent atoms and the edges represent bonds, i.e.,

\[
\text{type Molecule} = (\{\text{Atom}\}, \{\text{Bond}\}).
\]

We choose to define atoms as tuples of constants, i.e.,

\[
\text{type Atom} = (\text{Label}, \text{Atype}),
\]

and bonds as tuples consisting of a type and an unordered pair of atom labels, i.e.,

\[
\text{type Bond} = (\text{Btype}, <\text{Label, Label}>).
\]

Again, appropriate base types are declared for Label, Atype and Btype. The following is the simplest carbone, methylene (CH2).

\[
(\{1, H\}, \{2, H\}, \{3, C\}), \{(\text{double}, <3, 1>), (\text{double}, <3, 2>)\})
\]

We will see in the following section how decision trees can also be represented. A number of learning algorithms have been designed and implemented to manipulate the complex structures captured by the above representation. A discussion of these algorithms is beyond the scope of this paper. For details, we refer the reader to [4, 5] for the description of a decision tree learner, to [12] for the description of a sequential covering algorithm and to [8, 9] for the description of an evolutionary system.
3 Meta-learning from Induced Decision Trees

The experiments described in [1, 2] were the first ones to make use of information computed from induced decision trees to characterise tasks in meta-learning. Before showing our approach to automating the extraction of such information, we briefly revise the descriptors used in this earlier work.

3.1 Decision Tree Task Descriptors

The following lists the descriptors computed from induced decision trees and used for meta-learning in [1, 2]. Decision trees are assumed to be unpruned.

Nodes per attribute: the ratio of the number of tree nodes to the number of attributes. In tasks with large attribute vectors, this measure may indicate the amount of irrelevant attributes in the task, but more often it gives an idea of how many attributes are used as splitting points in more than one branch of the tree.

Nodes per instance: the ratio of the number of tree nodes to the number of training instances. This is also intended to measure the number of splits that the training set requires.

Average leaf corroboration: the average strength of support of each tree leaf. Support is measured by the number of training instances that correspond to the paths terminating in each leaf. This descriptor is intended to measure how much support each element of the tree receives from the sample.

Average gain-ratio difference: gain-ratio is the information-theoretic measure used for splitting in C4.5. It is designed to measure the quality of a splitting point in an attribute. This descriptor indicates the difference in the gain-ratio between the attributes at the first splitting point of the tree building process. Large gain-ratio difference indicates the presence of attributes that on their own carry information about the label and therefore that a linear partition oriented soft bias is likely to perform well.

Maximum depth: this measures the size of the longest path from the root to a leaf. The depth of a path is measured by the number of nodes it contains. The depth of the tree indicates how hard it is to represent the task by a decision tree.

Number of repeated nodes: this descriptor measures how many repeated attributes appear in the tree. This descriptor indicates the need for attribute redescription.

Shape: a function of the probabilities of arriving at the various leaves given a random walk down the tree. Assume the probability \(p(N_i) \) of arriving at node \(N_i \) among the \(m \) sibling nodes from the ancestor \(N_A \) is given by:

\[
p(N_i) = p(N_A)/m.
\]
where \(p(N_A) = 1 \) if \(A \) is the root of the tree. The shape of a tree with \(n \) leaves is then measured using the probability of the leaves \(p(L_j) \) by the expression

\[
-\sum_{j=1}^{n} p(L_j) \log_2(p(L_j)).
\]

Homogeneity: the number of leaves divided by tree shape. This shows how the leaves are distributed within the tree, indicating the strength of attribute-label correlations for the task.

Imbalance: given all possible values \(V_i \) for \(p(L_j) \), define \(G(V_i) \) as

\[
G(V_i) = n V_i
\]

where \(n \) is the number of times \(V_i \) occurs in the set of all the leaves of the tree. The imbalance is then measured by the following sum over all possible values for \(p(L_j) \):

\[
-\sum_{j=1}^{n} G(V_j) \log_2(G(V_j)).
\]

Internal symmetry: this is the number of identical multi-node subtrees repeated in the tree. This descriptor, like number of repeated nodes, indicates the need for attribute redescription.

In the next subsection, we show how decision trees could be captured by our representation and some of the above information obtained automatically and on demand during meta-learning.

3.2 Representing and Learning from Induced Decision Trees

The standard representation for a tree, where the subtrees are ordered, is

```haskell
data Tree T = Node T [Tree T];
```

Here \(\text{Tree } T \) is the type of a tree whose nodes have type \(T \), and \(\text{Node} \) is a data constructor whose first argument is the root node and the second is the list of subtrees of the tree. Hence, the type of a tree whose nodes are integers would be given by

```haskell
type TreeOfInt = Tree Int;
```

For the sake of argument, let the type of a decision tree be given by

```haskell
type DecisionTree = Tree DecisionNode;
```

We now have to define the type of the nodes, i.e., provide the data constructors for \(\text{DecisionNode} \). The choice of what information to put into a node is driven by experience with decision tree learning.
Fig. 1. A sample decision tree

It makes good sense to aggregate all of a node’s information in a tuple. Hence, the type of DecisionNode is given by

type DecisionNode = (Attribute, NumExamples, MajClass, NumMajClass, Heuristic);

where Attribute is the name of the attribute to be tested at the node, NumExamples is the number of examples associated with the node, MajClass is the majority class of the examples at the node, NumMajClass is the number of examples belonging to the majority class, and Heuristic is the heuristic value of the node (e.g., the value of the gain ratio for the node).

In addition to decision nodes, a decision tree also contains a number of leaf nodes that provide the classification of new instances. These leaf nodes can be viewed as a special case of decision nodes, where the attribute name and heuristic value are not applicable. This is indicated by providing the special value NA at the relevant positions in the tuples describing leaf nodes. The class assigned to new instances reaching a leaf node is, by definition, the majority class of the training examples at that node, i.e., MajClass.
Higher-order Meta-learning

(Node (4, 109, False, 98, 0.01) [
 (Node (NA, 55, False, 55, NA []),
 (Node (5, 54, False, 43, 0.013) [
 (Node (3, 14, False, 8, 0.137) [
 (Node (6, 7, True, 4, 0.477) [
 (Node (NA, 3, False, 3, NA []),
 (Node (NA, 4, True, 4, NA [])[])],
 (Node (2, 7, False, 5, 0.554) [
 (Node (NA, 2, True, 2, NA [])[]),
 (Node (NA, 3, False, 3, NA [])[]),
 (Node (NA, 2, False, 2, NA [])[])[]),
 (Node (NA, 11, False, 11, NA [])[]),
 (Node (3, 12, False, 7, 0.668) [
 (Node (NA, 7, False, 7, NA [])[]),
 (Node (NA, 5, True, 5, NA [])[]),
 (Node (NA, 17, False, 17, NA [])[]))]);

Fig. 2. Escher term for the decision tree of Fig.1

Fig.1 shows a sample decision tree. The corresponding Escher term is given in Fig.2. A meta-example is constructed simply by adding a label to a decision tree, i.e.,

 type MetaExample = (DecisionTree, Label);

where, in the case of model selection, Label is the name of the learning model that performs best (according to some criteria) on the dataset from which the tree was induced.

Given the above representation, the problem of model selection is automated through meta-learning as follows.

1. Select a (reasonably) large collection, D, of datasets.
2. For each d ∈ D, induce a decision tree using a standard decision tree learner (e.g., C4.5). This gives rise to a collection, T, of decision trees.
3. For each t ∈ T, construct the corresponding Escher term and label it to form a meta-example.
4. Using the meta-examples and some higher-order learner, induce a meta-theory.

For example, the following definition (or meta-theory) could be induced from an example set consisting of decision trees, and used to identify which of two learners would be most suitable for a particular learning task.

data Learner = BackProp | NaiveBayes;

bestLearner :: Tree DecisionNode -> Learner;
bestLearner t =
 if shape(t) > 0.5 &&
 (length [x | x 'elem' subtrees(t), proj3(root(x)) < 0.003]) > 1
 then BackProp
 else NaiveBayes;

The English equivalent of the function bestLearner is: “If the shape of
the decision tree is greater than 0.5 and there are at least two children of the
root with heuristic values less than 0.003, then use Backprop, otherwise use
NaiveBayes.”

This definition makes use of a number of standard functions that can be ap-
plied to tuples, trees and lists, namely,

root :: Tree a -> a;
subtrees :: Tree a -> [Tree a];
length :: [a] -> Int;
proj :: (a1, ..., ak) -> ai; (for each 1<=i<k=)

where root returns the root node of a tree, subtrees returns the list of all
subtrees of a tree, length returns the length of a list and proj returns the ith
component of a tuple. These functions and their use in inductive learning are
detailed in [5]. The definition also makes use of the special function shape ::
Tree a -> Float defined in subsection 3.1. Other tree characteristics mentioned
in subsection 3.1, such as maximum depth and nodes per instances, may similarly
be defined and made available to the meta-learner during induction.

Finally, to predict the most suitable model for a new dataset, c_new, one simply
needs to induce a decision tree, t_new, from it, construct the corresponding Escher
term, e_new and apply the meta-theory to e_new.

4 Conclusion

We have proposed that meta-learning be applied to tasks represented by induced
decision trees. We have briefly described a framework in which such a representa-
tion is possible and speculated on the kind of meta-knowledge one might expect
from this. Experiments must now be set up to validate the idea. We are currently
extending the system described in [9] to carry out experiments.

Our motivation for using the trees directly is that the predefined prop-
ties used in decision-tree-based characterisation (see subsection 3.1) only make
explicit properties implicit in the tree structure. In addition, these properties
have to be calculated a priori regardless of their utility in the task characteri-
sation problem. Provided a sufficiently expressive representation language, such as
the one we propose, good solutions may be obtained directly from the induced
decision trees themselves.

If higher-order meta-learning in this perspective is possible, different data
structures can be used to characterise tasks. A natural set of candidates are the
structures created by learning algorithms, including not only decision trees as
outlined here, but also trained neural networks and rule sets. A task can be characterised by a number of learners' hypotheses, all of which can be manipulated by meta-learners based on our higher-order framework. For decision trees, we use trees; for rule sets, we would use sets and for neural networks, we would use graphs.

In this approach to task characterisation, instead of using learners' performances to describe tasks, as in landmarking (e.g., see [14]), or statistical properties of datasets, as in the traditional approach (e.g., see [13]), we use learners' hypotheses. In effect, we further "blur" the distinction between simple and cheap statistical properties and complete models as produced by learning systems.

The proposed approach can go even further. Indeed, it can easily incorporate other, attribute-based approaches to task characterisation since those meta-attribute vectors could also be expressed in Escher. The gist of the approach, however, is to characterise a task as a consistent hypothesis. Since there are several ways to view a task, we choose to view it with a learner's eyes.

Acknowledgements

This work is supported by an ESPRIT Framework IV LTR Grant (Nr. 26357).

References